Agri. Res. J. Kerala, 1979, 17 (1) 60-66

GENETIC IMPROVEMENT OF COWPEA, V1GNA UNGUICULATA (L) WALP SEED YIELD

R. RAJENDRAN, S. R. BISWAS, P. R. RAMACHANDER, A. SATYANARAYANA N. ANAND and K. SRINIVASAN

Horticultural Research Institute, Bangalore, India

Cowpea is a vegetable used both as tender green pods and as shelled •beans of mature pods. Rajendran *et al.* (1978) have reviewed the work done on the inheritance of various characters on cowpea and also studies relating to the inter-relationship amcng various characters. They have also reported detailed results pertaining to such a study when the tender green pods were harvested. The present study relates to the types suitable for vegetable used as shelled beans of mature pods.

Materials and Methods

Nineteen self fertilized cowpea varieties from the extensive germplasm available at Indian Institute of Horticultural Research were grown in an Randomised Block Design with four replications. Area of primary leaf in sq. cm (X₁), plant height in cms (X₂), plant spread in cm (X₃) days taken for first flowering (X₄), days taken to complete 50% flowering (X₅), number of flowers per bunch (X₆), number of pods set per bunch (X₇), 100 seed weight (X₈), length of peduncle in cm (X₉), number of peduncle per plant (X₁₀). number of primary branches (X₁₁), number of seeds per pod (X₁₂), per cent borer Infestation of pod (X₁₃) and seed yield per plant (Y) were recorded. Genetic components were estimated by adopting standard procedures as described by Barton (1952). Heritability on broad sense was estimated according to Hanson *et al.* (1956). The path coefficient analysis was done using method given by Dewey and Lu (1959). Selection indices were worked out using methods given by Rao (1952).

Results and Discussion

The heritability of different characters and their inter-correlations (Phenotypic, genotypic and environmental) are given in Table—Ia, b and c. As reported by Rajendran *et al.* (1978) and Tikka *et aj.* (1977) the heritabilities of all characters are medium to high indicating existance of residual genetic variation which makes the crop amenable to improvement by selection programmes. Except for area of primary leaf, pod set per bunch and per cent borer infestation all other characters have significant genotypic positive correlation with yield. But in case of correlations with green pod yield a slightly different picture was reported by Rajendran *et al.*, (1978). The per cent borer infestation had

Chara- cter	Area of primary leaf	Plant height	Plant spread	Days to first flo- wering	Days to 50% flow- wering	No. of flower/ bunch	Pod set/ bunch
	X1	X_2	X_3	X_4	X_5	\mathbf{X}_{6}	X_7
Herita- bility (%)	93.81	94.31	94.12	92.63	91.39	59.90	77.81
X, rp	1.00	0.2499*	0.3362**	0.1998	0.1956	0.1789	-0.1908
X ₂		1.0000	0.7246**	0,3824**	0.3511**	0.3208**	0.2342*
X.	100		1.0000	0.6835**	0.6388**	0.3635**	—0.0 110
X4				1.0000	0.9005**	0.1448	0.1113
X ₅					1.0000	0.2148	0.1267
Х,						1,0000	0.0978
X ₇							1.0000

Table 1—A Phenotypic correlations among and heritability of different characters of cowpea

Table **1–A** Continued

	100 seed weight	Length of ped- uncle X ₉	No. of pedun- cle X ₁₀	No. of primary branches X_{11}	No. of seed/ pod X ₁₂	Borer in- festion of pod X ₁₈	Seed yield per plant Y
			10	11	12	18	
Herita-							
bility (%)	93.58	67.02	75.80	72.35	90.87	86.84	84.42
X,	0.7436**	0.3921**	0.0849	0.0489	0.3806**	0.1271	0.2343*
X ₂	0.2375*	0.3465**	0.6111**	0.3442**	0.3354**	-0.1837	0.5722**
Χ,	0.5075**	0.5418**	0.7468**	0.5978**	0.5161**	0.0358	0.7694**
X4	0.3412**	0.1921	0.5070**	0.5213**	0.4569**	-0.1496	0.5480**
X ₅	0,3050**	0.1641	0.4885**	0.5489**	0.5711**	-0,2643	0.5171**
X ₆	0.2392*	0.2107	0.4850**	0.3996**	0.1553	-0.1700	0.3810**
X ₇	0,4242**	-0.3173**	0.0123	0.0241	-0,1727	-0.3773**	0.1331
X ₈	1.0000	0.5022**	0.3028**	0.0712	0.5012**	0.3872**	0,4536**
X ₉		1.0000	0.3956**	0.2451*	0.3676**	0.1787	0.5549**
X ₁₀			1.0000	0,7066**	0.3214**	0.0905	0.7510**
X10 X11				1.0000	0.2248*	0.2625*	0.5224**
X ₁₂					1.0000	0.0176	0.5984**
X12 X18						1.0000	0.1288
Y							1.0000

Chara- cter	Area of primary leaf	Plant height	Plant spread	Days to first flo- wering	Days to 50% flo- wering	No. of flower bunch	Pod set/ bunch
	X ₁	Χ2	Х,	\mathbf{X}_4	X_5	X_6	X ₇
Herita-							
bility (%)	93.81	94.31	94.12	92.63	91.39	59.90	77.81
X ₁ rg	1.00	0.2729	0.3550	0.2007	0.2054	0.2698	0.2266
X_2		1.0000	0.7713**	0.4054	0.3689	0.4199	0.2812
X ₃			1,0000	0.7306**	0.6885**	0.4692	0.0110
X_4				1.0000	0.9603**	0.2032	0.1540
\mathbf{X}_{5}					1.0000	0.3095	0.1517
X ₆						1.0000	0.1609
X ₇							1,0000

Table 1-B Genotypic correlations among and heritability of

Table 1-B Continue	be
--------------------	----

	100 seed weight	Length of ped- uncle	No. of pedun- cle	No. of primary branches	No. of seed/ pod	Borer in- festation of pod	seed yield per plant
	X_8	X ₉	X10	X ₁₁	X ₁₂	X18	Y
Herita-							
bility (%)	93.58	67.02	75.80	72.35	90.87	86.84	84.42
X ₁ rg	0.7764**	0.5190*	0.1101	-0.0590	0.4081	0.1402	0.2572*
X ₂	0.2568	0.4460*	0.7024**	0.4375	0.3564	-0.1904	0.6269**
X ₃	0.5404*	0.6538**	0.8611**	0.6803**	0.5808**	0.4205	0.8626**
X ₄	0.3537	0.2584	0.6263	0.6447**	0.4997*	-0.1605	0.6165**
X ₅	0.3142	0.2350	0.6268**	0,7295**	0.6117**	-0.2794	0.6221*
X ₆	0.3053	0.2933	0.6566**	0.5816**	0.2192	-9.2516	0.5396*
X ₇	-0.5170	-0.4328	0.0174	0.0120	-0.2491	-0.4533*	-0.1910
X ₈	1.0000	0.6452**	0.3882	0.1041	0.5383*	0.4198	0.5309*
X ₉		1.0000	0.4341	0.3078	0.4948*	0.2544	0.7070**
X10			1,0000	0.8026**	0.4133	0.1040	0.8419**
Xii				1,0000	0.2827	-0.3326	0.5818**
X12					1.0000	0.0196	0.6937**
X13						1.0000	0.1741
Y							1.0000

* Significant at 5% level of significance

** Significant at 1% level of significance

GENETIC IMPROVEMENT OF COWPEA

a significant genetic correlation with green pod yield and characters like days to first flower, days to complete 50 per cent flowering and height did not exhibit any such significant relation. This may possibly ba due to the picking ef tender pods at regular intervals practiced in that case. Further it can be seen from the table that 100 seed weight and number of seeds per pod, the two major yield components show different type of relations with the other morphological characters. While area of primary leaf and pod set per bunch had significant negative correlation with 100 seed weight only. Days to first flowering, days to complete 50 per cent flowering, had significant relation with number of seeds per pod only. Plant spread and length of peduncle had significant relation with both the yield components and other characters considered did not show any relation with either of them.

Selection index method, where the selection is exercised based on the genetic effects of different characters on yield (here seed yield per plant), was tried to see whether any improvement is **possible**. It was seen that at best selection index using different combination of characters was on par with straight selection. Tikka *el al.*, (1977) have arrived at an index with 22.7% more efficient than straight selection for increase of seed yield. This apparent difference may be due to the higher heritability of yield shown in our conditions as also the broader genetic material included in the study.

A more clear understanding of the causation mechanism is desirable in arriving at desirable plant types or even to find out possible limitations of the selection procedure. The path ways (both direct and indirect) of the different characters on seed yield per plant are given in Table 2. The highest direct effects on yield are shown by pod set per bunch and number of seeds per pod but the former character has a high negative indirect effect also. The number of peduncle, days to first flowering, and length of peduncle are the characters which have above average positive direct and indirect effects. Days to 50 per cent flowering which has a very high positive indirect effect mainly through number of seeds per pod, length of peduncle and number of peduncle had an above average negative direct effect. An ideal plant which has characters influencing yield both directly and indirectly would have longer peduncles, more number of peduncle and more number of seeds per pod and should flower early. Among the morphological characters measured plant spread seems to be more important than height which has a slight negative indirect effect. These conclusions are entirely different from the results of analysis of Rajendran et al. (1978) for green pod yield wherein it was found that the different characters have antagonism among themselves and limit the possibility of increasing green pod yield indefinitely. Thus while methods other than selection have to be resorted to in increasing the green pod yield, selection exercised based on yield is likely to pave way for higher yielding plants in case of seed yield.

Chara- cter	Area of primary leaf X ₁	Plant height	Plant spread X ₈	Days to first flo- wering X_4	Days to 50% flo- wering X ₅	No. of flower/ bunch X_6	Pod set/ bunch
		X_2					X_7
Herita-							
bility (%)	93.81	94.31	94.12	92.63	91.39	59.90	77.81
X ₁ re	1.00	-0.1485	-0.1226	0.1876	0.0742	-0,1483	0.0242
X ₂		1,0000	-0.0371	0.0538	0.1222	0.0345	0.0591
Х,			1.0000	0.0202	0.0033	0.0726	-0.1780
X ₄				1.0000	0.2126	-0.0386	-0.1522
X_5					1.0000	-0.0764	0.0094
X ₆						10000	-0.0405
X ₇							1,0000

Table 1-C Environmental correlations among and heritability of different characters of cowpea

Table **1––C** Continued

	100 seed weight	Length of ped- uncle	No. of pedun- cle	No. of primary branches	No. of seeds/ pod	Borer in- festation of pod	seed yield per plant	
	\mathbf{X}_{8}	X ₉	X10	X ₁₁	X ₁₂	X18	Y	
Herita-								
bility (%)	93.58	67.02	75.80	72.35	90.87	86.84	84.42	
X ₁ re	0.2555	0.1361	-0.0649	0.0020	0.0502	0.0058	0.0547	
X,	-0.0627	-0.0593	0.1467	-0.1375	0.0768	-0.1323	0,1361	
X ₃	0.0066	0.1620	0.1627	0.2851	-0.2874	-0.0249	0.0057	
X ₄	0.1736	-0.0735	-0.1333	-0.0460	-0.0190	0.0582	0.0260	
X ₅	0.1944	-0.1176	-0.2299	-0.2878	0.1532	-0.1445	0.2536	
X ₆	0.0661	0.0683	0.1366	0.0500	0.0334	0.0499	0.0106	
X_7	0.1421	-0.0176	0.0048	-0.1334	0.2578	-0.2729	0.1167	
X	1.0900	-0.0603	-0.1935	-0.1084	0.0635	0.0952	0.1834	
X ₉		1.0000	0.3051	0.1019	-0.1067	-0.0737	0.1022	
X10			1.0000	0.4338	-0.1456	0.0345	0.3993	
X ₁₁				1.0000	-0,0280	0.0061	0.3260	
X ₁₂					1,0000	0.0017	-0.0766	
X ₁₃						1.0000	-0.1418	
Y							1.0000	

and the state of the state	J.o.o.		(-	
Indirect effects of	Area of primary leaf X_i	Plant height X ₂	Plant spread X ₈	Days to first flo- wering X ₄	Days to 50% flowering X_5	No. of flower bunch X_6	Pod set/ bunch X ₇
X	-	-0.0174	0.0319	0.0446	-0.0632	0.0007	-0.0806
X ₂	-0.0414	_	0.0709	0.0854	0.1134	0.0012	0.0989
X ₃	-0.0544	-0.0508		0.1526	-0.2063	0.0014	-0.0046
X4	-0.0333	-0,0268	0.0699	_	-0.2908	0.0006	0.0470
X ₅	-0.0326	-0.0246	0.0625	0.2011		0.0008	0.0535
X ₆	-0.0298	-0.0225	0.0356	0.0323	-0.0694	\rightarrow \rightarrow \rightarrow	0.0413
X,	0.0318	-0.0164	0.0011	0.0248	-0.0409	0.0004	10 <u>1</u>
X ₈	-0.1240	-0.0167	0.0497	0.0762	-0.0985	0.0009	-0.1791
X ₉	-0.0654	-0,0243	0.0530	0.0429	-0.0530	0.0008	-0.1340
X10	-0.0142	-0.0429	0.0731	0.1132	-0.1578	0.0018	-0.0052
XII	0.0082	-0.0242	0.0585	0.1164	-0.1773	0.0015	-0.0102
X12	-0.0635	-0.0235	0.0505	0.1020	-0.1844	0.0006	-9,0729
X18	-0.0212	0.0129	0.0035	-0.0334	0.0853	-0.0006	-0.1593
Direct effects	-0.1668	-0.0702	0.0978	0.2233	-0.3229	0.0038	0.4223
Total Indirect effects	0.4011	0.6424	0.6716	0.3247	0.8400	0.3722	-0.2892

 Table 2 Casual path ways in determination of total seed yield in cowpea (Indirect effects through)

Table 2 Continued

Indirect effect of	100 seed weight	Length of ped- uncle	No. of pedun- cle	No. of primary branches	No. of seed/ pod	Borer in- festation of pod	
	X ₈	X_9	X_{10}	X ₁₁	X_{12}	X18	ing a
Xı	0.1824	0.0146	0.0313	0.0056	0.1611	0.0112	
X ₂	0.0583	0.0925	0.2250	0.0392	0.1419	-0.0162	
X ₃	0.1245	0.1446	0.2749	0.0682	0.2184	0.0032	
X ₄	0.0837	0.0513	0.1867	0.0594	0.1933	-0.0132	
X.	0.0748	0.0438	0.1799	0.0626	0.2417	-0,0233	
X ₆	0.0587	0.0562	0.1786	0.0456	0.0657	-0.0120	
	-0.1041	-0.0847	0.0045	0.0027	-0.0731	-0.0332	
X _s		0,1340	0.1115	0.0081	0.2121	0.0341	·
X ₉	0.1232		0.1457	0.0280	0.1556	0.0157	10 10
X ₁₀	0.0743	0.1056	-	0.0806	0.1360	0.0080	
X11	0.0175	0.0654	0.2602	1.1	0.0951	-0.0231	
X12	0.1230	0.0981	0.1183	0.0256		0.0015	
X ₁₃	0.0950	0.0477	0-0333	-0.0299	0.0074		
Direct effects	0.2453	0.2668	0.3681	0.1.140	0.4232	0.0881	
Total Indirect				24 N 2, 24	20 X 20 X	1	
effects	0.2083	0.2881	0.3829	0.4084	0.1752	0.0407	

AGRICULTURAL RESEARCH JOURNAL OF KERALA

Summary

The heritability and inter-correlation study of Cowpea grown for seed **purpose** is reported. All characters examined were found to have high heritability. Selection index technique was found to be not efficient over straight selection. An ideal plant which gives higher seed yield should preferably flower **early**, have longer peduncles, have more peduncles and have more number of seeds per pod.

Acknowledgements

The authors wish to express their deep gratitude to Dr. G. S. Randhawa, Director, Indian Institute of Horticultural Research, without whose encouragement an inter-disciplinary work of this nature could not have been done,

സംഗ്രഹം

വിത്തിനുവേണ്ടി വളർത്തിയ മാമ്പയറിൻെറ വംശാഗതത്വവും അന്തരാ–സഹസംബ സ്ഥവും ഇവിടെ വെളിപ്പെടുത്തിയിരിക്കന്നും. പാനവിധേയമാക്കിയ എല്ലാ സ്വഭാവങ്ങളം ഉയർന്ന വംശാഗതത്വം പ്രകടിപ്പിക്കുന്നതായി കണ്ടു. നേർനിർധാരണത്തിൽ നിർധാരണ സൂപികാ സങ്കേതം ഫലപ്രദമായിക്കണ്ടില്ല. ഉയർന്ന നിരക്കിൽ വിത്തുല്പാദനം നടത്തന്ന ഒരു മാത്വകാസസ്യം നേരത്തേ പൂക്കുന്നതും നീണ്ട പൂങ്കലത്തണുള്ളതും കൂടുതൽ പൂങ്കലകളും കൂടുതൽ വിത്തുടങ്ങിയ കായ[ം]കളും ഉല്പാദിപ്പിക്കുന്നതും ആയ ഒന്നാകാനാണം കൂടുതൽ സാധ്യതയെന്ന കണ്ടു.

REFERENCES

Burton G. W. 1952. Quantitative inheritance in grasses. Proc, 6th Int. Grassland Congress 1, 277-82,

- Dewey, D. R. and Lu. K. H., 1959. A correlation and path coefficient analysis of existed wheat grass seed production. *Agron. J.* 51, 515-518.
- Hanson, C. H., Robinson, H, F. and Comstole, R. E. 1956. Biometrical studies of yield in segregating populatoins of Korean lespedezu, Agron. J, 48, 262-272.
- Rajendran, R., Ramachander, P. R., Satyanarayana, A. and Sreenivasan, V. R. 1978. Genetic improvement of cowpea (*Vigna unguiculata* (L) Walp - Green pod yield. Under publication in. *Acta Agriculture*.
- Rao, C. R., 1952. Advanced statistical Methods in Biometric Research John Wiley and Sons I. C., New York.
- Sene, D. 1968. Heredite nu pods decent grownes chez vigna unguiculata (L) Walp (Neibe). Agron. Trop. 23, 1345-1351.

Tikka, S. B. S., Jaimani, S. N., Asawa, B. M. and Mathur, J. R., 1977. Genetic variability interrelationships and disemminant function analysis in cowpea (Vigna unguiculata), Indian J. Hered. 9. 1—9.

(M. S. Received: 18-9-1978)