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INTRODUCTION

Multivariate techniques are generalizations of 
univariate techniques. Historically, statistical analysis 
on multivariate data was done on Individual measurements 
by simpler univariate methods, which has got certain 
limitations In drawing overall inferences. Multivariate 
techniques helps to draw such overall inferences \tfIthout 
loss of Information we are seeding from the data.

Factor analysis is a branch of multivariate 
analysis developed by Spearman (1904) as a method of 
analysing the dependence structure of a set of variables. 
Today it is the most widely used method of reducing the 
dimensionality of a set of variables by taking advantage 
of their Intercorrelations. This method helps to identify 
fundamental and meaningful dimensions of a multivariate 
domain. A matrix of correlations can be factorised In 
an infinite number of ways and a good account of these 
approaches are discussed by Harman (1967)* Lawley (1940) 
applied the method of Maximum-Likelihood to estimate the 
loadings in a factor-model and now It remains the best 
method of extraction of factor loadings. The most commonly 
used technique Is the principal factor analysis. But 
the estimates obtained by Maximum-Likelihood Factor



Analysis enjoys a powerful invariance property^ "changes 
in the scales of the response variate only appear as 
scale changes of the loadings” (Morrison, 1978). In 
addition the maximum-likelihood method provides test of 
significance for the determination of the number of 
common factors. In a factor model response variate is 
represented as a linear function of a small number of 
unobservable common factor variates and a single latent 
specific variate. The common factor generates the 
correlations among the response variables while the 
specific factor contribute only to the variance of their 
particular responses. , ,

A factor Is a vector of correlation coefficients. 
The most interpretable factor is one based upon corre­
lation coefficients which are maximally Interpretable.
The varimax criterion has become the most widely accepted 
method for the orthogonal rotation of the factors since 
its development by Kaiser (1958). In this method the 
variance of the squared loadings of each factor is 
maximised. The Invariance property of normal varimax 
solution seem to be of greater significance and makes 
It to define mathematically the doctrine of simple 
structure. The rotation of the factors helps to make 
the best interpretation of the common factors.
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In plant breeding programmes* a knowledge of the
• ' i '  i 1 'nature and magnitude of genetic diversity in morpholo­

gical characters is important for careful:selection of 
parents for crossing. The greater the diversity of genes 
that a breeder handles* better are the chances for the 
selection of superior genotypes. Correlation studies to

. i i i  1evaluate the association of biometrical components on 
yield of sesame was conducted by many research workers.
But no study has since been made to identify those hidden 
factors which have generated the dependent structure in 
the response variable. The present study is aimed at 
identifying those hidden factors by applying factor 
analysis via two methods - Principal Factor Analysis and , 
Maximum-Likelihood Factor Analysis. ..

Sesame is one of the oldest annual oil seed crops. 
It has many favourable points, including a high percentage 
of oil which resembles, but in some respects superior to 
groundnut and sunflower oils. In respect of total world 
production, India stands next to China and India's share 
of world production is 24.6 percentage. Sesame is the 
most valued annual oil seed crop of Kerala. It is grown 
in very limited area of 1453 hectares with an annual seed 
production of 3648 tonnes.' The chief factor limiting the



productivity of sesame in the state is the . lack of high 
yielding varieties suitable to the seasons in different 
regions. The only improved variety evolved in.Kerala 
is Kayamkulam I. Sesame is grown in this state in uplands 
during rabi season and in v/et lands during summer. Improved 
varieties suited to these varied conditions will step up 
the crop productivity In the state. .

The biometric studies on genetic diversity on a 
large collection of different varieties of sesamum will 
provide basic information for its improvement in plant 
breeding programmes. In sesamum the germplasm diversity 
will affect the yielding ability mainly on the genetic 
characters that control them. The present study is 
conducted with the following objectives.

1. To create hypothesis on causative factors of diver-' 
gence working in the plant population of sesame by 
means of 'exploratory factor analysis' through the 
method of "maximum likelihood solution".

2. To investigate the possibility of fixing fewer stable 
factors to delineate divergent plant populations.

3. To concentrate more on factors which are directly 
related to productivity, reproduction and vegetation.



4. To compare the results obtained through Principal 
Factor Analysis and Maximum Likelihood Factor Analysis.

5, To investigate the possibility of conducting a ■ 
"confirmatory factor analysis" to test the hypothesis, 
on factors and to find out the unique ®confactor posi-

. tion’ to determine the unique position of factors.
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REVIEW OF LITERATURE

Multivariate techniques are useful for analysing 
the intercorrelated multiple measurements. In plant breed­
ing trials, as a large number of variables are involved, 
effective breeding calls for the knowledge of genetic 
variability among parents with regard to these characters 
which are sought to be improved. Genetic divergence among 
parents is important because a cross involving genetically 
diverse parents is likely to produce high heterotic effect 
and also more variability could be expected in the segre­
gating generations. In such situation, factor analysis 
is an appropriate method which gives Insight into the 
fewer causal influences (underlying factors) responsible 
for differentiation among genotypes or populations.

2.1 Theoretical studies

2.1.1 Analysis of dispersion

Attempts have been made to generalize the univariate 
analysis of variance to the case of multiple variates* The 
multivariate analysis of variance or MANOVA began with the 
derivation of the simultaneous sampling distribution of the 
variances and covariances In samples from a multivariate 
normal population (Wishart, 1928)..
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A few years later Hotelling (1931) found the distri­
bution of a quantity T which is a natural extension of 
Student's t distribution to a sample from a multivariate 
normal population.

Wilks (1932 a), following the likelihood ratio 
method of Neyman and Pearson (1928, 1931) and Pearson fimd. 
Neyman (1930) obtained suitable generalizations in the 
analysis of variance applicable to several variables and 
is the A statistic.

Bartlett (1934) applied It for testing significance 
of treatments with regard to two variables in a varietal 
trial and indicated Its general use in multivariate tests 
of significance. Wilks (1935) and Hotelling (1936) found 
it useful for testing the independence of several groups 
of variates, ,

‘ Bartlett (194-7) demonstrated the useful approxi-
2mation of .Wilk's a  statistic to a % .

2.1.2 Factor analysis

Factor analysis is an exploratory tool to provide 
a posteriori Insight Into the underlying causes of corre­
lations among variables in multivariate theory. An
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introspective analysis of the causative, forces responsible -
for.inter and intra-specific differentiation can be made

. • . 1 • ' ' 1

by factor analysis. It provides fewer stable factors to 
delineate divergent populations.

i i * * i i , . '

Spearman (1904) developed first the theorems in 
factor analysis when he was attempting to understand the 
nature of intelligence as, a single general factor-among 
all tests of cognitive.ability. Spearman differentiated 
three type3 of factors, namely, a general factor which 
was common to all of the variables, group factors which 
were common to some of the variables but not to all of

t , '

them, and specific factors that were peculiar to single 
variables alone. In practice, the Spearman two-factor 
methods meet with the difficulty that group factors are 
frequently encountered. This two-factor theory was 
generalized In the next twenty years, principally by 
Garnett (1919) and Thurstone (1931), into principles of 
multiple factor .analysis. The multiple, factor method is 
supplementary to the Spearman's two-factor method in that 
there are no restrictions to the number of general factors 
or the number of group factors.

Raff's (1936) suggestion of filling each cell in 
the diagonal with the square of the multiple correlation
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of that variable with every other variable in the corre­
lation matrix, had been advocated by Guttman (1956). It 
is the best known'proposition and gives lower limit to 
the communality. ■

The computation oh the correlation matrix has been 
divided into two basic methods of calculation which are 
in common use in extracting factors ie., in reducing a 
correlation matrix to a factor matrix. They are the 
principal axes method and centroid method. The latter 
was introduced by Thurstone as a substantial labour 
saving approximation to the principal axes method., Burt 
(1941) referred these methods respectively as 'the weighted 
summation' and 'the simple summation1 methods. The cen­
troid method of factor analysis was outlined by Holzinger 
and Harman (1941). • ,

Thurstone (1947) traced the objective of the factor 
pattern as follows: "the object of a factor problem is to 
account for their inter correlations, in terms of a small

1 t

number of derived variables, the smallest possible number 
that is consistent with acceptable residual errors".

Kendall (1950) made a useful distinction between 
dependence and interdependence analysis in multivariate



analysis. Analysis of dependence is concerned, with how ; ■ 
a certain specified group depend on other,and analysis . 
of interdependence is, concerned with how ,a group of . ■ 
variables are related among themselves. Factor analysis 
is latter type of multivariate analysis.

. Burt (1952) has given a full amount of tests of 
significance in factor analysis developed ,upto that time.

The computation schemes of various factor analysis 
methods were provided by Frutcher (1954).

Rao (1955) made a distinction between the method 
of principal components and the common factor analysis.
He introduced the concept of 'basis' of a vector space 
for the characterization of factor analysis. In the 
first characterization, the factor variable explains 
as much of variation as possible of original variables 
which lead to principal factor analysis. In the second 
characterization, he considered the factor variables 
which is predictable from the original variables with the 
maximum possible precision which lead to canonical factor 
analysis. According to the theory of canonical correla­
tions the correlation (or its squares) between the two 
linear combinations of factor variables and' test scores 
has to be maximized.



Factor analysis as a branch of multivariate analysis 
is very useful in determining the number and nature of 
causative Influences responsible for the inter-correlation 
of variables in any population. Essentially, it aims at 
explaining a p x p correlation matrix (p variates) by means 
of a fewer number k (k^-p) of meaningful factors (Maxwell, 
1961; Lawely and Maxwell, 1963). .

Kaiser and Caffrey (1965) explained the scale 
invariance aspects of canonical factor analysis and alpha 
factor analysis.

The better solution is to start by deciding the 
number of common factors and then allowing the communa- 
lities to adjust for it (Cattell, 1965 a). He has given 
a brief sketch of the whole process of factor analysis.
He introduced the two types of factor models the ’closed 
model* for the method of * component analysis* and the 
’open model* for the ’factor analysis’.

In the closed model analysis unities are taken as 
the diagonal elements and take as many common factors as 
variables so that complete perfection as achieved within 
the small set of variables sampled.

The open model, using a reduced matrix with
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communalities in the diagonal, can produce fewer common 
factors than variables and this model will not enable to 
reinstate the test scores from the factor scores since 
full variance of any variable is partly contributed by 
the common factors arid the rest by specific factors* He 
has given a good account of the approaches in deciding 

! upon the number of common factors in a factor-model,

Cattell (1965 b) in another paper described the 
role of factor analysis in research. The use of factor 
analysis as (a) hypothesis creating and (b) hypothesis 
testing was given by him.

Hemmerle (1965) in his paper considered the problem
\ j

of computing estimates of factor loadings, specific 
variances, and communalities for a factor analytic model. 
Iterative formulae were developed to solve the maximum 
likelihood equations and a simple efficient method of its 
Implementation on a digital computer was described.

A general description of the concepts, theories 
and techniques of factor analysis has been given by 
Harman (1967).

Joreskog (196 9) gave the relevant results for
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confirmatory factor analysis, where the matrix of factor 
loadings is uniquely identified by priori restrictions 
(usually by setting particular loadings to zero),

McDonald (1970) made a purely theoretical compa­
rison among the three factor score construction methods 
namely principal factor analysis, canonical factor analysis 
and alpha factor analysis. According to him, In'choosing 
a factor model, there are in fact, at least three separate 
choices to be made which are relatively Independent, The 
first is the choice of basis In common factor space and it N 
Is the clearest defining _ characteristic of the three systems 
discussed. The second is the choice of an iterative 
algorithm for the determination of communalities/uniaue- 
nesses. The third is the decision rule for the number of 
common factors, ■

Joreskog (1971) has given estimation procedures 
for factor models involving several.populations.

Joreskog and Gold berger (1972) have developed 
a generalized least-squares procedure. The estimates 
are scale free and asymptotically equivalent to the maxi­
mum likelihood estimates when the distribution is multi­
variate normal. '
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A non-metric approach to factor analysis has been 
considered by Kruskal and Shepard (1974)* Although this 
technique has some attractive theoretical properties, it 
appears to be very sensitive to random variation in the 
data.

Swain (1975) considered a class of asymptotically 
efficient estimaters including both generalised least 
square and maximum likelihood as special cases and derived 
their large-sample properties. '

Joreskog (1977) presents a general, all-encompasing 
series of methods for orthogonal factor analysis by the 
least squares and maximum likelihood methods. Many varia­
bles in the social sciences involve latent and structural 
variables and Joreskog (1977) developed estimation proce­
dures for several such methods, working directly from the 
covariancd matrix.

A few of the many methods developed for factor 
extraction are centroid method (Thurstone, 1947) , principal 
factor method (Karl Pearson, 1901), maximum-likelihood 
method (Lawley, 1940) etc. Here we are considering 
principal factor and maximum-likelihood methods..
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2,1,2.1 Principal Factor Method (PF method)

The literature on factor analysis contain a number 
of alternative methods and procedures for computation. 
Among these, principal component method (also called 
principal-factor or principal-axes solution) has several 
attractive features. Each factor or principal components 
as Hotelling calls it extracts maximum amount of variance 
and gives the smallest possible residuals.. However*, this 
method is preferred in the present study mainly owing to 
computational facilities.

* i " ' 1

Hotelling (1933 a) developed the principal axes 
method which provides an optimal solution at the suggest. 
tion of Kelley (1935).

Hotelling (1933 b) suggested the use of this method 
with either unities in the principal diagonal. The result­
ing factors are called "principal components" and are used 
to reproduce the score matrix rather than the correlation 
matrix. The number of principal components extracted is. 
equal to the number of variables in the study. ,

Hotelling (1935) developed an Iterative method of 
obtaining the loadings which can be carried to any degree 
of accuracy.
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Principal component analysis is sometimes modified 
by, the insertion of communalities in the diagonal of the 
correlation matrix and Rao (1955) called this method as 
principal factor analysis.

Harman (1960) exhibited an outline form; of the 
numerical calculations of the method with an illustra­
tive example. The first requirement In applying the 
principal factor method is to determine some suitable 
estimates of communality. According to him FF method 
can bp considered as an excellent reduction of the 
correlation matrix which provides a basis for rotation 
to some other form of solution. The method also has the

1 '

advantage of giving a mathematically-unique (least 
squares) solution for a given correlation matrix.

Schilderinck (1978) has given a complete picture , 
of the geometric and algebraic approaches of principal 
factor analysis.

2,1.2;2 :Maximum-Likelihood Method (ML method)

The distinction between the solutions obtained 
by using the principal factor method and maximum like­
lihood method is that former corresponds to a priori
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choice of communalities and the latter, the number of
i < i

common factors. The ML solution Is based on fundamental 
statistical considerations. It' considers explicitly the 
differences between the correlations among the observed 
variables and the hypothetical values in the universe , 
from which they were sampled. .

The efforts to provide a sound statistical basis 
for factor analysis were made first by Lawley (1940, 1942) 
who suggested the use of "maximum likelihood method11, 
due to Fisher (1922, 1925), in order to estimate the 
universe values of the factor loadings from the given 
empirical data. Lav/ley*s ML method is possible only 
when the variates are normally distributed. It requires 
a hypothesis regarding the number of common factors•'

Lawley (1940) and Rao (1952) had shown that nML 
solution” goes to and fro between communalities and number 
of factors until It -hits on the combination which yields 
the smallest residual. .

Kaiser (1960) recommended (after considering 
statistical significance, algebraically necessary condi- ... 
tions) the number of common factors as the number of . 
eigen values greater than or equal to one in the correlation
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matrix* He found this number to be about one-sixth or 
one-third of the total number of variables. The expre­
ssion of ML method in factor analysis becomes more mean­
ingful and clear with this foundation.

A more condensed derivation of ML methods were 
appeared in a book by Lawley and Maxwell (1963).

Hemmerle (1965) found that Rao's procedure con­
verges more rapidly than Lawley*s procedure. Hemmerle 
(1965) in his paper considered the problem of computing 
estimates of factor loadings, specific variances and 
communalities for a factor analysis model. Iterative 
formulae were developed to solve the ML equations and a 
simple and efficient method of implementation of this 
method on a digital computer V/as developed by him.

The ML procedure remained impractical for all 
but for the smallest problems until the work of Joreskog 
(1967, 19 6 9)» as the process■converge very slowly.

In Joreskog*s (19 6 7) ML method he proceeds
systematically, fitting one, two........  factors and
testing at each stage by a chi-square test to see whether 
further factors are required. It also carries a varimax
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rotation at each stage. He also presents an example to 
compare the ML factor estimates with those given by ' 
principal components.

Since Joreskog*s work appeared, Clarke (1970) 
developed Newton-Raphson procedure for solving the log­
like llhood function. ■

Lawley and Maxwell (1971) have given expressions 
for the standard errors of the latent roots and factor 
loadings for both the unrestricted and restricted models 
and later a correction in the standard error by Jennrlch 
and Thayer (1973) was made.

Gill (1977) has shown that the ML estimators are 
consistent even when the underlying distribution for the 
variables is non-normal.

Kendall et al, (1983) reported that the ML solu­
tion remain scale-free if restrictions are imposed upon 
the parameters.

2.1.2.3 Factor rotation

Kaiser (1956) proposed the Varimax' method as a 
modification of the quartimax method which nearly appro­
ximates simple structure. He found that a variable with
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communalities twice that of another will influence the . 
rotations by four times as much. . i

' As a last step in factor analysis Cattell (1965 a) 
explained the rotational technique like 1) simple structure 
and 2) confactor rotation. In simple structure each , 
factor, affects only a few variables. But in conf actor 
rotation real factor does happen to operate on all or 
most of the variables in the sample.

Cattell and Khanna (1977) described different 
approaches to factor rotation in which he introduced one 
kind of rotation criterion i.e., confactor rotation, 
which arises when a second factorisation on the same 
variables with another group is involved.

2.2 Applied studies
t

Lawley (19A3) applied the ML method to factor . 
analysis of data collected for research in education.
This is a satisfactory method of deciding the number 
factors required to account for the scores obtained when 
the- number of individuals tested is, reasonably large*
In this case two general factors are, needed to explain 
eight, tests.



Wallace and Bader (196?) employed the multivariate 
approach of factor analysis on 27 measurements of the 
house mouse. The original principal factor solution was 
rotated to yield the final varimax solution. Five common 
factors were identified with respect to the 27 variables.

In order' to determine the factors affecting the 
use of fertilizers among the farmers, Shetty (1969) used 
the principal component method of factor analysis. The 
study revealed that the first four factors are sufficient 
for the explanation of the observed inter-farm variations 
in the use of fertilizers.

Walton (1972) used factor analysis in identifying 
the morphological characters related to yield in spring 
wheats.

Abraham and Hoobakht (1974) applied the technique 
of factor analysis to extract basic factors underlying 
the observed soil variables. Scores based on four under­
lying factors could be used for comparison of inter soil

■. i . , 1 '

variables,

Martin and Eaves (1977) adapted the analysis of 
covariance structures to the simultaneous maximum likeli­
hood estimation of genetical and environmental factor



loadings and specific variances,, The goodness of fit is 
tested by chi-square and standard errors of parameter 
estimates can be obtained*

. Denis and Adams (1978) performed, a principal 
factor analysis on 22 morphological and yield-determining 
traits of 16 cultivars and strains of dry beans. There 
were at least two or three principal factors to be examined 
for biological meaning and from which to seel? insight into 
the basic structural design of bean plants.

Tlkka and Asawa (1978) used correlation in 28 
genotypes of lentil for factor analysis through the prin­
cipal component method as suggested by Harman. More than 
90 percent of the variability v/as extracted by two factors. 
Within each factor, traits were ranked according to the 
relative magnitude of factor loadings*

Sundarata et al. (1980) used centroid method of 
factor analysis in cowpea to study its evolutionary 
pattern. The analysis divided the nine characters into 
three groups of factors which accounted for 98 percent 
of total variation. , , .

Phenotypic correlations among seven traits in



ninety diversified strains of triticale were utilized 
by Sawant et al. (1982) for factor analysis using the 
principal component method. The factor analysis grouped 
the seven characters into two main factors which together 
accounted for about 46 percent of total diversity.

Kendall et al. (1983) compared the ML factor 
estimates with those given by principal components by 
applying it to fifteen characteristics of 48 applicants 
for a post. ■ .

Kukadia et al. (1984) conducted a study to deter­
mine the importance of various traits for yield improve-, 
ment in forage Sorghum. Genotypic correlations were 
subjected to factor analysis through the principal compo- . 
nent method. Factors accounting for at least 10 percent 
variability were retained and arranged in order of 
variance..

Bartual et al. (1985) used factor analysis, 
principal component analysis and cluster analysis to 
Identify sets of varieties better adaptable, to the specific 
environmental conditions. Results obtained from ML factor 
analysis and principal component analysis were found to be 
similar.



A number of workers have discussed the importance 
of genetic diversity in plant breeding programme. A brief 
review of the past works are given as follows.

Murfcy and Anand (1966) brought out the role of 
genetic diversity in choosing parents for breeding pro­
grammes using a set of 10 varieties of linseed of diverse 
origin and ,s .

Murfcy and Arunachalam (1967) have conducted a 
multivariate analysis of genetic divergence in the genus 
Sorghum (wild and cultivated types) using quantitative 
characters related to fitness under natural and human 
selection. They utilized factor analysis to compare the 
causal influences under natural and human selection for 
the diversity found in this genus. The factors were 
obtained by the centroid method. Factor analysis revealed 
the adequacy of the three factors for differentiation.

Multivariate analysis for measuring the degree of 
divergence between biological populations and for assessing 
the relative contribution of different characters to the 
divergence has been established by the contribution of 
several workers like Jeswani et al. (1970) and Somayajulu 
et al. (1970).



Ram and Panwar (1970) presented the result of 
multivariate analysis for a set of four characters related 
to productivity in 18 varieties of cultivated rice. The 
first two canonical roots accounts for 45 percent of the 
total variability.

Hussaini et al. (1977) studied the 640 genetic 
stocks of finger millet and the characters under study 
did not show high mutual correlation. Twelve groups 
have been Identified by plotlng the first two standar­
dised principal components. Canonical variate analysis 
supported the above findings.

Gaur et al. (1978) studied the genetic divergence 
in 67 potato varieties/hybrids and found that the characters 
least influenced by the selection were mainly responsible 
for adding divergence to the population.

Singh et al. (1982) estimated genetic divergence 
among 48 exotic and 27 indigenous strains of chickpea.

Kamboj and Mani (1983) conducted a study to inves­
tigate the nature and quantum of diversity in a population 
of hexaploid triticales. Eight yield components for 100 
genotypes were studied. The experiment was conducted in



a simple lattice (repeated) design with four replications. 
Grain yield per plant and plant height contributed maximum 
towards genetic divergence..

On the basis of multivariate analysis, Valsalakumari 
et al. (1985) grouped 62 cultivars of banana into 8 clusters 
considering 22 characters simultaneously. The characters 
pulp/peel ratio on volume basis followed by weight of 
fruit contributed the maximum towards divergence.

Murugesan et al. (1979) assessed the heritability, 
co-efficient of variation, phenotypic and genetic advance 
as percentage of mean from 30 varieties of sesamum from 
the germplasm collections. The high heritability accom­
plished by high genetic advance indicated that most likely 
the heritability is due to additive gene effects and mass 
selection for such traits should be practiced.

Paramasivam and Prasad (1980) conducted a study of 
P2 and F^ populations of 3 crosses of sesame. They found 
that seed yield was positively and significantly associated 
with plant height, primary branches, secondary branches 
and capsule number. The above characters were also found 
to be associated among one another and showed the poten­
tiality of these characters to be included in the selection 
programme.



A study'was undertaken "by Yadav et al, (1980) to 
find out the association of yield and its component 
characters in 22 genotypes of sesame,

}

Reddy (1981) noticed that the seed yield is a 
major component of oil yield in sesame. The seed yield 
can be Improved by selecting the taller and less branched 
plants with high capsule number.

Reddy and Reddi (1984) made an investigation to 
assess the nature of gene action and to identify the 
better combiners for seed yield, oil yield and component 
characters in sesame.

Genetic parameters were assessed from nine varie­
ties of sesame by Kandaswamy (1985). The results indi­
cated the number of branches, number of capsule, number 
of seeds/capsule, and yield might be given due importance 
as indicated by additive gene effects in selection pro­
grammes as considerable improvement can be obtained in 
these characters.

t '

Krishnadoss ,and Kadambavanasundaram (1986) studied 
the correlation of yield with six biometric characters 
in 125 varieties of sesame. Among these, three characters



had high significant positive correlation with yield.
They also had significant and positive intercorrelation 
among themselves. As such, improvement of these three 
important component characters will result in the improve 
ment of yield in sesame.



MATERIALS AND METHODS



MATERIALS AND METHODS

3.1 Materials

The material consisted of biometric observations 
on 15 characters of 100 selected types of sesame varie­
ties raised at the College of Agriculture, Vellayani 
during rabi (August to December) in 1981 and at the 
Kayamkulam rice research station during summer (January 
to April) in 1982. The varieties were grown in a simple 
lattice design, replicated twice. Each treatment con­
sisted of 27 plants at 30 x 15 cm spacing with a plot

j

size of 1.35 x 0.90m. A random, sample of 10 plants per
type per replication was selected and observations were
recorded. The observations on the following characters 
were considered in the analysis.
1. Height of the plant (cm) '
2. Humber of branches
3. Height upto first capsule (cm)
4. Number of capsules on main stem
5. Number of capsules on branches
6. Number of capsules per plant
7. Number of fruiting nods/20 cm
8. Length of. the capsule (cm)



9. Circumference of the capsule (cm)
10. Number of seeds/cap
11^ Number of days to flowering
12. Number of days to maturity
13. 1000 seed weight (gm)
14. Seed oil content
15. Yield of seeds/plant (gm)

The varieties taken for the study are listed in 
Table 3.1.1 ■

Table 3.1.1 List of sesame varieties taken for the study

Code Name of, the, variety Code Name of the variety 
Number Number

1 Asthrango (local) 12 Gouri-Til
2 B14 13 Ie-284
3 B64 . 14 IS-20
4% BICE-3 15 IS-24
5 ■ BM-5 , 16 IS-50 ■
6 BM3-1 17 IS-47-GP-37-1
7 BM3-7 18 C-47
8 BS5-18-6(B) 19 Kayamkulam-1
9 Culture 7-1 , 20 Kayamkulam-2

10 ES-8 21 KRRI



Code Name of the variety Code Name of the
Number Number variety

11 G-P-111-2 22 KRR2
23 Muthukulam local No. 1 50 Si-44
24 Muthukulam No . 9 51 SI-47
25 Ie-34337 52 Si-52
26 IS-428-B 53 Si-57
27 Mutant K1 54 Si-71
28 North Kerala local No. 2 55 Si-72
29 it ii ■ ti No. 3 56 Sir73
30 it ii it No. 8 57 Si-99
31 ,n n n No. 17 58 Si-256
32 n  it it No. 24 59 Si-259
33 No. 42 60 SI-261
34 NP.63 61 Si-267
35 KIS 300 62 Si-865
36 P10 63 SI-866
37 P16 64 Si-877
38 P23 65 SI-902
39 Ambalavayal 66 Si-914
40 P28 II 67 SI-2884
41 F38 68 SI-918
42 SI 1121 69 Si-925



Code Name of the variety Code Name of the variety
Number , Number . .

43 pfc 58-35-1 70 SI-928
44 M3-1 71 i Si-934
45 RT(1) . 72 Si-950
46 RT(1)37 73 Si-951
47 Si-1 74 Si-953
48 Si-42 75 Si-973
49 Si-43 76 Si-976
77 Si-983 89 T12
78 Si-1001 90 T13 ,
79 10-50-25 91 Si-2934
80 Si-1036 92 T177
81 Si-2834 93 Te-25
82 Si-1060 94 Sundar local
83 Si-1140 95 llmbl-9
84 Si-1141 96 TMV-1
85 Si-1154 97 TMV-3
86 Si-1159 98 Vayalathur
87 Si-1275 99 UT-43
88 S.Variety 100 Vinayak



3.2 Methodology ,

3.2.1 Structure of multivariate observations 1

Multivariate analysis is concerned with analysing 
multiple measurements that have been made on one or 
several samples of individuals. The multivariate analysis 
is ccncemed with the jointness of p measures on N 
subjects.

, The mathematical model on which most of the multi­
variate procedures are based is on the assumption of 
multivariate normal distribution (m.n.d.). This assump­
tion of m.n.d, for multiple measures can be justified 
by the same central limit theorem argument that leads 
to the assumption of normality for a univariate measure­
ment* "The multivariate normal distribution often occurs 
because the multiple measurements are sums of small inde­
pendent effects" (Anderson, 1958).

Measurements on p biometrical characters for 
N (=s n ) varieties replicated q times were denoted by

where (i =» 1,2f....p; j = 1t2,....q;v= 1,2,..,,N).
Suppose the random variables Xi of interest have a multi-

'D''r 1 / \ 1variate normal distribution with mean ^  ̂  )



and covariance matrix ^ >x̂ ) = (^ij) • ^  measure­
ments of interest are in widely different units, a more 
accurate picture of dependence pattern be obtained by

X j_ W p Jstandardising variable as Zi =  — - i a 1,2,..,..p
®“i "

Then analysis of the dependence structure of Z^.....Zp

which is given by the correlation matrix of ; •.. .Xp^ 
is done. Thus the observed correlation among variables 
constitute the original data,

3.2,2 Preliminary statistical analysis

The data were subjected to multivariate analysis 
of a simple lattice design. Lattice designs are an 
important class of row and column designs that are 
widely used in practice. Simple lattice design is an 
incomplete block design, and there are N (a n ) treat­
ments arranged in n blocks of size n replicated twice, 
the model to be fitted for the design is

X.1rs °  + + + liS , + e.lra .

r,s =* 1,2, n (Federer, 19550
Here all the above vectors consist of p elements 
corresponding to p characters of each variety.



p is general mean effect
J . U

P j is replicate effect in j replicate
& ■■■ ' "tixp jr is incomplete block effect in the , j . replicate

' Trs is treatment effect 

ejrs is the random component

The analysis of variance for simple lattice design is 
given in Table 3. 2 .1.

where

Table 3.2.1 ANOVA for SLD

Sources of vatiation d.f. M.S.

Replication q-1
Treat (unadj.) n2-1
Blocks within 
repln. (adj.)

*(n-T) ®b-

Intra block error (n-1) (qn-n-1) Ee
Treatment (adj.) n2-1

Total qn2-1

The treatments are adjusted by a weighting factor '*/'



where

n(q-1

otherwise

There Is no need for adjusting the treatmental effects 
If H » o. The intra block error Is used to test the 
significance of treatment effects (Cochran & Coxp 1957).

3*2.3 Analysis of dispersion

Multivariate.analysis of variance was first 
developed by Wilks (1932 a); Analysis of dispersion is 
the process which Involves the technique of analysing 
the variances and covariances of variables in multivariate 
case (Rao, 1952), The total dispersion is split up into 
various components as follows. .

Table 3.2.2 MANOVA of p variables

Source d.f Dispersion matrix

Deviation from 
hypothesis

B

Error n2(p-1) W

Total



a
The criterion arrived at by Wilks (1932) through the 
generalised likelihood ratio principle is given by

. A =  | w l

[W + B]

where
W is the within dispersion matrix 
B is the between dispersion matrix 

The statistic used for testing the homogeneity of treat­
ment means for all the characters taken together is given 
by V - jn loge A ,,

where ,

V is distributed as %,2 with (N-1) p degrees of 
freedom and fh =* Nq - 1 + (p+N) /2 (Bartlett, 194-7).

3.2.4 Estimation of correlation matrix

The phenotypic, environment and genotypic corre­
lations were estimated from the following analysis of 
variance-covariance of the data.

Table 3.2.3 Analysis of covariance of SLD

Source d.f. ‘ MS(Xi) m s (x 3 ) MSP(XiX;5 )
Replication 
Blocks (adj.) 
Treatment (adj.)
Intra-block] 
error J

q-1 
9(n-1) 
n2-1

(n-1) 
(qn-n-1)

MSVl
MSE.i

MSVj
MSEj

.

M K l s

Total qn2-1 MSP.i MSP.j



PhenotypIc correlatIon coefficient =
MSP.ij

~ ~  (MSPj^ MSP^ ) 1/2

1 * i
The environmental correlation coefficient

'iDj
(MSEĵ  MSE, )1/2 l ̂  j

&
The genotypic correlation coefficient

(MSV1;) -  MSE^ )/<Lid
(MSV̂  - MSEi) ( MSV̂ J -.MSEj )
- ~  I  -

1/2
, p

i*d

3.2,5 Factor analysis

Factor analysis is the common term for a number 
of statistical techniques for the resolution of a set of 
variables In terms of a small number of hypothetical 
variables, called factors. It reduces the multiplicity 
of tests and measures to greater simplicity. The funda­
mental step In the analysis of a body of observed data 
is the formulation of a theoretical statistical model.



A linear model is used in order to explain observed 
phenomena in terms of simple theories. The following 
are the linear models employed in factor analysis.

3*2.5.1 Factor analysis models

Principal component analysis (Pearson, 1901 and 
Hotelling, 1933 a) and factor analysis (Spearman, 1904) 
are the two methods with different aims in analysing the 
structure of a covariance or correlation matrix.

Principal component analysis (PCA) is the method
of reduction of a large body of data so that maximum of
the variance is extracted. In this analysis, a set of
p standardised variates Z* Z  is transformed1 J V •
linearly and orthogonally into an equal number of new 
uncorrelated variables F-,, Fof ....... F . These are1 F 2” p
chosen such that has maximum variance, has the 
next maximum variance subject to being uncorrelated with 
F^ and so on. The new variates are obtained by finding, 
the latent roots and vectors of the correlation matrix. 
The linear model for component analysis is given by

Z = A F (1)
where

Z is the (px1) vector of Standardised Variables,
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A is the pxp matrix of component loadings 
F is the px1 vector of common factors

But the variance-oriented principal component 
analysis is not appropriate for investigating the corre­
lation structure of the observed data, since all the 
components are needed to reproduce accurately the corre­
lation coefficients among variables. However, for the 
application of the method no hypothesis need be made 
about the original variable.

In contrast to the method of principal component 
analysis, factor analysis is correlation-oriented and 
explains observed correlations among variables in terms 
of smaller number of hyppthetical factors.

The basic factor analysis model can be written 
in matrix notation as

Z = A F + e (2)
where

Z is the px1 vector of standardised variables
A is the pxk matrix of factor coefficients
F is the kx1 vector of k ^ p  common factors
e. Is the px1 vector of specific (unique) factors



’ This equation states that the observed variables 
are weighted combinations of the common factors and the 
unique factors., The common factors account for the 
correlations among the, variables and the unique factor 
account for the remaining variance including error of 
that variable. The total unit variance of a standardised 
variable Z^ is made up of the communality attributable 
to the common factor and the uniqueness, which is the 
contribution of the unique factor (Harman, 1967).

In factor .analysis it is usual to; discard the 
sample mean vector and to make use of the covariance 
matrix or correlation matrix alone. The dispersion matrix 
of the variates in Z is, defined as E (ZZ* )^and is symme­
tric and positive definite of order p. The assumptions 
are

E (Fe' ) = 0 (3)
E, (FF' ) = lK (A)

■ & E (ee1 ) = Tf (5)

where ^  is a diagonal matrix with diagonal elements 
as

Since E (zz‘ ) = E |(AF + e) ,(AF + e)j .
we have R =■ AA1 + “y (6)

In practice A and ^  are unknown parameters which are



to be estimated from experimental data.

Principal factor analysis method, centroid method, 
maximum likelihood method, minimum residual method etc. 
are some of the methods for estimating the parameters 
A and y  • Among these methods some require estimates 
of communalities while others require estimates of the 
number of common factors.

3.2 .5.2 Exploratory versus confirmatory factor analysis

A particular application of factor analysis is 
exploratory or confirmatory according as the number of 
parameters prespecified in the model equation of factor 
analysis (Joreskog, 1969). In this study exploratory 
factor analysis is done by the principal factor analysis 
and maximum likelihood methods.

3.2.5.3 Estimation of communallty ,

Communality is the amount of variance of the 
characters accounted for by the common factors (Frutcher, 
1954).

There are various methods of estimating communality. 
But the squared multiple correlation (SMC) of each variable 
with all other variables of the set seems to be the *Best



Possible' systematic estimate of communality (Guttman, 
1956),

The SMC of variable is given by

SMC^ = ^1,1 2 .... (1-1), (1*1) p ('
, . r1 1

il ■ ' —1 ■where r is the diagonal element of R corresponding
to the variable Z^. The SMC has another important property
that it is the lower bound of the communality (Harman,
1967).

, The maximum correlations in corresponding rcw or 
column may also be taken as initial estimates of commu­
nality (Cattell, 1965. a).

3.2.5.4 Principal factor analysis (PFA)

The application of the principal components to 
the reduced correlation matrix with estimates of commu- 
nalities in the diagonal instead of Jm o s leads to the 
principal factor analysis. This method yields a raathe-

'  i

matically unique solution of component correlations.

From the classical factor, analysis model (2) 
the relevant portion of the determination of the common



factor coefficients may be

. Z = A. F (8)
or

r- i * ® i i * i  + + a i A

(9)

The sum of squares of factor coefficients gives
' ■ 1 2 the commonality of a particular variable while a^m

j.n ĵ jt <"• 4*1nA Vll̂ 4*4 Am 4»VlA ^  ' 4* rt
> M a i  * m 4  *  . *  ^  .  . «  «  A   _

communality of Z^. The principal factor method involves 
the selection of, the first factor coefficients a ^  so as 
to make the sum of the contribution of that factor to the 
total communality a maximum,

2 ^  «  2le, V1 = + + ap1
(10)

is maximum. The coefficients must be chosen such 
that is maximum under conditions.

rid = m4  , aim,a3m ( 1 1 )

i f  j  a 1 ,2, , . . .  . P

where
ri5 = rji. and rii is th e communality h^2 of the 
i-th variable.



This condition implies that the observed correla­
tions are to be replaced by the reproduced correlations, 
implying the assumption of zero residuals, is maxi­
mised by applying the method of lagrangian multipliers 
under the' conditions (11 )i The maximisation of leads 
to the system of p equations in p unknown

Is the latent vector corresponding to the latent

The linear homogeneous equation system (12) has only a 
non-trlvial solution if its determinant is equal to 
zero. . .

The criterion regarding the number of common factors to 
retain in the factor model is equal to the number of 
principal components whose eigen values are greater than 
one. The Investigator will usually he satisfied with an 
even smaller number of factors.

ie, (R,* - ^  D  q‘ =* 0 

where Is the reduced correlation matrix 

ie, R1# = R1 - ̂

(12)

root 

? and so on.

Ie, |R1^ - X|I | = 0 (13)



, The characteristic equation (13) gives latent roots
^ 2 ,  > k $ o  and the associated orthogonal

characteristic vectors q̂  q2  ̂ ..... . qk

Jacobi method is used to find out the eigen values 
and vectors of the matrix A. The idea of the Jacobi's 
method is to pick up the largest off-diagonal element 
of the matrix and to 1 annihilate1 it to zero by applying 
a proper orthogonal transformation. Then the largest

■ iiremaining off-diagonal element^found out and that is 
annihilated. The procedure is repeated until the off- 
diagonal elements were sufficiently close to zero or 
negligible. The diagonal elements of the matrix is a 
close approximation to the eigen values. If the successive 
transformation matrices were multiplied together, they 
would produce an accurate approximation to the matrix of 
eigenvectors (fflulaik, 19 7 2). :

Substituting the largest characteristic root A-j 
in (1 2 ) we5 get corresponding characteristic vectori

q2i,   vi> (14>
*The normalized characteristic vector q̂  which fulfil 

the conditions (1 0 ) and (.1 1 ) is .



then the first column vector of factor loading matrix 
is determined as \TaT ’ 06)

■ ■ A.The second column vector of A is a^ = q2 J a2

and so on. This shows that a2  ̂  are scaled
normalized characteristic vectors..

The sum of the squares of factor loadings of the 
variable gives .the corresponding, communality ief the 
squared factor coefficients can be considered as the 
percentage variance components of the common factor 
(Harman, I967). The iteration process is.continued with 
the new estimates of communalities until a specified
degree of convergence is occurred. The controlling

*
equation to ensure that no vital information Is lost is 

■ AA (17)

There are many equivalent matrices which all 
satisfy rtj* * Aa’ . It implies also the making of a . 
reasonable choice among the many possibilities to perform 
a final^matrix A, which contains a suitable interpretation

t V • ’  -

of the relation under research. This results in the 
rotation of the factors of the initial rtatrix A.

3.2.5»5 Factor rotation

After extraction, the matrix of factor loadings
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are submitted to varimax orthogonal rotation, ,the effect 
of which ,is to accentuate the larger loadings in each 
factor and suppress the minor loading coefficients, and 
in this way improve the opportunity of achieving a 
meaningful-biological interpretation of each factor 
(Denis and Adams, 1978).

Kaiser’s (1958) varimax rotation is one in which 
factors are rotated in such a way that the new loadings 
tend to be either relatively large or relatively small 
in absolute magnitude compared with the original ones.
The simplicity of a factor is defined as the variance of 
its squared loadings

Vk "• fp i ’ (alm2/ hl 2) '  ( j r  a, m2/ ■ (13) ■ ■
L i=1 1=1 J

P2 ■

where a. is the new factor loading for variable i on lm .

factor m, where i = 1,2...... p & m 1,2..,,,. K
For entire factor matrix the normalized varimax criterion

k ■ r  p ■P r  ( * 2 /vi 2 \2  , p O,. oPlV
m=1 , (aim2V )2 \  \ i 2/ \ 2)] (19)

. i>=»1

p2

P "thwhere h. is communality. 5of i variable.



The fundamental rationale for attempting to establish . 
the normal varimax criterion is that the normal varimax 
solution is invariant under changes in the composition 
of the variables. 1

3.2.5.6 Maximum likelihood factor analysis
■ >

Alternate methods that circumvent many of the 
problems of principal factor analysis have been suggested.

i

One such method is maxiraum-likelihood factor analysis 
proposed by Lawley (1940) and later which provides maximum

■ i - . 1

likelihood estimates for the factor loadings. Maximum ’ 
likelihood solution requires an estimate of the number 
of common factors. A ML solution has the same general 
appearance as a PF solution, but it does not have the 
latter1 s property of accounting for a maximum amount of 
variance for a specified number of factors. Also, while 
a PF solution is unique for a given body of data, a ML 
solution differs from another by a rotation (Harman, 1967). 
When estimating a population parameter, if a' sufficient' 
statistic exists to estimate the parameter, the maximum

i

likelihood estimator is usually based on it. Moreover, 
the ML estimator is ai consistent estimator as well as 
frequently a minimum variance estimator (Mulaik, 1972).
A well known property of ML method of factor analysis is
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that it is independent of the units of measurement in the 
characters. .

The model to be used in this method is (2). Also X 
follows multivariate normal distribution with mean vector /j. 
and covariance matrix .

The sample covariance matrix of X is denoted by S
where S =  — -4? C^oc” ^)

n '
- , N , .
X 3 |r ĈKl

X ^  is the column vector of random sample of N (> p)
observations of X. cx= 1,2,  N, n => N-1
The distribution of S is Wishart with n d.f. ie, ns ̂  W (i n) 

Here E (S) = 3- '
The logarithm of the likelihood function for the sample, 
omitting a function of the observations, is given by

l°ge L = - | n£loge I I I  + tr (S-£"1)J (20)

This is regarded as a function of A and 'u* , Considering
■ , ' ’■ owlthese as mathematical, variables we seek values of A & ip

S ' Adenoted eventually by A and that maximize the value
t .of logei. It is more convenient to minimize the function,

FK = lo£ *r' (s ^  ) - log l£M-P (21)



For the purpose of minimising the function F the partial 
derivatives with respect to the elements of A and the 
diagonal elements of which is given hy

- | | _ . 2 i " 1 (£-S)*£"1A (22)

_LE_ = diag f i "1 U - S ) i _1l (23)
are required.

Equating 9 F and 9 F to zero and solving the resulting 
~7K “5̂ T

equations to get the estimates of A and ̂  (Lawley & .
Maxwell, 1971). The estimation equations are independent

iof the scale of measurement of the X s and consequently 
the estimation equations for the a’s can be expressed in 
terms of the correlations rather than the covariances. 
Lawley (1940)

ie, R = AA + ^  (24)
and i f = I-diag AA (25)

i „-iA R A is diagonal (26)

premultiplying both sides of (24) by A V  yields

(A + X)A a A1 V 1R (2 7)
This equation can be simplified to

i i iJA = A if- R ■» A (28)
where



which is amenable to an Iterative method of solution 
(Lawley, 1942).

Starting with an arbitrary factor matrix 
A » (a<j a2^......, (usually loadings obtained from
principal component analysis) and corresponding

Op 3 I - diag A a' (30)
the factor loadings B « (b,. b« .... . bm) are" i j " $ f -m
derived from the iterative process, where

b-j = (R -V “'J,a1 ) /  C a11 (R y ^ a ^ - a ^ / 2

b2 => (R ^ " 1a2 -  a2 -  b1b11 v " 1a2 ) /

[a21 ̂  <R V 1a2 - a2 - ^ “1a2)]1/?

b „ = ( R 1-P ^a — a b <• b^ * a ) f-m . 7 ra m m-1 ra-1 T nr '

[a  ̂-^"^(R \u“^a - a ...... -b «, b ^  'v^a jlLni’ 7 t m m m- 1  m-1 t  mj

^ 2  o I - diag BB1

The iterative process is repeated again and again until 
the convergence is obtained to the desired degree of 
accuracy. In standardised variates, the convergence



criterion has usually be taken as 0,005. The, final 
matrix A contains the ML estimates of factor loadings 
for the assumed number of common factors. In this 
iterative method it is tacitly assumed that none of the 
uniqueness® vanish. In some cases the maximisation of the 
likelihood function leads to one or more of the variables 
with uniqueness essentially zero. In the literature of 
factor analysis this type of improper solutions have 
usually been known as Heywood cases. Joreskog has made 
a provision for the, Heywood case. ,

, It is assumed that a maximum likelihood factor 
analysis with a certain value of j< has been performed, 
resulting in an improper solution with m C ^ k ) of the 
unique variances zero. Assuming that this has occurred 
for the first m variables, the dispersion matrix may be 
partitioned as 1 -

S21 S22

where
Matrices S,^ and are of orders m x m,

m x (k-m), (p-m) x m and (p^m) x (k-m) respectively.
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Then the estimates A^g and Ag^ are defined'as

■*1/2 ' (32)
r a 1/2

* 11
AAgi

and A.12

21

0)

(33)

(34)

where f  is an orthogonal matrix of order mxm that 
reduces to diagonal fora and is a diagonal matrix

■ , • /V Av
containing latent roots of * The matrices Agg & ^  g 
are obtained by applying the maximum likelihood method 
to the conditional dispersion matrix

-1 „ .

S22.1 = S22 3 21  S 11 12 (35)

In the analysis of Sgg  ̂the number of variables is 
decreased by m and also the number of factors is decreased 
by m. Then '

A1 1
A. - —y 

A1 2 A. r° 0
A-

A21 *22j
and E3

i?
A

^ 2

A
A

are the maximum likelihood estimates of A and Y  '
i .

3.2.5.6„1 Test of significance for the number of factors

One of the ■ main advantages of using the maximum > 
likelihood method of estimation is that it enables us to. , 
test the hypothesis that* for specified k, there are



k common factors. After obtaining a proper solution the 
hypothesis is tested by .

Uk = [N-1 - (2 p+5)/6 - 2k/3] fk V

where

. fk 5 = i f j  K  “ ^ a )2/^ i
and

Sij " rePrssen‘*:s the residual covariance of x^ and

Xj after eliminating k common factors. The criterion 
is actually a measure of how much the residual covariances 
differ from zero. Under for moderately large n,

, 2is very nearly distributed as %  with d^ d.f.

where d^ => % ^(p-k)^ - (p+k)J. .

This exactly imposes an upper limit on m for given p. 
le f The number of common factors cannot exceed the largest 
integer satisfying

m ^ I (2 p+1 - ,/S p+i) for a fixed number of p 
variables.

2The non significance of X  means that there 
would be no point in fitting further factors to the 
data.



The computations were carried out on the VERSA IWS 
system in the statistics department of the KAU. The com­
puter programmes used for the analysis are given in 
Appendix-VIX.



RESULTS



RESULTS

The results obtained by the application of appro­
priate statistical techniques on the data generated from 
experiments conducted in the uplands (data A) and rice 
fallows (data B) are given below,

4,1 Results of data A (uplands)

4,1*1 Preliminary statistical analysis

The analysis of variance for simple lattice design 
was made for each character under study. The E-values 
for testing equality of each character are given in 
Table 4,1,1, All characters except the number of fruiting 
nodes per 20 cm were found to distinguish the genotypes. 
The mean values of the various characters are presented 
in Appendix I,

4,1,2 Analysis of dispersion

• Multivariate analysis of variance was done and the 
total dispersion matrix was split up into ’between® and 
’within* dispersion matrices. The between and within 
dispersion matricas are given in Appendices II and III 
respectively. The value obtained for Wilk’s lambda stati­
stic was

A  - 7.2 x 10~8 

So that V - 2327.33 which i3 distributed as a
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Table 4-M  F-values obtained from the analysis of variance 
for 15 characters - data A

SI.
No. Character F-values

1 . Height of the plant ■K-&
3.9557

2 . No. of branches 5*6030
3. Height upto first capsule „ •K'iJ'3.9170
4. No. of capsules on main stem **

3.2020
2.15305. No. of capsules on branches

6. No. of capsules/plant 2,3661
7. No, of fruiting nods per 1 .1764

S.
20 cm
Length of capsule 1.7876

9. Circumference of capsule 2.8971
1 0 . No. of seeds/capsule 2.6235
1 1 . No. of days for flowering 6.0745
1 2 . No. of days to maturity 2.1138
13. 1000 seed weight , -K'-fS*18,8237
14. Oil content 570.7724**
15. Yield of seeds/plant 3.8164

Significant at 1% level
* Significant at 3% level
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chi-square with 1485 degrees of freedom and is significant 
at one percent level of significance.

4.1*3 Estimated correlation matrices

The analysis of covariance was done for all the 
combinations of 15 characters under study. The pheno­
typic^ environment and genotypic correlation coefficients 
for each pair of characters were calculated from the

y i V '

corresponding variance-covariance components and are given 
respectively in Tables 4.1.2, 4.1.3 and 4.1.4. The geno­
typic correlation coefficients were found to lie between 
the range -0.76 75 and 0.9857# The genetic correlation 
between the number of capsules on main stem and number 
of capsules/plant, number of seeds per capsule and circum­
ference of capsule, and number of capsules on branches 
and number of capsules per plant were found to be highly 
positive whereas the number of days for flowering and 
number of capsules on main stem was highly negative.

4.1.4 Factor analysis

Initially the eigen values and corresponding 
eigen vectors of the phenotypic, genotypic and environ­
ment correlation matrices were found out by Jacobi's 
method. The phenotypic and environment correlation



T ab le  4. i.a. Pn e n o typ ic  c o r r e la . io n  m atr ix  - dLaia, A

"2 X2 X4 X5 X6 X7 X8 X9 X10 X11 ■ X12 ' X1 3 X14 *15
G.0158 0.5657 0.5608 0.6055 0.7045 0.2592 0,4092 0.1732 0.0895 -0.2853 ‘ 0.0755 -0.1171 0.1509 Q

X2 0.3945 -0.5705 0.3422 -0.0460 -0.1050 -0.1711 -0.2574 -0.3018 0.3399 -0.0045 -0.0296 -0.0290 - 0- 00 H-I

X3 -0.049/* 0.3024 0.1522 0.1443 0.1068 -0.0581 -0.1076 0.2664 0.1389 0.0216 0.0421 O' 013 »
x4 0.3899 0.8581 0.3441 0.2617 0.1623 0.1529 -0.5071 -0.0523 -0.2313 0.0647 0- fcOI 0

X5 0.7970 0.1302 0.2225 0.0077 -0.0818 -0.1562 -0.0631 -0.1940 0.0657 0■40t3
X6 ‘ . 0.2985 0.2982 0.1162 0.0546 -0.4157 -0.0762 -0.2531 0.0849 <>■1191
X? 0.0390 0.0646 0.0203 -0.1294 0.0614 ' -0.0811 0.1948 0-1891
X8 0.4146 0.3610 -0.2820 0.1107 -0.0354 0.1617 0 ■ 1  fc ”7 4

C3x9 0.6369 -0.0538 -0.0105 0.0364 0.0020 o-nos r__j
X10 -0.0729 0.1619 -0.0832 0.061 3 0. 1179
X11 0.2920 -0.0101 -0.0550 - O- 3XG9
X12 -0.1385 0.1147 -o-ot.no

X13 0.0442 -0. IS53L
>■1 4- O.OCJ03



Table  U .1-3 Envi rjnment c J r r e l a t i D n  mat r ix  — d a !  a.

xr { X4 Y
"3 X6

Y
-7 XB •■■il X 10 X11 X1 2 -■ X1 4 *1*

"1 3 . 1 sou 9. ” 4 24 , . f i” 44 9.3529 0.7050 0.3168 0.2416 3.0514 0.0680 -C.3092 0.025■ -.0.1 560 -0 .083 f O’ (,1.00

" , 3 ’ 29 1 32V 7.2945 0.2735 0.0603 ” . 1363 0 . 1 187 0 .0-J99 -0.2426 O.Ot t " 583 - "■. 0 rP O .lOqif

‘ 3 ,.3327 0.3542 0 . 4572 0.2323 0.1541 -0.0339 0.0616 -0.2694 0.0095 -0.2025 - J.T756 0 H0t7

x4 0.5223 0.8793 0.3722 0.1347 0.0239 0.0256 1 O O -0.0227 -0.0339

■j00r 0 04,2-1

xg 0.8482 0.1894 0.1480 0.0625 0.0641 -0 .19 0 2 -0 .10 9 1 -0 ,0369 - 0.0 320 0 S 09 2-

X6 0.3478 0.1594 0.0629 0.0419 -0.1737 -0.0740 -0.0715 -0 .0846 ' &■

X7
' -0.0536 0.0161 -0.0999 -0.0455 0.0364 0.0839 -0.0505 c ■ 3 o&y.

X8 0.4504 0.2729 -0 .2 1  eo 0.1773 0.0451 0.0040 o - l'S 9 t?C
fr:

Xg 0.3226 -0.0680 0.0967 0 .2 0 SS 0.0365 t 0^4)9

X10 -0.0534 0.2106 0.1887 -0.0757 0 . 0^01

X 1 1 0 .1 0S2 -0.0299 -0.0039 - 0 ■ 15 r) t

X12 0.1Q81 -0.0723 0- 0 0 9 7

X 1 3
■ 0.1381 - 0-0 1^9

X-14 - e>- 00. 5 ^



Table  4 .1 . 4. Genotypic

X2 x3 X4 X5 X6 X 7

X1 -0 .0756  O.4399 0.4690 0.6802 0.7168 0.2593
X2 0.4424 -0.7030 0.4110 -0.2826 -0.5020

X3 -0.3905 0.2311 -0.1298 -0 .10 56

X4 0.2423 0.8418 0.4330
X5 0.7277 -0.0418

X6 0.2429

X7

X0

X9

X10

X11

X12
X1 3 
* 1 4

c o r r e la t io n  m a tr ix  — <±a.±a. w.

xe X 9 X10 , X11

0.6610 0.2804 0.1107 -d.2767
-0.5018 -0.5273 -0.5870 0.5808

0.0584 -0 .0789 -0.2618 0.5532

0.4603 0.2958 0.2853 -0.7675
0.3629 -0.0602 -0.2761 -0.1441

0.5426 - 0 .1774 0.0702 -0.618 8

0.4554 0.2370 0.4110 -0.3903

0.3798 0.5174 -O .3954

0.9837 -0.0468

- 0.0906

X1 2 X 1 3 X 14

0 .1 3 4 ? -0.1231 0.2039 0 - H bOi

-0.0828 -0.0242 -0.0323 -O' 11 in

0.2846 0.0877 0.0586 - 0 . 1 441

- 0.0900 -0.3267 0 .0949 o- 9S-33
0.0096 -0.2876 0.1063 C-9*|00

-0.0797 -0.3761 0.1341

0.1727 -0.3509 0.6135 0 -0 3 * 9  ^
-0.0192 -0 .0 9 12 O.29 27 0 ■ 4 2- boTO>

-0.1510 -0.0184 -0.0025 o-2.339

0.0949 -0 .2 0 10 0.0957 O' W '<0

0.4769 -0.0060 -0.0650 - 0-39 39

-0.3280 0.1935

0.0440

- 0 -1*149­

- 0-2.9 <56
O' I l i - C a



matrices "were found to be non-negative definite but geno­
typic correlation matrix was in indefinite form. The . 
latent roots of the phenotypic and environment correlation 
matrices are given in Table 4,1.5. The variables with 
high genotypic correlation coefficients were eliminated 
to make it in positive definite form and the latent roots 
of the resulting positive definite genotypic correlation 
matrix is presented in Table 4.1,6.

The first five latent roots of the phenotypic and 
environment correlation matrices were greater than one 
and they altogether contributed 71.05 percent and 67*59 
percent respectively to the total variation. The first 
four eigen values of genotypic correlation matrix were 
found to be greater than one and explained 74.66 percent 
of the total variation. ,

4.1.4.1 Principal factor analysis

FFA of the phenotypic correlation matrix of order 
15 .was done with the squared multiple correlation coeffi­
cients (SMC) as first estimates of communalities and a 
five factor solution was extracted. Twelve iterations 
were needed for the convergence of communalities with a 
difference of five units in the third decimal place. The
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Table Latent roots of phenotypic and environment 
correlation matrix - data .. - A

'Phenotypic correlation Environment correlation
SI, . matrix matrix
Wo. *---------- -------------------------------- ------------------

Latent roots Percent contri- Latent roots Percent contri­
bution to . bution to
variance variance

1 . 4.2690 28.4600 4,6027 ‘ 31.218 0

2 . 2.2925 15.2833 1.9310 12.8733
3c 1 .7 18 0 11.4533 1 .3 1 0 2 8.7347
4. 1 .2 1 5 6 8.1040 1 , 1 7 1 6 7.8107
5. 1 .16 0 6 7.7373 1.0361 . 6.9073
6. 0.8903 5.9353 0.8891 5.9273
7. 0.8070 5.3800 0.8472 5.6480
8. 0.6570 4.3853 0.7928 . 5.2853
9.- 0.5397 3.5980 0.6963 4.6420

1 0 . 0.4229 2.8193 0 .5 0 11 3.3407
1 1 . 0.3503 2.3353 ' 0.4334 2.8893
1 2 . 0.2938 1.9587 0.4200 2.8000
13. 0.2452 1 .6347 0.1663 1.1087
14. 0,1309 0.8727 0,1125 0.7500
15. 0.0063 0.0420 0.0098 0.0653
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Table H i-Latent roots of genotypic correlation 
matrix of order 10 - data A

SI.
No. Latent roots Percent contribu­

tion to variance

1 , 2.9770 29.7697
2. 1.7989 17.9895
3. 1 .5 0 2 6 15.0259
4. 1 .18 6 6 11.8663
5. 0.9985 9.9848
6. 0.6107 6 .10 6 6

7. 0.5087 5.0868
8 . 0.2072 2 .0 72 1

9. 0.1898 1.8985
1 0 . 0.0199 0.1998
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principal factor loadings in the 12th iteration along with 
communalities in the 11th and i2th iterations are summa­
rised in Table 4.1.7* The loadings in the 3rd and 4th 
factors in the 12th iteration'lead to unsatisfactory 
results and hence varimax rotation of loadings was applied 
and the results are given in Table 4.1.8. The initial ' 
and final estimates of communalities have similarity 
except for the 12th and 13th variables. The important 
characters contributing to each factor were isolated in 
accordance with the procedure given in Harman (1967)*

Factor I :

number of capsules per plant 
number of capsules on branches 
number of capsules on mainstem 
yield of seeds per plant

Factor II : number of branches

Factor III : height of the plant 
height upto first capsule

Factor IV s

Factor V s

circumference of caosule
■ , s < ’ . *

number of seeds per capsule 
length of the capsule

number of days to flowering 
number of days to maturity



Tables n  Principal factor solution in the 12th iteration for the phenotypic
correlation aatrix - data A

riable Coaaon factor coefficients Estimated CCEXBal-
Original
coBmun&«
lity

(S:-:c)
1 2 3 4 5 12th ite­

ration
11th ite­
ration

1 0.8185 0.2364 0.2514 0.2632 0.2092 0.9047 0.9037 0.7879
2 -0.1144 0.6979 -0.2930 0.1333 0.0019 0.6038 0.6053 0.5256
3 0.2174 0.5941 0.2552 0.4760 0.1719 0.7219 0.7200 0.6689
4 0.8236 -0.2453 0.2012 -0.2789 -0.1660 0.3926 0.8921 0.9762
5 0.7204 0.4645 -0.3540 -0.0160 -0.0332 0.8614 0.8604 0.9654
6 0.9649 0.1103 -0.0776 -0.1944 -0.1323 1.005 1.004 0.9893
7 0.3086 -0.0038 0.2595 -0.0045 -0.0853 0 .16 9 9 0.1698 0.1995
a 0.4502 -0.2477 -0.0294 0.3243 0.1570 0.3771 0.3766 0.3789
9 0.2363 -0.5141 —0.2468 0.4363 0.0981 0.6372 0.6390 0.5147

10 0.1981 -0.5791 -0.1641 0.5037 -0.1176 0.6691 0.6683 0.4804
11 -0.4583 0.3433 -0.0330 0.3940 -0.3253 0.5901 0.5855 0.5061
12 -0.0238 0.0356 0.2347 0.3572 -0.3768 0.3269 0.3276 0.7609
13 -0.2151 -0.0415 0.0377 0.0192 0.3729 0.1303 0.1928 0.8565
14 0.1347 -0.0137 0.1505 0.0920 0.0041 0.0495 0.0496 0.1072
15 0.7332 0.0343 -0.1707 -0.0793 -0.0595 0.5632 0.5633 0.5449

CD'■sj



Table 4-i s- Rotated principal factor loadings for the phenotypic corre­
lation matrix - data A

Variable Common factor coefficients '  ,

1 2 . 3 4 5
1 0.5616 0.2364 0.6544 0.2891 0.1469
2 -0.0525 0.6979 -0.2574 0.2168 -0.0491
3 -0.0321 0.5941 0.4560 0.3904 0.0847
4 0.7413 -0.2453 0.4502 -0.2617 -0.1089
5 0.7736 0.4645 0.0134 . 0.2012 -0.0815
6 0.9402 0.1108 0.3003 . -0.0558 -0.1228
7 0,1814 -0.0038 0.3537 -0.0853 -0.0676
8 0.3028 -0.2477 0.2632 0.3871 0.0701
9 0.1825 -0.5141 0.0524 0.5793 -0.0357

10 0.0954 -0.5791 0.1017 0.5066 -0.2401
11 -0.5052 0.3433 -0.1099 0.2318 -0.3888
12 -0.2113 0.0356 0.2937 . 0.1370 -0.4194
13 -0.2103 -0.0415 -0.0671 ■ 0.0619 0.3685
14 0.0394 -0.0138 0.2144 0.0414 -0.0055
15 0.7271 0.0343 0.1502 0.0692 -0.0774

Proportionate 
variance 
accounted by 
each factor

0.3S60 0.1T39 0.'W&2. 0.«3‘JE5* 0.06SK9



The FFA method was applied to the environment 
correlation matrix of order 15 and fifty-five iterations 
were taken for the convergence of communalities with a 
difference of five units in the third decimal place. This 
matrix was singular and hence SMC * s were not estimable by 
equation (7) so the largest correlation coefficient in 
each array was taken as the initial estimates of corres­
ponding array communality (Harman, 1967). The PF load­
ings in the 55th iteration is given in Table 4.1.9 along 
with communalities in the 54th and 55th iterations. Vari- 
raax rotation of the loadings helped to derive meaningful 
interpretation of the factor loadings and the results are 
summarised in Table 4.1.10. The variables with high load­
ings in each factor are given below,

number of cap/plant 
yield of seeds/plant 

Factor I ; number of capsules on branches
number of capsules on main stem

Factor II s height upto first capsule
height of the plant

circumference of capsule 
Factor III : length of the capsule

number of seeds per capsule



--jin-, Common factor coefficients Estimated communality

Table i+i-q Principal factor solution in the 55th iteration for the environment
correlation matrix - data A

1 2 3 4 5 55th ite­
ration

54th ite­
ration

comrauna-
lity

1 0.8278 0.3395 0.0072 0.0473 0.1512 0.8257 0.8257 0.7424
2 0*3039 0.1497 0.1506 -0.1088 -0.2075 0.1923 0.1923 0.3129
3 0.6362 0.6128 -0.0302 -0*0071 -0.0107 0.7813 0.7813 0.7424
4 0.8210 -0.1808 -0.0979 0.2207 0.2981 0.8538 0.8539 0.8793
5 0.8163 -0.2371 -0*0705 -0.2045 -0.3930 0.9238 0.9240 0.8482
6 0.9656 -0.2469 -0.1022 0.0325 -0.0060 1.0049 1.0049 0.8868 '
.7 0.3530 0.0097 -0.0522 0.1974 0.1738 0.1966 0.1966 0.3722
8 0.2364 0.0773 0.5483 -0.1982 0.0500 0.4043 0.4044 0.4504 ,*sj
9 0.1045 -0.1472 0.6541 -0*2709 0.1707 0.5630 0.5627 0.4504 0
10 0.0952 -0.0197 0.4623 -0.0054 -0.0068 0.2233 0.2236 0.3226
11 -0.2673 -0.2097 -0*1074 0.2455 0.0074 0*1873 0.1874 0.1082
12 -0.0201 0.0820 0.5188 0.6267 -0.2503 0.7317 0.7267 0*2106
13 -0*0650 -0*2186 0*3070 0.1042 0.1035 0.1708 0.1709 0.2088
14 -0.0817 -0.0930 0.0341 -0.1165 0.0615 0.0339 0.0340 0.1381
15 0.8725 -0.2534 -0.0102 0.0420 -0.0608 0.8310 0.8310 0.8868



Table h .uo Rotated principal factor loadings for the environment corre­
lation matrix - data A

Variable Common factor coefficients

■ v1 ■ . 2 • : ;3 • ’ .4 5-

1 0.5764 0.6559 0.0362 0.1252 0.2154 ,
2 0.1999 0.2790 0.1357 0.0890 0.2195
3 0.2799 ' 0 .8 19 6 -0.0140 0.1642 0.0630
4 0.8113 0.1739 -0.0859 0.0880 0.3876
5 ; 0.8333 0 • 2127 -0.0891 -0.0035 -0.4199
6 0.9701' 0.2229 -0.1021 0.0487 0.0358
7 0.3084 0.0289 -0.0609 0.1202 0.3584
8 0.1737 0.1768 0.5821 0.0040 -0.0628
9 0.1608 -0.0685 0.7179 -0.1296 -0.0154

10 0.0935* -0.0053 0.4422 0.1318 -0.0410
11 -0.1398 -0.3467 -0.1645 0.1106 0.0907
12 -0.0559 -0.1103 0.3019 0.7907 0.0062
13 0.0259 -0.2714 0.2833 0.0858 0.0942
14 -0.0293 -0.0945 0.0693 -0.1386 -0.0067
15 0.8906 0.1666 -0.0277 0.0942 —0.0 206

Proportionate 
variance 
accounted by 
each factor

O.HQZ® 0.1095* 0.1724- 0.tf)03£ 0.0 lC>Co



Factor IV : number of days to maturity

Factor V : number of branches
number of fruiting; nodes per 20 cm

A three factor-model was fitted to the genotypic 
correlation matrix of order 10 by the EFA method. The 
largest correlation coefficient in each array was taken 
as the first estimate of the corresponding array commu- 
nality. Twenty-nine iterations were taken for the con­
vergence of communalities with a 5 unit difference in the 
third decimal place. The PF loadings in the 29th itera­
tion along with communalities in the 28th and 29th itera­
tions are given in Table 4.1.11 and the rotated loadings 
in 4,1.12. The variables influencing substantially each 
factor are shown below.

number of fruiting nodes/20 cm 
Factor I : length of capsule

circumference of capsule .

height of the plant 
Factor II j height upto first capsule

number of branches



Table m  i -i i Principal factor solution in the 29 b̂. iteration for the genotypic
correlation matrix of order 10 - data A

Variable Common factor coefficients Estimated communality
Code ------------------------------------------------------- ------  Original1 2 3 29"th ite- 2St*1 ite- communality

ration ration
1 0.7076 0.7303 -0.1510 1.0567 1.0563 0.6610
2 -0.5702 0.5145 0.2861 0.6717 0.6719 0.4424
3 -0.0178 0.6572 0.2643 0.5021 0.5021 0.4424
7 0.8683 -0.3857 0.6120 1.2773 1.2725 0.6135
8 0.7819 0.1335 -0.2452 0.6894 0.6895 0.6610
9 0.4491 -0.1318 -0..3682 0.3547 0.3547 0.3798
12 0.1151 0.1369 0.3787 .0.1754 0.1759 0.2846
13 -0.2137 0.0001 -0.6184 0.0740 0.0741 0.0877
14 0.3969 0.0149 0.3588 0.2865 0.2871 0.6135
15 0.3804 0.1485 -0.3196 0.2689 0.2689 0.4601



Table hi->2- Rotated principal factor loadings for the genotypic
correlation matrix - data A

Variablen. j_ , . Common factor coefficients
U OQ6 1 ' ' . .2 . 3

1 0.7076 ' . 0.6867 -O .2907
2 -0.5702 " 0.5605 0.1801
3 -O.QI79 " 0.6962 0.1308
7 0.8683 , -0.2588 0.6756
8 0.7819 ' 0.0831 . -0.2666
9 0.4491. ’ -0.2021 -0.3353

12 0.1151 ’ 0.2082 ■ 0.3447
13 -0.2137 -0.0328 -0.1652
14 0.3969 • 0.0847 .0.3490
15 0.3804 0.0832 -0.3424

Proporti onat e 
variance o . g y j L * 0.3^0£> 0.149#
explained by 
each factor



number of days to maturity

oil content

4.1.4.2 Maximum-Likelihood factor analysis

From the principal factor analysis- of the data . 
it was hypothesized that a minimum of five factors would 
suffice to describe the dependence structure parsimoniously 
in the case of 15 variable study. The ML solutions were 
extracted successively for each factor-model by Lawley's 
iterative scheme. The sequence terminates either when a 
proper acceptable solution has been found from the point, 
of view of goodness of fit or when the number of factors 
becomes equal to a given upper bound. .

The phenotypic correlation matrix of order 15 was '
subjected to ML factor analysis initially with five
factors and then increasing the factors successively to

2get.the appropriate factor-model. The approximate % - 
statistics for the solutions are presented below.

Wo. of factors Chi-square Degrees of No. of itera-
freedom tions

■ 5 66.24 40 20
6 50.19 30 32
7 44.55 21 209
8 11.84 13 77
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The Initial estimates of factor’loadings and unique 
variances, were obtained ;from the principal component 
method of factor analysis (vide Table 4.1.13). Seventy- 
six iterations were required for convergence with a five 
unit difference in the third decimal place. The ML esti­
mates of factor loadings and unique variances in the 76th 
and 77th iterations are presented in Tables 4.1.1^and' ‘
4.1.15 respectively. The varimax rotation of the factors 
aided,to.interpret the factors meaningfully and are summa­
rised in Table 4,1:.16.< The variables v/hich v/ere highly 
correlated with the (factors are given below.

Factor I :

number of cap/plant
■ i

number of capsules on main stem 
number of capsules on branches 
yield of seeds/plant

Factor IX
length of capsule 
circumference of capsule 
number of seeds/cap

Factor III : height of the plant
height upto first capsule

Factor IV j number of branches



'ia

1
2
3
4
5
6
7
8
9

10
11
12
13
14

Table n-i- ̂ Initial estimates of factor loadings and corresponding unique variances
for 8 factors of the phenotypic correlation matrix - data A

Factor loadings
1 2 3 4 5 6 7 8

■ Unique 
variance

0.8121 0.2476 0.2290 0.0318 0.1661 0.1258 0.2236 0.0883 0.8754
-0.1356 0.7664 0.1791 0.2650 -0.0421 -0.1635 -0.2731 0.0373 0.8126
0.2177 0.6152 0.5024 0.0593 0.2285 0.3046 0.1606 0.2007 0.8929
0.8285 -0.1893 -0.2743 -0.1809 -0.0955 0.1261 0.0930 -0.1113 0.8762
0.7145 0.4841 -0.0150 0.2190 -0.0866 -0.1592 -0.1264 -0.1289 0.8584
0.9326 0.1474 -0.1773 0.0071 -0.0957 -0.0003 -0.0120 -0.1286 0.9489
0.3733 0.0198 0.0122 . -0.5873 0.2062 0.4719 -0.3505 0.1084 0.8846
0.4986 -0.3133 0.4018 0.2006 0.1627 -0.2486 0.2672 0.2904 0.7924^1
0.2866 -0.5741 0.4660 0.3294 -0.0072 0.1666 -0.3047 -0.0384 0.8595^
0.2248 -0.6341 0.5027 0.1309 -0.1661 0.0161 -0.1994 -0.0393 0.7916

-0.4990 0.3584 0.5047 -0.0563 -0.2275 0.1117 -0.2081 -0.2139 0.7886
-0.0302 0.0368 0.5791 -0.4911 -0.2734 -0.1092 0.3863 -0.3420 0.9317
-0.2560 -0.0839 . -0.0083 0.2611 0.7662 0.1442 0.1069 -0.4721 0.9830
0.1732 -0.0201 0.2007 -0.4741 0.4801 -0.5844 -0.2816 0.0398 0.9484
0.7817 0.0771 -0.1110 0.1093 -0.1121 -0.1203 -0.1475 -0.2768 0.7666



Table Maximum likelihood estimates of factor loadings and unique variances
in the 76th iteration of phenotypic correlation matrix - data A

Variable
4 i

Factor loadings ■ *

Unique
1 2 .3 4 ,5 .6

.  1  ■
.8 variance

1 0.6976 -0.1511 -0.4400 -0.2044 0.0969 -0.0989 -0.0934 0.2465 0.1666
2 -0.1003 0.1841 -0.0628 -0,6675 0.0687 0.0728 -0.0927 -0.1670 0*4601
3 0.1232 -0.0021 -0.7449 -0.4696 0.2185 -0.0676 -0.3355 -0.0170 0.0443
4 0.8989 0.0150 0.0405 0,4263 0.0018 -0.0426 0.0199 -0.0067 0.0062
5 0.7459 -0.0019 0.0981 -0.6479 -0.0405 -0.0125 0.0371 0.0014 0 .0 1 1 1
6 0.9931 0.0005 0.0140 -0,0836 -0.0037 -0.0394 0.0029 -0.0048 0.0050
7 0.3131 0.0229 -0.2247 0.1256 ■ 0.0876 -0.0186 0.0327 -0.0823 0.8135
8 0.2996 -0.4550 -0.1629 -0,0102 -0.0567 -0.0586 0,1354 0;3249 0.5460
9 0.1247 -0.8785 -0.0152 0.1394 -0.0855 -0.084Q 0.0263 -0.1141 0.1649CO

10 0.0772 -0.6612 -0.0855 0,2220 -0,1644 0.0623 0.1251 -0;0111 0 .4 536
11 -0.4349 0.0266 -0.2637 -0,2951 -0,1505 0.1623 -0i0565 -0 ,5 19 2 0.3 3 18
12 -0.0645 0.0662 -0^5456 -0,0038 -0.7134 0.2111 0,2700 0.0179 0.0671
13 -0*2940 O.OII5 0.0006 -0.0170 -0.0567 -0.9448 0.0039 -0.0039 0,0172
14 0.0829 Oi.0127 -0.2964 -0,0230 0.3515 -0.0898 0.8428 -0.0194 0.0623
15 0.7164 -0.1092 0.0526 -0.0956

j

-0.0070 -0.0259 0.0548 0.0355 0.4581



r*la

1
2
3
4
5
6
7
8
9

10
11
12
13
14

Table *w.i5 Maximum liltellhood estimates of factor loadings and unique variances
in the, 77th iteration of phenotypic correlation matrix - data A

Factor loadings „ ^  ,______   -__________ _____ Unique
1

a 2 3 4 .5 ■' 6 .7 8 variance
0,6975 -Oil 509 -0.4405 —0;2051 0;0954 -0.0992 -0.0907 ,0.2466 0.1667

-0.1008 0.1838 -0.0633 -0.6675 0,0683 0.0725 -0.0924 -0.1672 0.4602
0.1229 -0.0023 -0.7474 -0.4701 0,2160 -0.0681 -0.3313 -0 .0 16 9 0.0440
0.8992 0.0149 -0.0407 0.4256 0.0017 -0.0424 -0.0197 -0.0067 0.0062
0.7454 -0.0019 0.0988 -0.6484 , -0.0403 -0.0128 0.0367 0.0013 0.0110
0.9930 0.0005 0.0142 -0.0843 -0.0037 -0.0394 0.0029 -0.0048 0,0050
0.3133 0.0227 -0,2244 Q.1253 0,0873 -0.0186 0.0839 -0.0824 0.8135
0.2996 -0.4546 -0.1618 -0.0105 --0,0571 -0.0587 0.1366 . 0.3255 0.5460
0.1248 -0.3790 -0.0148 0.1393 -0*0860 -0.0848 0.0266 -0.1134 0.1639

0.45400.0774 -0.6608 -0.0845 0.221.9 -0.1646 0.0624 . 0.1260 -0.0102
-0.4351 0.0261 -0.2637 -Q.2949 -0.1512 0.1,621 -0.0545 -0.5191 0.331.9
-0.0644 0.0665 -0.5423 -0.0039 -0.7140 0.2110 0.2749 0.0179 0.0671
-0.2940 0.0116 0.0009 -0.0162 -0.0568 -0.9448 0.0041 -0.0387 O.OI72
0.0829 0*0125 -0.2919 -Q.O23O 0.3527 -0.0898

i- •
0.8439 -0.0194 0.0623

0.7164. -0.1081 0.0531 -0.0962 -0.0068 -0.0260 0.0546 0.0356 0.4581



Table 4*1.16 Rotated maximum likelihood estimates of factor loadings
of the phenotypic correlation matrix - data A

Variable Factor loadings
1 2 3 . 4 ' -5 . 6 . 7 ' ' Q . .

1 0.6975 -0.1509 -0.4373 -0.0702, -0.0997 -0.0992 0.0338 0-.2466
2 ■-0.1008 . 0.1838- -0.2951 -0.6089. 0.0530 0.0725 -0.0460 -0 .1 6 7 2  •
3 0.1229 . -0.0023. -0.9368. -0.2140 -0.0 7 6 1. -0.0681 -0.0285 -0,0169
4 0.8992 , 0.0150- 0.0796 0.4203 -0 .0 12 2 -0.0424 -O.OO99 -0.0063
5 0.7454 . -0.0019 -0.0751 -0.6539 0 .0 0 20• -0.0128 -0 .00002- 0.0014
6 0.9930 0.0005 -0.0098- -0.0850 0.0027 -0.0394 -0.0014 -0.0043
7 0.3133 . 0 .0227 -0.1558 0.1765 -0.0529 -0.0186 0.1499 —0.0824
8 0.2996 -0.4546 -0.0739 0.0108 -0.1598 -0.0337 0.1303 0.3255
9 0.1248 -0.8790 0.0662 0.1257 -0.0866 -0.0848 -0.0063 -0.1135

. 10 0.0774 -0.6608. 0 .0 9 12 0.2044 -0.2 1 1 9 . 0.0624 0.0659 -0 .0 10 2

1 1 -0.4351 .. 0.0261 , -0.2660 -0.2290- -0 .2356 0.1621 -0.0602 - -0.5191
1 2 -0.0644 0.0665 -0.1 1 0 1. 0.0284 -0.928 1 0 .2 1 1 0 0 .0 7 16 - 0.0179
13 -0.2940 0.0116 0 .0 17 8 -0 .0222 -0.0486 -0.9448 -0.0184 . -0.0039
14 0.0829 0.0126 -0.1078 0.0078 -0.0629 -0.0898 0.9522 -0.0194
15 0.7164 -0 .10 8 1 0.0367 -0 . 1 1 1 1 0.0043 -0.0260 0.0373 0.0336

Contribution 
of each 
factor

3.8715 1 .4910 1 .'3530 1.1880 1 .0 2 3 0 1 .0 1 1 0 0.9705 0.4860

Proportionate 
variance 
accounted by 0 ,2 5 8 1 0.0994 0 .0 9 02 0.0792 0.0 682 0.0674 0.0647 0.0324
each factor

00O



Factor V s number of days to maturity

Factor VI 1000 seed weight

Factor VII seed oil content

Factor VIII : number of days to flowering

The residual matrix after removal of B factors is given 
In Table The largest element of the residual
matrix was 0.0398. The goodness of fit test is accepted 
for the 8 factor-model. .

* ' ' r -

• The ML solutions were estimated for the environ­
ment correlation matrix of order 15, starting from a five 
factor model. The goodness of fit of the models with 
5, 6, 7 and 8 factor*are given below.

Number of Degrees of Number of
factors " q , freedom iterations

5 89.43 40 17
6 62.26 30 18

7,
8

54.58 21 22
31.13 . 13



■+)'OrW.
T a b le 4.1.11 R e sid u al  m atrix  a f t e r  removal o f  e i g h t  f a c t o r s ^ p h e n o t y p i c  c o r r e l a t i o n  m atrix -  d a ta  A

-0.0175 0

0.0007 0.0029 0 1

0.0008 -0.0009 -0.0001 0

0.0014 -0.0016 -0.0002 -0.0000 0

-0.0011 0.0011 0.0001 -0.0000 -0.0000 0
-0 .0 113 -0.0188 0.0033 -0 . 0002' 0.0005 0.0001 0
-0.0110 0.0006 0.0022 -0.0005 -0.0010 0.0010 -0.0603 0

0 . 005a ' 0.0043 -0.0013 -0.0004 -0.0005 0.0004 0 . 0 1 9 1 . 0.0001 0
-0.0200 -0.0130 0.0039 0.0006 0.0010 -0.0006 -0.0 315 0.0063 0.0009 0
-0.0009 -0 . 0 155. 0.0011 0.0011 0.0017 -0.0013 -0.0378 -0.0083 0.0040 -0,0123 0 '
0.0004 0.0017 -0.0002 0.0000 -0.0001 0.0001 0.0035 0.0007 -0.0003 0.0007 0.0002 0

-0.0001 -0.0001 0.0000 0.0000 0.0000 0.0000 -0.0003 0.0000 0.0000 -0.0001 -0.0001 0.0000
0.0004 0.0003 -0.0001 0.0000 0.0000 0.0000 0.0010 0.0009 -0.0004 0.0007 0.0008 -0.0001
0.0105 0.0399 -0.0016 0.0018 0.0019 -0.0021 -0.0104 -0.0095 0.0004 0.0108 -0.0021 -0.0003

Coro
0
0.0000

0.0001

0
0.0002
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Chi-square value revealed that an eight factor-model 
■with a 0.005 convergence criterion can be accepted at the 
0.001 probability level. Thirty-seven iterations vie re 
taken for the convergence. The initial estimates of 
factor loadings and unique variances obtained from the . 
principal component method of factor analysis are shown 
in Table 4,1.18, The ML solutions in the 36th and 37th 
iterations are summarised In Tables 4,1,19 and 4,1.20 
respectively. The varimax rotated loadings are presented 
in Table 4.1.21. The residual correlation matrix after 
removal of 8 factors- is-given In Table 4.1.22. The varia­
bles influencing the eight factors are .

number of capsules per plant 
Factor I : number of capsules on main stem

yield of seeds/plant

Factor XI : height of the plant
height upto first capsule

length of the capsule 
Factor III: circumference of capsule

number of seeds per capsule

Factor XV: number of branches



t

Variable '________ '_____________ Factor loadings___________________________________ Unlque

Table h i-tslnitial estimates of factor loadings and corresponding unique variances for
8 factors of the environment correlation matrix - data A

1 2 3 4 5 6 . ' 7 8 variance

1 0.8452 -0.0310 0.1245 0.0979 0.1322 0.2854 0.0529 -0.1,571 0.8668
2 0.3644 0.2014 0.4157 0.0555 0.1737 -0.6696 0.1908 0.2865 0.9463
3 0.6609 -0.0657 0.3688 0.1935 0.3022 0.2032 0.1613 -0.1246 0.7889
4 0.8268 -0.1186 -0.2762 0.0389' -0.0875 0.0724 -O .0295 0.0049 0.7892
5 0.8090 -0.0619 -0.0532 -0.1824 -0.2536 -0.2409 0.0241 -0.0449 0.8194
6 0.9412 -0.1037 -0.1816 -0.0666 -0.1689 -0.0922 -0.0085 0.0092 0.9712
7 0.4135 -0.1586 -0.3585 0.1731 0.5337 0.1590 -0.1336 0.4133 0.8552
8 0.2719 0.6610 0.2238 -0.0653 -0.1244 0.3511 0.0908 0.1428 - 0.7326
9 0.1193 0.7249 -0.0578 -6.2174 -0.1077 ■ 0.1334 -0.0121 0.4597 0.831 %o

1° 0.1069 0.6541 -0.0148 0.1848 -0.2439 -0.0191 -0.1619 -0.3216 0.6631^’
11 -0.3227 -0.1729 -0.5074 0.2903 -0.3855 0.0352 0.4278 0.2174 ' 0.8559
12 -0.0170 0.4488 -0.2116 0.5896 0.2131 -0 .10 9 0 0.3943 -0.1997 0.8468
13 -0.0993 0.4503 -0.5527 -0.1369 0.3580 -0.2277 -0.3130 -0.1860 0.8494
14 -0.1018 0.0791 -0.1766 -0.7107 0.2771 0.0604 0.5397 -0.1869 0.9595
15 0.8830 -0.0272 -0.2294 -0.0958 -0.1623 -0.1038 0.0109 -0.0754 0.8852



Table H ■ M  Maximum likelihood estimates of factor loadings in the 36th iteration
of the environment correlation matrix -data A

Factor loadings
1 2 .3 • . .6 . 7 8 variance

1 0.7264 -0.6030 0.0147 -0.0498 0.0153 0.0478 -0.0049 ' -0.1038 O.O927

2 0.2789 o .0694 -0.0476 -0.8768 0.1618 0.0040 -0.0016 6.2498 0.0578
3 0.4712 -0.6530 -0 .1 1 9 2 -6.2311 > 0.0732 -6.0428 ,0.0340 0.0277 0.2748
4 0.8894 0.0330 -0.0029 -0.0226 -0.5041 0.0182 -0.0078 -0.4396 0.01111
5 0.8448 0.0090 -0.0032 0.0854 . 0.02481 0.0094 -0.0109 0.514711 0.0131
6 0.9949 0.0225 0.0008 0.0091 -0.0039 -0.0140 0.0151 0.0137 0.0089
7 0.3461 -0.1313 -0.0455 -0.0222 -0.0039 -0.0721 0.0142 -0.1823 0.3341
8 0.1679 -0.1765 0.5151 -0.1368 -0.0082 0 ; 1 630 -0.0461 0.0349 0.6267CO
9 0.0586 0.0051 0.8322 , -0 .1797 r0.0842 -0.0597 0.1546 0.0705< 0,,2322cn

10 0.0502 -0.0514 ' 0.4199 -0.0748 0.0809' pV . 0.1225r -0.2099 0.0445 0.7453
11 -0.1809 ' 0.2683 -0.0402. . i .0.2029 -0.0128 -0.0649 -0.1079 -0.1151 0.8232
12 -0.0651 •

" r ' -
-0.0788 0 .2 19 7 -0.1484 , ,0 .0823 -0.0748 -0.6235 -0.0880 0.5104 '

13 -0.0731 0.1447 0.279s -0.0009 -0^1507 -0.1776<(• -0.2344 -0.0456 0.7842
14 -0.0896 -0.0115 -0 .0 19 5 -0.0974 -6.9586• 1 0.0009 -0.0038 ,0.1473 0.0413
15 0.8943 0.0029 0.0628 0.0567 -0.0507 -0.0225 -0.1075 0.0863

i» •
0.1711
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3
4
5
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3
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Table h i ss-o Maximum likelihood estimates of factor loadings and unique variances
in the 37th iteration of environment correlation matrix - data A .

Factor loadings
1 2 3 4 - »'-.5 ;6 1 ”7 8

0.7265 -0,6033 0.0142 -0.0496 0.0159 0^0474 -0.0049 -0.1033
0.2787 0.0696 -0.0477 -0,8777 0,1602 0.0041 -0.0017, 0.2479
0.4710 -0.6527 -0.1197 -0.2313 0.0732 -0.0433 0.0339 0.0278
0.8897 0,0328 -0.0028 -0.0213 -0.0483 0 I0I79 -0.0077 -0.4397
0,8447 0,0093' -0.0032 0.0837 0.0226 0,0093 .. -0.0107 0.5155
0.9948 0,0225 0.0009 0,0088 -0.0038 -0^0145 0.0153 0.0140
0.3460 -0,1311 -0.0452 -0.0217 -0.0029 -O.7OI4 0.0136 -0.1820
0.1679 -0.1769 0.5147 -0.1369 -0,0084 0.1634 -0.0466 0.0345
0,0585 0.0044 0.8326 -0,1800 -0.0847 -0.0595 0.1538 0.0696
0,0503 -0.0515 0.4196 -0.0750 0.0807 0^1230 -0.2108 0.0446

-0,1808 0.2684 -0.0399 0.2033 -0.0123 -0.0648 -0.1074 ' -0.1147
-0.0650 -0.0788 0,2188 -0.1481 0.0826 -0.0741 -0.6227 . -0.0880
-0,0730 0.1445 0.2797 -0.0008 -0.1505 . *■0.1773 -0.2354 -0.0463
-0.0895 • -0.0116 -0.0196 -0.0974 -0.9594 0.0009 -0.0038 0.1425
0,8943. 0,0031 0.0627 0.0562 -0.0509 -0.0227 -0.1074 0.0865



Table 4.1.21 Rotated maximum likelihood estimates of factor loadings for the
« . environment correlation matrix - data A

Variable Factor loadings
1 . 2 3 . 4 5 6 7 8

1 0.5445 -0.7716 0.0142 -0.0202 0.0159 0.0228 -0.0049 -0.1202
2 0.2872 -0.0053 . -0.0477 -0.9120 0.1602 0.0050 -0.0017 0.0038
3 0.2850 -0.7528 , -0.1197, -0.2304 0.0732 -0.0497 0.0339 -0.0252
4 0.8676 -0.1998 -0.0028 0.0968 ' -0.0483 -0.0721” -0.0077 -0.4237
5 0.8180 -0.2108 -0.0032 -0.0569 ‘ 0.0226 0.1175 -0.0107 0.5058
6 0.9664 .-0.2372 0.0009 0.0048 -0.0038 -0.0107 0.0153 0.0185
7 0.2999 -0.2166 -0.0452 0.0277 ‘ -0.0029 -0.7238 0.0136 -0.0308
8 0.1161 -0.2145 0.5147 -0.1412 ' -0.0084 0.1591 -0.0466 -0.0373
9 0.0576 -0.0109 0.8326 -0.1921 -0.0847 -0.0542 0.1538 0.0310

10 0.0351 -0.0628 0,4196 -0.0842 0.0807 0.1251 -0.2109 -0.0032
11 -0.1048 0,3062 -0.0399 0.2266 -0.0123 -0*0751 -0.1074 -0.0415
12 -0.0833 -0.0592 0.2188 -0.1192 ' 0.0826 -0.0984 -0.6227 -0.1061
13 -0.0329 0.1585 0.2797 0.0116 -0.1505 -0.1827 -0.2354 -0.0069
14 -0.0894 0.0121 -0.0196 -0.1318 . -0.9594 0.0241 -0.0038 0.108?
15 0.8643 -0.2298 0.0627 0.0311 -0.0509 -0.0016 -0.1074 0.1010

Contribution 
of each 
factor

3.6975 1.5750 1.2855 1.0470 1.0005 0.6390 0.5385 0.4890

Proportionate . 
variance
accounte d 0.2465
by each
factor

0.1050 0.0857 0.0698 0.0667 0.0426 0.0359 0.0326



T able  4- m i  R e s id u a l  m atrix  a f t e r  removal o f  e i g h t  f a c t o r s ,  environment c o r r e l a t i o n  m atrix  -  d a ta  AA

-0,0001 0

0.0005 -0.0001 0

0.0013 0.0003 -0.0034 0

0.0014 0.0003 -0.0038 -0.0002 0

-0.0015 -0.0003 0.0042 0.0001 0.0001 0

0.0005 0.0002 -0.0023 0.0006 0.0006 -0.0009 0

-0.0055 -0.0018 -0.0022 0.0011 0.0013 -0.0004 0.0069. 0

0.0029 0.0006 -0.0041 -0.0009 -0.0010 0.0009 -0 .0 0 12 0.0019 0
-0.0128 -0 .0 0 12 0.0425 0.0019 0.0015 -0.0020 -0.0093 -0.0017 0.0005 0
-0.0144 -0.0036 0.0381 0.0015 0.0017 0.0007 -0.0 10 1 -0.0823 0.0309 -0.0070 0

0.0044 0.0006 -0.0051 -0.0029 -0.0028 0.0036 -0.0040 0.0287 -0.0035 -0.0180 0.0757 0
0.0051 0.0001 -0.0279 0.0008 0.0008 -0.0012 0.0107 -0.0428 -0.0044 0.0688 -0.1145 -0.0079

-0.0001 0.0000 0.0006 0.0000 0.0000 0.0000 -0.0002 0.0004 0.0001 -0.0007 0.0012 0.0003
-0.0057 -0.0006 0.0119 ■ 0.0029 0.0028 -0.0036 0.0026 -0.0190 0.0053 0.0042 -0.0413 0.0009

0
0.0001

-0.0015
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Factor V : seed oil content

Factor VI : number of fruiting nodes/20 cm

Factor VII : number of days to maturity

Factor VIII : number of capsules on branches

, Three and four factor solutions were extracted 
for the genotypic correlation matrix of order 10. The 
goodness of fit of the factor-model for these factors 
are summarised below.

Number of Degrees of Number offactors quar freedom iterations

226.69

215.51

18

11

46

53

The tests resoundingly rejected the three and four factor 

models and suggested that a higher-dimensional or non­

linear mechanism had generated the observed correlations.
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There was no scope for the acceptance of higher-dimen­
sional factor models. The initial estimates of loadings 
and unique variances for a three factor model are given 
in Table 4.1.23. ^he ML solutions in the 45th and 46th 
iterations are given in Tables 4.1.24 and 4.1,25 res­
pectively. Forty-six iterations were taken for the con­
vergence with a five unit difference in third decimal 
place. The rotated loadings are given in Table 4,1.26. 
The variables Influencing the three factors are

number of fruiting nodes/20 cm 
Factor I : circumference of capsule

length of the capsule

height of the plant 
Factor II : height upto first capsule

yield of seeds per plant

Factor III : oil content
number of branches

The residual correlation matrix is given in Table 4.1,27

4.2 Results of data B (rice fallows) ‘

4.2,1 Preliminary statistical analysis

The analysis of variance for simple lattice design



Variable Factor loadings. .
Code ■    ■   Unique1 2 3 variance

Table H-1-̂3. Initial estimates of factor loadings and corresponding
unique variances for ...three factors of the genotypic
correlation matrix - data A

1 0•6662 0.4666- 0.4643’ 0.1228
2 -0.6252' 0.5654• 0.2306 0.2362
3 -0.0452 0.8129' 0.3079 0.2423
7 0.7271 0.0349 ' -0.5477 0.1701
8 0.8469 0.0243 0.2417J 0.2237
9 0.5652 -0.3841 ' 0.2499' 0.4706
12 0.1326 0.55761 -0.5038 0.4177
13 -0.2843 -0.2056' 0.3277 0.7695
14 0.4646 0.3092 -0.3774 0.5460
15 0.5104 -0.0501 ■ 0.4631" 0.5225



Table h m h  Maximum likelihood estimates of facrtor loadings and
unique variances in t h e i t e r a t i o n  of genotypic,
correlation matrix - data A

Variable
Code

Factor loadings. Unique
variance

1 ■ 0.4605 0.8464 0.1434 0.0510
2 -0.6877 0.3816 . -0.5714 0.0548
3 -0.1080 0.6065 -0.2387 0.5635
7 0.9187 -0.1391 -0.3216 0.0331
8 - 0.6653 0.3662 0.3163 0.3232
9 0.4136 0.0302 0.4361 0.6378
12 0.1755 0.0650 -0.0953 0.9559
13 -0.2685 -0.0495 0.2886 0.8422
14 0.5025 0.0619 -0.4802 0.5130
15 0.1958 0.3888 0.2507 0.7477

CD
ro



Variable . Factor loadings
Code     1 :— 1— ' ■ ----------- ■ ■ “" Unique

1 2 3 variance

Tablem-j. 2.̂ Maximum likelihood estimates of factor loadings and
unique variances in the 4&th iteration of genotypic
correlation matrix - data A

1 O .4572 0.8479 0.1470 0.0504
2 -0.6895 0.3815 -0.5705 0.0537
3 -0.1103 0.6069 -0.2359 0.5638
7 0.9195 -0.1341 -0.3225 0.0325
8 0.6637 0.3674 0.3176 0.3256
9 0.4135 0,0300 0.4359 0.6381

12 0.1754 0.0660 -0.0938 0.9561
13 -0.2633 -0.0519 0.2890 0.8418
14 . 0.5021 0.0658 -0,4800 0.3131
15 0.1940 0.3886 0.2519 0.7479



Table 4.1.26 Rotated maximum likelihood estimates of factor 
loadings of the genotypic correlation matrix - 
data A

. Variable Factor loadings
1 2 ’ 3

1 0.1921 0.9201 -0.2572
2 -0.7323 -0.1058 -0.6315
3 -0.2609 0.3918 -0.4632
7 0*9383 0.0033 -0.2951
8 -0*5138 0.6362 0,0871
9 0*3611 0.3262 0,3536

12 0*1553 0.0658 -0,1243
13 -0.2603 0.0035 0.3007
14 0.4921 -0.0075 -0.4946
15 0.0619 0.4958 0.0498

Contribution of 
each factor - 2.2539 1.7727 1.2519

Proportionate 
variance 
accounted by 
each factor

0.2254 0.1773 0.1252



Table m  an Residual matrix after removal of three factors - dLdto. ^

0
0,0000 0
0.0104 0.0003 0
0.0006 -0.0008 0.0012 0

-0.0007 -0.0032 -0.0165 -0.0031 0
0.0310 -0.0053 0.0513 0.0014 -0.0441 0
0.0126 -0.0406 0.2418 -0.0099 -0.1300 -0.1846 0 ■
0.0010 -0.0245 0.1577 -0.0179 0.0141 -0.0319 -0.2504 0 ,

-0.0109 0.0150 -0.0392 0.0053 0.0877 -0.0029 0.0561 0.3208 ' 0
0.0049 0.0145 -0.2997 -0.0091 0.0749 0.0322 -0.1804 —0.2462 0.1145

CDtn
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was made for each character under study. Table 4.,2,1 
shows the F-values for testing equality of varietal ' 
means. All characters were found to distinguish the 
genotypes. .The mean values of the types In respect of 
each character are presented in -Appendix IV. ■ '

, t '

4.2.2 Analysis of dispersion . ,

• Using the multivariate analysis of variance the
total dispersion matrix was split up into 'between* and
'within* dispersion matrices,. The between and within
dispersion matrices are given in Appendices V and VI
respectively,. The Wilk's lambda statistic was calculated 
as :

a  a 3.5 x 10"8 
So that V = 2430,62 is a chi-square with 1485 

degrees of freedom and is significant at one percent 
probability level.

4.2.3 Estimated correlation matrices

Analysis of covariance was done for each pair of 
characters under study. The phenotypic, environment and 
genotypic correlation matrices were calculated and are 
presented in Table 4,2,2, 4,2,3 and 4,2,4 respectively. 
The estimated genotypic correlation coefficients lies
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Table h -a. i F-values obtained from the analysis of variance 
for 15 characters - data B

Character F-values

M Height of the plant 2.2946
2. No. of branches > 1 ## 

2.6744

3. ' Height upto first capsule 4.8476**
4. No.'of capsules on main stem 2;5646#*
5. No. of capsules on branches ■ ** 2.25201
6. No. of capsules/plant 2.0308
7. No, of fruiting nods per 

20 cm
1 . -.u. w 1 > , T7TT3.5034

9* Length of capsule 7.6995**
9. Circumference of capsule 5.5623

10. No. of seeds/capsule 17;6366**
1 1. No. of days for flo\vering 6.2338**
.12. . No., of days to, maturity 4.9308
13. ■1000:seed weight , 5.7^89
14. Oil content , . 1794.758
15. Yield of seeds/plant 1.3797



Table 4 .i-l Phenotypl c correlation matrix - cLo.t.a B

A11 
X1 2 

X15 
*1M-

0.5336 

0 .1797 

0.4737

-0.2058

0.1202
-0.0046

0.1167

-0.0569

-0.0513

-0.0639

0.5397

■0.1321 

0.1550 

0.1993 
-0.0990 

0.0561 

-0.0034 

0.0217 

0.0069 

0.1052 

0 .0336 

0.0265 

0.2712

0.0525

-0. ,j j ; 3  

0.0204 

- 0.0625 

-0.0083 

-0 .0365 

0.0750 

0.1058 

0.2705 

0 .3016  

0 .0388  

-0.0669 
0.1803

'5'S 
0 - 3 1 B 4 -  

0- 3095.
- 0 -  Q I 8 I  

0 - 3 SQ.I 

o- feiio. 
0 - 4 4 3 0  

O- 09 DS 
a - 0 4 - 31.

-o-n<n cx> 
00-o-ion 

-o- 1 1 0 1  

0 ■ 0114- 
o- o3g/

-£>■ o33o



Table 4.1.3Environmental correlation matrix - d.a.ta. a

X2 X3 xt X5 X6 X7 xe X9 X10 X11 X 12 X 14

x1 0.3091 0.5091 0 .0 ,'6 0 0.5463 0.6667 0.320 0 0.3199 0.1924 0.1361 0.0473 0.1641
--?---------

0.1369 0.0869 a-4&92-

y- 2  0.3031 0.1387 0 .5 15 1 0 .A370 0.1406 -0.0186 0.0617 -0.0776 0.2017 0.1664 -0.0924 -0.0275 0-1-8 -a 9

X 3 0.0957 0 .2 337 0.2088 0.271 A 0.0638 0.0207 -0.0965 0.0634 0.1642 0.1234 0 .1492 o- i n  9

X4 0.4437 0.7550 0.3935 0 .3050 0.1840 0.0816 -0.1144 -O’. 0154 0 .0757 -0.0265 0- 461/

X5 1 - 0 ,9223 0.1882 0.2043 0.2552 0.1059 0.0906 0.2768 -0.0464 -0.0089 0- 4107

X6 ' 0.3064 0 .2789  „ 0.2641 0 .1 1 2 3 0.0209 0.1945“ -0.0025 -0.0184 o- C.509

X ? 0.1387 -0.0798 -0.0524 0.1942 0.1624 0.0584 -0.1151 0-1871

X8 0.1872 0.3883 0.0242 0 .1 0 10 0.1233 0.031 2 0-302.6,

x9 0.3626 -0 .2 16 0 -0.1487 -0 .1369 -0.0077 O-IQAS 1

X10 -0.0427 0.0233 -0.1252 -0 .0855 0-1 317

X11 0.2219 0.0601 -0.0375 D. 0 £ 0C=

X12 0.2100 0.0624 0 . 0 1 1 . 4

X13 0.0029 0 -0 1 I B
X-/IM- 0 ■ 00 ‘Stf



Table 4 ,2,.4-Genotypic correlation matrix -.data, a

X2 X 3 X4 X5 X6 X7 X8 X9 X 10 V X1 2 ,  x 13 X1 4

X1 0.4994 0.6954 -0 .0435 0.4048 0.3020 0 .0 16 2 -0 . 16 13 -0.3271 -0.1879 0 . 5 5 3 7 ; 0 .5223 0.0680 0.0810 0 - ifaSS

X2 0.4990 -0.3272 0.3060 0.4771 -0.2945 -0.2337 -0.3292 -0.2097 0.3708 0 .1982 0.1969 -0.0039 0 • 9

X 3 -0.6335 0.1286 -0.2303 0.0254 -0.0413 -0.0367 -0.0731 0.3331 0.6347 0.2476 0.0214 - 0. Z 4 8 8

X4 0.0856 0.5967 0.0601 -0.1946 -0.3671 -0.2500 -0.4881 -0.3585 -0.2622 -0 .0909 O 'M D l

X5 0.8506 -0.0390 -0.1334 -0.5676 -0.3861 0.0063 -0.0055 0 .1645 -0.0126

X 6- ‘ -- - . - '-0 .0039 -0.2129 -0.6500 -0.4462 -0.2531 -0.-1911 -0.0046 --0.0597- o-kqoi
x7 ’ 0.2163 0.1497 0.1646 0.1204 0.0896  . -0 .0056 0.1026 0-03-SB

X8 0.1603 0.2484 -0.1267 ■-0.1161 -0.0454 0.1189 - q. a.313- 1

X9 0.9198 0 .1727 -0.0079 0.2388 0.3204 - o . t . n t  (

X10 ■ 0.0508 -0 .0957 0.1051 0.3406 -0- HHHo

X11 0.6715 0.0094 0 .0462 ~ d ■ 4 334-

X12 0.3105 -0.0835 - 0 -o o i5

X13 1 0 .2388 o-I5oo
x )lf \ -0- 032.4

GO
T



between the range ,-0,6776 and 0,9198* The genotypic . ,
correlation between the number of capsules on branches 
and number of capsules per,plant, circumference of cap­
sule and number of seeds-per capsule, height upto. first , 
capsule and number of days to flowering, and number of 
days to flowering and number of days to maturity were . 
highly positive whereas the height upto first capsule and 
number of days to maturity was highly negative.

4,2.4 Factor analysis

' The phenotypic and environment correlation matrices 
were positive definite while the genotypic, correlation, 
matrix was in indefinite form. The eigen values and 
corresponding eigen vectors of the phenotypic, genotypic 
and environment correlation matrices were calculated by 
Jacobi's method. The eigen values of the phenotypic and 
environment correlation matrices along with contribution 
of each latent root to the total variation are given In 
^able 4.2.5. To make the genotypic correlation matrix 
In positive definite form, variables with high genotypic 
correlation coefficients, were eliminated. The latent 
roots of the resulting genotypic correlation matrix is 
given in Table 4.2.6. .

The first five latent roots of the phenotypic and
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Table h-sl-s Latent roots o f phenotypic and environment
correlation matrix - data B

1 . 3.7112 24.7413
2. 2.6698 17.7987
3. 2.0150 13.4333
4. 1.2189 8.1260
5. 1.0377 ■ 6.9180
6. 0.8914 ' 5.9427
7. 0.8122 • 5.4147
8. 0.6860 1 4.5733
9. 0.5630 - 3.7533

10. 0.4682 3.1213
11. 0.3421 2,2807
12. 0.2614 1.7427
13. 0.1972 1.3147
14. 0.1260 0.8400
15. 0.0001 0.0007

.Environment correlation 
matrix

Percent contri­
bution to 
variance

28©2737 
12.4660 
8.9987 
8.2633 
7.9087 
6.5940 
5.7827 
5.0820 
4.1660 
3,4633 
3.0180 

2.7093 
1.8647 
1.4020 
0.0020

Phenotypic correlation 
matrix

Latent roots Percent cantri- Latent roots 
‘ . bution to
' variance

4.2413 
1.8699 
1.3498 
1.2395 
1.1853 
0.9091 
0.8674­
0.7623 
0.6249
0.5195
0.4327
0.4064
0.2797

/

0.2103
0.0003
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xaoie latent roots or tiie genotypic correlation 
matrix of order 9 - data B

SI.
No. latent roots Percent contribution 

to variance

1. 2.2696 25.2186
2. 1.6579 18.4211
3. 1,2040. CO

4. 1,1238 ■12.4867
5. 0.8753 ' ,9.9726
6. 0.8468 . .9.4089
7. 0,5574 .6.1933
8. 0.3326,' . 3.6956
9. 0.1324 • 1.1471
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environment correlation matrices were found to be greater 
than one and these altogether explained 7 1 .0 2  percent and 
65.91 percent respectively to the total variation. The 
first four eigen values of the genotypic correlation 
matrix explained 69.51 percent of the total variation,

4,2.4.1 Principal factor analysis,

Using the principal factor analysis to the pheno­
typic correlation matrix a five factor model was fitted 
with largest correlation coefficient in each row as the 
estimate of communality. Eighty-one iterations were taken 
for the convergence of communalities with a five unit 
difference in the third decimal place. The estimates of 
loadings and communalities in the 813t iteration are given 
in Table 4,2,7, ' Factors in the 81st iteration wa3 subjected 
to varimax rotation to have a more meaningful interpretation 
of the factors• The rotated loadings were presented in 
Table 4.2.8. The five factors can be explained as follows,

number of capsules, per plant 
Factor X : number of capsules on branches

yield of seeds.per plant



Table Principal factor solution In the 81st iteration for the phenotypic
correlation matrix - data B

rlable
i 1 iCommon factor coefficients *

Estimated communality
Original
communa-
lity

1 2 . 3 . 4 ' 5 81st ite­
ration *■

,80th ite­
ration -

1 0 .6 776 0.3047 0.1734 0,0877 0.2924 0.6753 0.6753 0.7289
2 . 0 .6 0 18 . 0 .2 9 72 . .-0.C651 0 . 1 1 1 1 -0.4193 , O'. 6428 0.6429 0.5732
3 0.3137 .0.7884 -0.0840 0.1063 0.1399' .. 0.7579 0.7579 0.7392
4 0.4633 -0.5900 0.2193 -0.0393 0.4385 0.8048 0.8048 0.9991
5 0.8857 -0.Q456 0.1428 0.0290, -0.3297 0.9165 0.9165 0.9996
6 0.9223 -0.3377 0.2281 0 .0 0 11 -0.0225 1 .0 1 7 2 1 .0 1 7 2 0.9998
7 0 .13 3 2 . 0 .0 58 1 0.2151 0.0485 0.3284 0 :17 7 6 0^1776 0.2107M
8 -0.0679 -0.0170 0.2884 . 0.0314 0.0772 0.0950 0^0950 0.1637oi
9 -0.3562 0.1857 0.6685 0.0877 -0.0744 0.6214 0.6214 0.6396

10 -0.3679 0.1591 0.8685 0.1917 -0 . 1 1 1 8 o;9642 0.9642 . 0 .6 70 2
1 1 , 0.1237 0.7094 -0.0809 0.2289 . 0.1085 0.5893 0.5894 . 0.5426
1 2 , 0.2125 0.5725 -0.0862 -0.0480 0.1734 0.4128 0.4129 0.4343
13 ■ 0.0779 0 .370 1 0.2099 -0.9416 -0.0214 1.0742 1 .0 6 9 2 0 .19 2 6
14 -0.0743 0 .1 1 0 19 0.3286 -0.0670 -0.0547 0.1331 0.1332 0 .16 0 1
.15 0.6062 -0.2008 0.1559 -0.0337 -0.0641 0.4374 0.4374 0.4477



Table 4 0. ̂  Rotated principal factor loadings for the phenotypic
correlation matrix - data B

Variable Common factor coefficients
1

1 2 3 4 5
1 0.4659 0.4970 0.0008 -0.0245 0.4591
2 0.5552 0.4735 -0.2064 0.0049 -0.2602
3 -0.0040 0.8480 -0.1007 -0.0863 0.1453
4 0.4853 -0.4265 ' 0.0278 0.0579 0.6190
5 0.9237 0.2166 -0.1175 , -0.0202 -0.0462
6 0.9621 -0.0514 -0.0715 0.0130 0.2894
7 0.0590 . 0.1030 0.1729 0.0260 0.3646
8 0.0026 -0.0281 ■ 0.2932 0.0388 0.0820
9 -0.1482 0.0911 0.7553 0.0690 -0.1265

10 -0.0836 0.0864 . 0.9474 0.1768 -0.1448
11 -0.1375 0.7477 -0.0510 0.0625 0.0693
12 -0.0455 0.5833 -0.0929 -0.1837 0.1676
13 0.0348 0.1555 0.2106 -1.0021 -0.0112
14 0.0153 0.0664 0.3445 -0.0840 . -0.0526
15 0.6437 -0.0217 -0.0395 -0.0296 ■ 0.1420

Proportionate
variance o.g^D 0.2.793 0.2.152- 0.1X23 O.ltPiaaccounted by 
each factor
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Factor II :

Factor III :

height upto first capsule 
number of days to flowering 
number of days to maturity, 
height of the plant 
number of branches

number of seeds per capsule 
circumference of capsule 
length of capsule

Factor IV:

Factor V :

1000 seed weight

number of capsules on main stem 
number of fruiting nodes per 20 cm

Factorization of the environment correlation 
matrix was done by the PFA method. Thirteen iterations 
were taken for the convergence of successive communalities 
at the 0.005 level of convergence. The factor loadings 
and communalities in the 12th iteration along with commu­
nalities in the 13th Iteration are given in Table 4.2.9. 
The loadings obtained after varimax rotation are provided 
in Table 4.2.10. The Interpretation of five factors Is 
as follows.



Table H-i q Principal factor solution in the 13th iteration for the environment
correlation matrix - data B

Variable Common factor coefficients Estimated communality
• 1 . 2 , 3 4 5 13th ite­

ration
12th ite­
ration

■ communa- 
- lity

1 0.7872 - .0.3323 - .0.0710 . 0.1847 0.0791 _ 0.7755 0.7776 0.6647
2 0.4413 - -0.3046 . ,0.2989 0.1189 0.0891 ~ 0.3989 0.3995 0 .5 1 5 1

3 0.3708 0.2970 ,0.4716 . 0.3785 0.2953  ̂0.6785 0.6735 ’ 0.5091
4 0.7412 ■ ,0.3264 70*2124 -0.0770 -0.4554 0.9144 0 .9 12 2 0.7550
5 0.8617 -O'; 4321 ■ ,0.0578 0.0080 0.0731 6.9379 0.9374 0.9223
6 0.9825 - -0.2044 70.0573 . -0.0439 -0.1756 * 1.0432 1.0437 0.9223
7 0.3520 ,0.2252 ,0.2291 -0.1684 -0.0808 0.2620 0.2620 0.3935
0 0.3710 ,,0.2686 70.2891 -0.2616 0.2805 0.4405 0.4420 0.3883
9 0.2554 -0.0696 7O .4768 0.2940 0.1 708 0.4130 0.4134 '0.3626

10 0.1732 ,0.0396 70.5569 . -0.1350 0.4466 0.5594 0.5569 ’ 0.3883
1 1 0.0566 *■0.1158 , 0.3510 -0.3401 0.1673 0.2835 0.2836 ' • 0.2219
12 0.2077 r0.0053 0.3199 -0.2639 0.2398 0 .2 72 6 0.2726 : 0 .2 76 8

13 0.0492 , 0.2728 , 0.1893 -O.I735 0.0203 0.1432 0.1433 ' 0 .2 10 0

14 ■ 0.0088 0.0777 0 .0 76 2 0.1445 0.0605 0.0378 0.0379 1 0 .14 9 2

15 0.645 -0 .12 5 0 - 0.0 778 -0.0914 -0.0333 0.4466 0.4467 0.6509
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Table h 2.0 d Rotated principal factor loadings for the environment
correlation matrix - data 13

Variable

ProportIonate 
variance 
accounted by 
each factor

0.4243

Common factor coefficients

O.X) d 0.(1 fc OX 0,'IjX4X

1 2 3 4 5
1 0 .50 9 2 0.6533 -0.2813 -0.0667 0.0759
2 0.4-348 0.1426 0.1699 6 .34 31 —0.0676
3 0.1685 0.6929 -O’. 0259 6.4114 -0.0137
4 0.4726 0.4231 -0.2557 -0.6627 —0.086s
5 0.9617 0.0873 0.0041 0.0319 0.0522
6 0.9501 0 .2 3 10 -0.0959 -0.2763 -0.0116
7 0.0838 6.3919 0.15 18 -0.1944 0 :10 9 5
8 . 0.1831 0.1631 -0.2975 -0.1941 0.3042
9 0.2554 -0.1139 -6.5734 0.0777 0.0024
10 . 0.1291 -O.I9 13 -6.5020. -0.0029 ' 0.5042
11 0.1075 0.0486 0.4284 0.0874 0:2799
12 0.1816 0.1953 0.2945 0.1053 0.3221
13 -0.0962 0.2782 0.1404 -0.1015 0.1631
14 -O.03I9 6.1292 -6.0492 0.1258 -0i0424
15 0.6187 0.1272 -0.0833 -0.1761 0.0984

0.1039

f-*
r_ i

fi:
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Factor I t

Factor II :

Factor III :

Factor IV :

number of capsules on main stem 
number of capsules per plant 
number of capsules ■ on branches 
yield of seeds per plant

height upto first capsule 
height of the plant

circumference of capsule 
length of the capsule 
number of seeds per capsule

number of branches
number of fruiting nodes per 20 cm

Factor . V : number of days for flowering
number of days to maturity

,PFA method was applied to the genotypic correlation 
matrix of order 9. A three-factor model was fitted and 
103 iterations were taken for the convergence of communa- 
lities at the derived level of five unit difference in the 
third decimal place. The loadings In the 103rd Iteration 
are given in Table 4.2.11. The rotated loadings are pre­
sented In Table 4.2.12. The factors were Interpreted as



Table h a-11 Principal factor solution in the 103rd Iteration for the genotypic
correlation matrix of order 9 - data B

Variable Common factor coefficients Estimated communal!ty
1 2 3 103rd Ite­

ration
10 2»d ite­
ration

commona­
lity

1 0.5014 0.0952 0.1789 0.2924 0.2928 0.4994
2 0.8333 0.8434 -0.1619 1.4318 1.4319 0.4994
4 -0.4610 0.2253 0.8325 0.9564 0.9572 0.2907
7 -0.0872 -0.2272 0.0609 0.0629 0.0630 0.2163
8 -0.1696 -0.2228 -0.2871 0.1608 0.1608 0.2163

12 1.0427 -0.7311 0.3444 1.7404 1-7354 0.5223
13 0.2954 -0.0358 -0.1069 0.0999 0.1000 0.3105
14 0.0079 -0.0293 -0.1580 0.0259 0.0258 0.2383
15 0.1808 0.3811 0.3282 0.2857 0.2856 0.4258



Table H-a.it Rotated, principal factor loadings for the genotypic
correlation matrix - data B

Variable Common factor' coefficients
0006 -

1 2 ■
1 0.4439 0.2764 ' 0.1379
2 0.3524 1.1433 -0.0235
4 . -0 ^ 312 1 -0.1728 0.9106
7 0.0302 -0.2489 0.0068
8 -0*1228 -0.2160 -0.3148

12 112992 -0.2284 0.0080
13 0.2515 0.1235 -0.1465
14 -0i0166 0.0084 -0.1598
15 o;o769 0.3509 0.3958

Proportionate 
variance 
accounted by

i1 i
0.6$Pd 0.WJ19 0.3%! 8

each factor



113

Factor I j number of days to maturity,
height-of the plant .

Factor II : number of branches

Factor III s number of capsules on main stem
yield of seeds per plant

4.2.4.2 Maximum-Like lihood factor analv.gi h

Through the Lawley*s Iterative scheme solutions 
embodying five, six, seven, eight and nine factors were 
successively extracted for the phenotypic correlation 
matrix of order 15, Some difficulty v;as experienced In 
achieving a suitable factor model for the given correla­
tion matrix. The approximate chi-square statistics for 
the solutions are

Number of 
factors Goodness of 

fit X 2
Degree of 
freedom Number of 

Iterations

5 106.96 40 40
6 80.52 30 28
7 76.1? 21 81
8 61 ;56 ■ 13 39
9 ‘35.05 6 32
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All these statistics lead to the rejection, of the adequacy 
of the respective factor models at the 0.001 probability 
level. .

The initial estimates of factor loadings and
specific, variances obtained from principal component
method of factor analysis are given in Table 4.2.13.
The five factor-model has the estimated loadings and
specific variances as shown in Table 4.2.14. The unrotated
and rotated loadings of the matrix are presented in Tables
4.2.15 and 4.2.16 Respectively. The characters dominating 
in the factors are

number of capsules on branches 
number of capsules per plant 
yield of seeds per plaint

height of the plant 
number of branches 
number of days to maturity 
height upto first capsule 
numbe.r of days for flowering

number of seeds per capsule 
circumference of capsule 
length of capsule .

Factor i :

Factor II s

Factor III :



Table 11 Initial estimates of factor loadings and corresponding
unique variances for five factors of the phenotypic
correlation matrix - data B

' " ' " 4 • I ’ ■ . • .
Variable Factor loadings . . . ‘■ " 1 — - ■ —  :---Unique' '

.1 .2 3 . 4  . 5  variance
1 0.73,29 0.2867 0.2085 0.1641 0 .0 18 6 0.6900
2 0.6546 0.2775 -0.0908 -0.4583 0.2269 0.7753
3 0,35.88 0.7935 . -0.0657 0.0832 0.0585 0.7730
4 0.4507 -0.6156 0.2311 0.3164 -0.0874 0.7431
5 0.87,22 -0.0976 0.1342 -0.2480 O.O772 0.8557
6 0.8733 -0.3625 0.2074 -0.0420 0.0173 0.9392
7 0.1679 0.0794 0.3734 0.6988 -0.0257 0.6628

' 8 -0.0875 -0.0205 0.4896 0.2697 0.0775 0.3266
9 -0.3809 0.2246 0.7157 -0.1958 0.1556 0.7704

10 -0.3572 0 .17 2 0 0.7766 -0.1633 0 .2 18 6 0.8348
1 1 0.1679 0.7908 -0.0813 0.1333 0.2479 0.7394
1 2 0.2723 0.6731 -0.1087 0.2266 -0 .19 2 8 0 .6 276
13 0.0820 0.3057 0.1664 -0.1642 -0.8488 0.8752
14 -0.0924 0.1494 0.5143 -0.2843 -0.2643 . 0.4461
15 0 .6 8 12

r. -0.2831 0.1985 -0,0927 -0.0318 0.5932



Table n.a-H Maximum likelihood estimates of factor loadings gsjgj unique
variances in the 39th iteration of phenotypic correlation
matrix - data 3 ;

Variable Factor loadings
1 2 3 . 4 5

- hnlque 
variane<

1 9.5318 0.5946 0.0042 -0.0087 0.3291 0.2352
2 0*4921 9.1634 r-0,0836 0.4839 0.1363 0.4664
3 0.015S 0.7528 -0.1239 0.4160 ! 0.3748 0,1030
4 0,6256 0,0017 0,0014 -0.7799 ' 0.0013 0.0003
5 0,9269 -0.0002 0.0011 p.3752 .0.0006 0.0001
6 0,3967 -0.0003 -0,0006 -p.0801 -0.0005 0.0001
7 0.1464 O.I953 0.1221 -0.1617 .0.1137 0,8863
Q -0.0091 -0,0044 0,2855 ’ 0,0125 0.0332 0,9172
9 -0.2195 0.0753 0.7315 ' 0.0035 ' 0.0402 0,3338
10 -0.1986 0.0084 0,9313 0.0013 0.1080 0,0305
11 -0.0950 0.4400 -0,0370 0.3432 0.3556 0,3517
12 0.0176 0,4331 -0.0313 0.2783 . 0.0559 0.6791
13 0.0071 0.5740 0.1163 0.1329 r-9,73QD 0.1062
14 -O.0 3I9 0.1096 0.3301 P.0355 -0.0936 0.0662
15 0.6475 -0.0115 0.0246 0.0294 -0.0433 0.5773



Table H-a-is Maximum likelihood estimates of factor loadings and
unique variances in the 40th iteration of phenotypic
correlation matrix - data B

Variable Factor loadings .
~ Unique

 _______  ' . 2 .3 4 5 variance
1 0.5318 0.5938 0.0019 -0.0839 0.3304 0.2553
2 0.4918 0.1627 -0.0840 0.4893 0.1374 0.4664
3 0.0153 0.7514 -0 .13 2 1 . 0.4160 0.3769 0.1026
4 0 .6 262 0.0017 0.0013 -0.7795 0 .0 0 13 0.0003
5 0•9266 -0.0001 0 .0 0 11 0.3758 0.0005 0.0001
6 0.9968 -0.0003 -0.0006 -0.0795 -0.0005 0.0001
7 0.1465 0 .19 6 2 0 .1 2 1 2 -0.1616 0.1139 0.8863
8 -0.0091 -0.0029 0.2855 0.0124 0.0327 0.9172
9 -0.2194 0.0798 0.7808 0.0034 0.0388 0.3344

10 -0 .19 8 6 0.0130 0.9325 0.0017 0.1063 0.0795
1 1 -0.0952 0.4389 -0.0386 0.3432 0 .356 6 0.5518
12 0.0174 0.4824 -0.0835 0.2783 0.0571 0.6792
13 0.0070 0.5764 0.1124 0.1329 -0.7292 0.1057
14 -0.0319 0,1115 0 .3 2 9 2 0.0554 -0.0940 0.8663
15 0.6475 -0.0113 0.0247 0.0298 -0.0438 0.5773

117



Table 4.2,16 Rotated maximum likelihood estimates of factor loadings for
the phenotypic correlation matrix - data B •

Variable Factor loadings
1 2 3 ' 4 . 5, "

1 0.4885 ,0.4970 , 0.0019 , -0.5081 -0.0294
2 0.6411 ,0.3117 . -0.0840 0.1339 0.0219
3 ■ - 0.1726 .0.9151 . -0.1321 -0.0661 -0.0915
4 - 0.2820 t0.4532 . 0.0014 , -0.8449 0.0290
5 • . 0.9999 ^0.0025 , 0.0012 -0.0049 0.0007
6 .. 0.8914 t0.2155 , -0.0006 -0.3985 0.0134
7 . 0.0739 .0.1021 . 0.1212 -0.2884 -0.0016
8 • -0.0037 ,0.0206 . 0.2855 0.0069 0.0288
9 ■ -0.2015 ,0.1186 , 0.7808 0.0341 -0.0122
10 -0.1830 ,0.0972 . 0.9325' , 0.0381 0.0808
11 0.0427 .0.6628 , -0.0386 0.0464 0.0581
12 ■ . 0.1221 . 0 .5023 . -0.0835 , 0.0066 -0.2155
13 . 0.0572 . 0.1324 . 0.1124 0.0335 -0.9272
14 ■ -0.0084 . 0.0672 . 0.3292 0.0310 -0.1407
15 0.6100 ,-0.1333 0.0247 -0.1779 * -0.0245

Contribution 
of each factor 3.0255 1.2750 1.7295 2.1990 0.9480

Proportionate 
variance 
accounted by 
each factor 0.2017 0.0850 0.1153 0.1466 0.0632

118
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number of capsules on main stem
Factor IV : number of fruiting nodes per 20 cm

Factor V : 1000 seed weight

The residual matrix formed by subtracting the correlations 
generated by the respective factor models from the original 
sample values are given in Table 4.2.17. The largest of 
the residual matrix had the value 0.2055.

The environment correlation matrix was subjected 
to ML method of factor extraction under the hypothesis 
that a five factor-model would suffice to explain the 
dependence structure. The initial estimates of loadings 
and specific variances were obtained by the principal 
component method of factor analysis. An improper maximum 
likelihood solution was obtained. Specific variances of 
variables 3, 4, 5 and 6 tend to sero in the course of 
iteration and become negative when allowed to continue 
the iteration. The ML method was applied to the partial 
dispersion matrix after eliminating these variables and 
a proper solution was obtained for one factor-model in 
the 24th iteration. But the goodness of fit test resulted 
In a Chi-square value of 87.00 for 44 degrees of freedom 
that leading to the rejection of the null hypothesis.



Table 4-i-n Residual matrix after removal of five factors, phenotypic correlation matrix - da-a B

-0,0118 0

0.0071 0.0067 0

0,0005 -0.0007 0.00003 0

0.0003 -0.0005 0.00006 -0.0000 0

-0.0003 0.0004 -0.0000 0.0000 0.0000 ■ 0 ■

-0.0616 -0.1111 0.0084 0.0012 0.0008 -0.0006 0
0.0232 -0.1267 0.0096 0.0011 0.0007 -0.0006 0 .15 2 6 0

-0.0356 -0.0084 0 . 0 1 1 5 -0.0006 -0 .0004 0.0003 -0.0142 -0.0596 0
0.0062 0.0073 -0.0029 0.0001 0.0000 -0.0000 -0.0032 0.0065 0.0035 0

-0.0513 0.0453 -0.0032 -0 .0 0 15 -0 .0010 0.0007 0 .0 9 13 -0.0 945  • O.0239 0 .0 0 13 0
0.0265 -0.0583 -0.0324 -0.0006 -0.0004 0.0003 0.0681 -0 .0368 -0.0239 0.0051 0.2055 0

-0.0021 0.0024 0.0009 -0.0000 0.0000 0.0000 -0 .0 0 15 -0 .0013 0.0008 0.0000 -0.0071 0.0070
0.0342 0.0077 -0.0070 0.0002 0.0001 -0.0001 0.0376 0.0142 0.0011 -0.0 032 0.0141 -0.1027
0.0554 -0 .0 139 -0.0122 0.0000 0.0000 0.0000 0.0051 0.0455 -0 ,0 545  ■ 0.0086 -0 .0378 0.0018

0
0 ,0029

0.0C13

roo

o
-0.0249



Therefore ML analysis was , repeated with six factors.
' , i * •

After eleven iterations the 3rd, 4th, 5th and 6th specific 
variances become negative and the analysis was done for 
the partial dispersion matrix after eliminating these 
variables.' After six iterations a proper solution was' 
obtained for the two factors. The value of the test 
criterion was found to well below expectation and the 
hypothesis was accepted. The initial estimates of factor 
loadings and unique variances for two factors (for,environ­
ment correlation matrix of order 11 after eliminating 
variables. 3, 4, 5 and 6) are given in Table 4.2.13. The 
maximum likelihood estimates, of factor loadings and . 
corresponding unique variances for the six factor-model 
(combined solution) are given, in Table 4.2.19. The rotated 
loadings are presented in Table 4.2.20. The variables

■ . ' 1 ' ' j

dominating the factors are

number of capsules on main stem 
height upto first capsule 

Factor I : number of capsules on branches
number of capsules per plant 

• yield of seeds per plant

Factor II height. of the plant



Table M ̂  iarlnitial estimates of factor loadings and unique
variances for the environment correlation matrix
of order 11, two factor case - data B

Variable 
Code ,

' . ■ . . "" " : Factor loadings . Unique
variance■ ; 1 • ■ - 2 * ,

1 0.0107 -0.0192 ‘ 0.9995
2" -0.1771 -0.1619 0.9424
7. -0.3107 0.1450 0.8324
8 0.3234 0.6797 0.4334
9 0.7127 -0.0356 0.4908

10’ 0.6430 0.5112 0.3252
11 -0.4588 0.3851 0.6412
12 -0.3839 0.4731 0.6288
15 -0.3501 ’ 0.4435 0.6307
14 0.0472 -0.0428 0.9959
15' 0.0742 * 0.1223 0.9757



Table 4.2.-19 Maximum likelihood estimates of factor loadings and unique
variances for the environment correlation matrix, six factor -
model (combined solution) - data B

Variable Factor loadings
1 2 .3 4 5 variance

1 0.3261 0.9220 0.1551 0 0 0.0004 0.0195
2 0.7821 -0.2650 , 0.5600 0 0 0.0049 0.0045
3 0.8922 0.0123 -0.4431 0 0 0.0094 0.0074
4 0.9889 -0.1076 -0.0891 0. 0 -0.0123 0.0024
5 0.7225 0.2546 0.2268 -0.04 -0.0248 0.0470 0.3573
6 0.4404 0.2151 -0.2657 -0.1247 -0.0170 -0.0503 0.6708
7 0.3478 0.1232 0.2743 -0.1124 0.1801 -0.0057 0.7435
8 0.2876 -0.0520 0.1163 0.3939 0.2761 0.0790 0.6634
9 0.2565 -0.0579 -0.0586 0.4619 -0.2930 0.0849 0.6211
10 0.0953 -0.1288 -0.0493 0.7299 0.1302 0.0319 0.4212
11 . 0.0157 0.1126 -0.1706 -0.1336 0.3762 -0.1804 0.7661
12 ,0.1926 0.1467 -0.2276 -0.0876 0.3914 0.0437 0.7268
13 0.0223 0.0993 0.1507 -0.1364 0.3080 0.0296 0.8526
14 0.0008 0.1555 0.0256 -0.0279 -0.0417 -0.0024 0.9773
15 0.6372 -0.0728 -0.1199 0.0656 0.0492 -0,1133 0.5547



Table 4*2.20 Rotated maximum likelihood solution for the environment
correlation matrix - data B

0
Variable Factor loadings

1 2 3 4 5 6
1 0.3261 0.9241 -0.0401 0.0626 0.1829 0.0004
2 0.7821 -0.1417 0.6035 -0.0096 -0.0281 0.0049
3 0.8922 -0.0789 -0.4437 -0.0054 -0.0156 0.0094
4 0.9889 -0.1221 -0.0649 -0.0083 -0.0242 -0.0123
5 0.7225 0.2948 0.1692 -0.0261 0.0473 0.0470
6 0.4404 0.1557 -0.3045 -0.1131 0.0548 -0.0503
7 0.3478 0.1366 0.2429 -0.0375 0.2373 -0.0057
8 0.2876' -0.0828 0.1245 0.4584 0.1229 0.0790
9 0.2563 -0.0073 -0.0454 0.3396 -0.4342 0.0849

10 0.0953 -0.1599 -0.0216 0.7228 -0.1422 0.0319
11 0.0157 -0.0037 -0.1902 -0.0022 0.4062 -0.1804
12 0.1926 0.0143 -0.2530 0.0476 0.4095 0.0437
13 0.0223 0.0625 0.1269 -0.0229 0.3543 0.0296
14 0.0008 0.1626 -0.0071 -0.0292 0.0009 -0.0024
15 0.6372 -0.1041 -0.1023 0.0713 0.0057 -0.1133

Contribution 
of each factor

3.9300 1.0995 0.8925 0.8760 0.7785 0.6765

Proportionate 
variance 
accounted 
by each factor

0.2620 0.0733 0.0595 0.0584 0.0519 0.0451
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Factor III : number of branches
number of fruiting nodes per 20 cm'

number of seeds per capsule 
Factor IV : length of capsule ; ,

, circumference of capsule ;

Factor V : number of days to maturity
number of days to flowering

Factor VI : 1000 seed weight . .

The residual correlation matrix of order 11 after 
elimination of two factors is given in Table’ 4.2.21.
The elements of the matrix are considerably small.

The positive definite genotypic correlation . 
matrix of order nine was analyse.d using the Lawley*s 
iterative, scheme method and maximum likelihood solutions 
were successively extracted for three, four and five 
factor-models. Details of the goodness-of-fit tests 
for the three solutions are summarised as

I™tors°f Chi-square Degrees of Number ofiracuors___________ , freedom iterations
3 79*83 12 142
^ 68.19 6 25
5 26.09 1 40



Tables i-ii Residual matrix after removal of six factors

-0.0061 0

-0.0243 0.0228 0

0.1178 -0.0449 0.0082 0

0.0424 0.0029 -0.0404 0.0092 0

-0.0773 -0,0099 0.0027 0 .0338 0.0260 0
0.0434 0.1052 0.1378 0.0094 -0.0351 0.0166 0

-0.0309 -0.01 22 -0.0442 0.0025 -0 .0517 0.0241 0.0141 0
0.0576 -0 .0938 -0.0736 0.0707 0.0225 -0.0486 -0.0535 0.0915
0.0388 -0 .0587 -0.1372 0.0588 0.0035 -0.0384 -0.0392 0.0593
0.0645 -0.0077 -0,0446 0.0999 -0 .0755 0.0114 0.0245 -0.1250

environment correlation matrix - data B

0
-0.0073

0.02119

h 'roo
o
0 .0228  0
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All these statistics lead to the rejection of the adequacy 
of the respective factor models at the 0.001 probability ' 1 

level. The initial estimates of loadings and specific 1 
variances are presented in Table 4.2.22, The three- 
factor model had the‘estimated loadings and specific 
variances obtained respectively in the 141 st and 142nc* 
iterations are as shown in Tables 4.2,23 & 4.2.24. The 
rotated factors are given in Table 4.2.25. The variables 
influencing the factors are

Factor I : number of branches

Factor XI : number of capsules on main stem
yield of seeds per plant

Factor III : number of days to maturity
, height of the plant , , ,

The residual correlations after the extraction of five- 
factors are presented in Table 4.2.26.



Table h i ̂ Initial estimates of factor loadings and corresponding unique
variances for three .factors of the , genotypic correlation,
matrix - data B

Variable Factor.loadings
Code 1 ' . 2 ” / "  ’  .

—  umyue variance

1 0.71.86 . -0.0269 i 0.2375 0.4264
2 0.7977 -0.1936 -0.1870 0.2912
4 -0.3821 -0.6842 ; 0.4227, 0.2072
7 -0.1983 0.2902 0.7726 0.2796
8 -0.3568 0.5691 0.0824 0.5420
12 0.6582 0.3442 0.1012 ; 0.4380
13 0.4691, 0.3404 0.1774, 0.6326
14 . 0.0412 0.3948 0.3467 0 .7 2 2 2

15 0.3863, -0.5943, 0.4103 0.3292

ro
00



Table mu.-<5.3Maximum likelihood estimates of factor loadings and unique
variances in the 141^ iteration of genotypic correlation
matrix of order 9 - data B

Variable Factor loadings ,
Code — .......  — ,■ , ' " ■ ■    , Unique

1 2 3 variance

1 0.4,905 -0.1242 0.5165 . .0.4773
2 0.9372 ' -0.3280 -0.0078 ' 0.0140
4 -0.5997 -0.7234 0.3040 0.0246
7 -0.2485 0.1766 0.1364 0.8884
8 -0.1512 0.2851 -0.2550 0.8308

12 0;3892 0.4895 • 0.7540 0.0405
13 0.2778 . 0.1893 0.1378 0.8680
14 0.0150 0.0541 _ -0.1401 0.9772
15 0.2664 -0.5337 0.2023 0.6032



Variable Factor loadings
Code        ■ ■ ■   ........... . Unique

‘, 1 2 3 variance

Tableu ̂ M a x i m u m  likelihood estimates of. factor,loadings and unique
variances in the 142nd iteration of genotypic correlation
matrix of order 9 - data B

1 . 0*4906 -0.1236 0.5165 0.4773
2 0.9373 -0.3277 -0.0076 0*6139
4 —0.5994 -0.7234 6.3047 0^6245
7 -0.24Q5 0.1766 0.1363 0*8885
8 -0*1513 0.2848 —0.2552 €^8309

12 0*3891 0.4903 ' 6.7537 0.0402
13 0*2778 0.1895 0;1376 0*8680
14 0.0149 0.0540 -0.1402 0.9772
15 0.2666 -0*5334 0*2028 0*6033



Table 4.2.25 Rotated maximum likelihood estimates of factor
loadings of the genotypic correlation matrix
data B

Variable
Code

• Factor loadings
1 2 ■ 3 •

1 0.3600 -0.1236 0.5632
2 , 0.8712 -0.4278 0.2459
4 . -0.6700 -0.7234 0.0566
7 . -0.2816 0.1766 0.0327
8 -0.0441 0.2934 -0.2848

12 . , 0.1764 0.5903 0.6447
13 0.2055 0.1894 0.2321
14 0•0666 ■ 0.0540 -0.1242
15 0.1706 -0.5334 0.2882

Contribution of 
each factor

1.5256 1.5106 1.0310

Proportionate 
variance 
accounted by 
each factor 0.1695 0.1678 0.1146



Table m- 2. Residual matrix after removal of three factors j .aL&hfca. -7sen v - y-7-

0.0030 0
0.0038 -0 .0001 0
0.0896 -0 .0026 -0 .0026 0
0.0799 -0 .0004 -0 .0 0 15 0 .1632 0 -

0 .0028 -0 .0001 -0 .0002 -0 .0030 -0 .0045 0
-0 .1 15 9 -0 .0003 -0 .0005 0 .0 112 -0 .0222 0.0055 0

0 .1527 -0 .0013 -0 .0002 0 .115 9 0.0700- -0 .0 10 1 0.2437 0
-0 .13 5 6 0.0026 0.0028 0 .16 17 * 0 .0128 6.0035 0.1491 ' -0 .0292
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DISCUSSION

, Multivariate statistical methods are used
increasingly in plant breeding research to investigate 
the responses of plants of different genetic origin.
The relevance of these methods is in seeing the plants 
as a whole rather than individual ones as the plant 
breeder wishes. The plants exhibit dependence structure 
since the performance of a plant depends upon various 
morphological and quality traits. In addition, these 
methods have had their chief success in plant breeding 
where the problems clearly lie in the integration of 
numerous related traits ie, in defining the dependence 
structure of the variables considered. This dependence 
structure is resolved into their putative underlying 
causes using factor analytic methods.

One of the final outcome of factor analysis is 
the factor loading matrix. The factor loadings are the 
component correlations between the response variable and 
the factor. Once the factor loadings have been extracted 
then the problem is to make the best interpretation of 
the common factors. Varimax rotation helps to make the 
best interpretation of these common factors. Each factor 
in the factor loading matrix is dominated by the variables



with large loadings in absolute value and these variables 
are highly correlated with the respective factor*

Moreover, seed yield in sesame is a complex . 
character contributed by a number of Intercorrelated . 
traits. Information on the extent of genetic diversity 
will be of much use to a plant breeder in further breeding 
programmes. The strategy of plant breeding relies to a 
great extent upon a proper programme of hybridisation, 
which in turn seeks a choice of potential parents. Factor 
analytic techniques provide supplimentary information on 
the diversity with a lesser number of causative factors*
It is a well known fact that the heterosis obtained in

•  ̂ *

a cross between genetically diverse parents will be large.
‘ i

The causative sources of common variation v/lthin 
the species are analysed, using the principal factor and 
maximum-likelihood methods of factor analysis. The analysis 
of variance for each character shovr significant differences 
for all the characters except number of fruiting nodes per 
20 cm studied under the two environments - upland and rice 
fallows, indicating the need for further genetic analysis. 
Wilk's criterion also reveal highly significant differences 
among the varieties for the aggregate of all characters,
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Indicating that the varieties differ significantly from 
each other when all the characters are considered simul­
taneously. In the light of information provided by the 
eigen structure of the correlation matrices it is decidet 
to represent the data by a five-factor model. The choice 
of the number of common factors is motivated by the fact 
of taking as many factors as there are whose eigen values 
are greater than or- equal to one (Guttman, 1956; Afifi 
and Azen, 1972), Sometimes the experimenter may satis­
fied with a smaller number of factors. It is known, that 
the number of factors extracted, will depend upon the 
material taken for investigation (Cattell, I965 a). The 
number of common factors taken up for interpretation in 
factor analysis generally depends upon their aggregative 
explanatory power and theoretical approach of a factor 
analyst (Shetty, 1969). . •

The characters which are highly correlated with 
each factor are identified by varimax rotation. Each 
variable may reasonably be assigned to that factor with 
which it shows the closest linear relationship ie, that 
factor in which it has the highest loading.. Accordingly, 
the variables which are closely related are clustered 
together in that factor. Shetty (1969) used the same
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method, of clustering in each factor. The factors are 
named from the nature and magnitude of the variables 
which they represent. A factor is named from the common 
attribute of these variables regardless of the specific 
content (Harman, 1967).

In addition to the factor weights, the propor­
tionate variance accounted by each factor in terms of 
total original communality is important in the case of 
principal-factor solution. The general characteristic 
of the principal-factor solution is that the contribu­
tion of the factors to the total original communality of 
the variables decreases with each succeeding factor. The 
contributions of the factors and total communality is of 
importance in maximum likelihood solutions, while maxi­
mising variance of each factor is important in principal- 
factor solution (Harman, 1967)..

5*1 Fhenotyplc_dependence structure ■

The five factors identified for phenotypic corre­
lation matrix in uplands by PB1 method are as follows.
The first factor is highly correlated with number of . 
capsules per plant, number of capsules on main stem, 
number of capsules on branches and yield of seeds per



plant. These variables are related to the reproduction 
of the crop and hence named as reproductive factor* The 
number of branches forms the second factor v/hfch is the 
vegetative factor. Third factor is the height factor 
consists of height of the plant and height upto first 
capsule. The seed characters like circumference of cap­
sule, length of capsule and number of seeds per capsule 
forms the fourth factor which are related to the charac­
teristic of seeds and hence called as the seed factor. 
Number of days to maturity and number of days to flower­
ing constitute the fifth factor and this factor is identi­
fied as growth factor as the variables are related to the 
growth of the plant.

ML method leads to an eight factor model from the 
point of view of goodness of fit. The first five factors 
are same as that of above but with a change in the order 
of factors. The sixth and seventh factors are characte­
rised by 1000 seed weight and seed oil content which are 
called respectively as weight factor and quality factor 
as they are related to the quantity and quality of seed. 
The eighth factor is the growth factor which is correlated 
with number of days to flowering. The number of days to 
flowering and number of days to maturity are characters
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related to growth of the crop but in this case they are 
Identified as two different factors.

The comparison of the results shows that the first 
and third factor extracted by the two methods are same 
viz., reproductive factor and height factor. In the ML 
method seed character has more importance than vegetative 
character as in PF method. The additional factors identi­
fied by ML method are weight factor and quality factor.'

Reproductive factor is identified as the first 
factor in rice fallows by PF method. The second factor, 
is associated with height upto first capsule, number of 
days to maturity, number of days to flowering, height of 
the plant and number of branches. All these variables 
are related to the growth of the crop and hence come under 
the growth factor. The third, fourth and fifth factors 
are identified respectively as seed factor, weight factor 
and density factor.

The ML method does not give a good-fit to. the 
factor model even after fixing the upper limit to the 
number of factors. So the five factor model ie, the 
model with the minimum number of factors is considered 
for the comparison purpose. This model identified the
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same factors as given by PF method but with a change in 
the magnitude of variation explained by the last two 
factors. The fourth factor in the EF method is the fifth 
factor in ML method and vice versa.

Principal-factor solution with SKC's as estimates 
of the communalities produced five factors. They contri­
buted 92.44 percent and 109.62 percent to total original 
communality respectively in uplands and rice fallows. • 
The total communality produced by the maximum-likelihood 
solution represents 75.96 percent and 61.18 percent of 
the total variance of the variables respectively in 
uplands and rice fallows. The first factor amounts to 
twice the variability explained by the second factor

t t
except using PF solution in rice fallows. The varia­
bility explained by each factor decreases with the 
additive Inclusion- of factors in succession, which is 
also a property of the methods adopted.

Yield of seeds per plant, number of capsules per 
plant, number of capsules on branches are highly corre­
lated with the first factor in both the situations under 
the two different methods. The number of capsules per 
plant is found to have maximum loading with first factor 
but the estimate of communality was larger in magnitude



than, the respective loading. Seed yield has also got 
high loading with first factor but with a low communality. 
Sawanth et al. (1982) has reported that the characters 
in a given factor with which high factor loading and , 
low communality is amenable to change very easily due 
to selection as compared to one with high factor loading

V fc

and high communality. So seed yield may be considered 
as the important character in factor one,

, The character 'height upto first capsule' is more 
amenable to change in the height factor than height of 
the plant. The three seed characteristic variables viz., 
the circumference of capsule, length of capsule and number 
seeds per capsule are of equal importance while using 
seed factor. The number Of days to maturity has more 
importance in growth factor in uplands and number of days 
to flowering and number of days to maturity have equal 
importance in rice fallows. Number of fruiting nodes 
per 20 cm has importance while selecting density factor .

i i ' i ~

in rice fallows.

5.2 Environment dependence structure ■'

The environment correlation matrix in uplands is 
explained by five factors using PF method. The first,



second and third factors are respectively as reproductive,
height and seed factors. The fourth factor is dominated
by number of days to maturity which is a growth factor.
The number of fruiting nodes per 20 cm and number' of
branches constitute the fifth factor which is termed as
density factor as the characters are related to the density 
of the crop. .

Initiating from a five factor model an eight 
factor solution is found to fit the matrix by ML method.
The first three factors are-similar to that obtained by 
PF method. Growth factor is also identified but its 
order is changed. The density factor obtained in the FF- 
method is split Into two separate factors namely vegeta­
tive factor consisting of number of branches and density 
factor dominated with number of fruiting nodes per 20 cm 
only. The reproductive fabtor in W  method is identified 
as two factors in ML method. The number of capsules on 
branches forms a separate factor in the eight factor model. 
The only additional factor identified by ML method is the 
quality factor which is concerned with the oil content of 
the seed., .

The five-factor model fitted to rice fallows by4 _ '
EF method is in agreement with that of uplands. The last
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"two factors are found to interchange their order of 
occurrence. ML method helps to set a satisfactory . 
solution to six-factor model for the environment corre­
lation matrix in rice fallovjs. The first five factors 
are same as that obtained by PF analysis, the magnitude 
of variation being different* The additional factor r 
identified is the weight factor which is dominated by 
1000 seed weight. The growth factor identified in rice 
fallows includes number of days to flowering and number 
of days to maturity while in uplands it consists of only 
number of days to maturity.

The PF analysis is found to give a better compa­
rison of the factors identified for the environment . 
correlation matrix in two situations. It reveals that 
five factors vis., reproductive, height, seed, growth 
and density factors are the underlying causes of diver­
sity in sesame plants. But ML method has got its own 
properties. One useful advantage of ML method used in „ 
the present study as compared to PF analysis is that 
estimates are scale invariant. Secondly an adequate 
number of factors for better explanation of original 
data is obtained. ML analysis resulted in the identifi­
cation of a quality factor in uplands and weight factor
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in rice Tallows in addition to the five factors identi­
fied by PF method for the adequate representation of 
dependence structure of original data.

The five-factor model obtained.by the PF analysis 
contributed 103.44 percent and 102.08 percent to total 
original communality respectively in uplands and rice 
fallows. The total communality produced by the ML solu­
tion represents 68.48 percent and 55 percent of total
variance of the variables respectively in uplands and 
rice fallows.

The characters which are more amenable to change 
due to selection in uplands are yield of seeds per plant 
in reproductive factor, height upto first capsule in
height factor, circumference of capsule in seed factor,

' * ’ 1 - * 1
number of days to maturity in growth factor and number
of fruiting nodes per 20 cm in density factor. But in
rice fallows, the characters identified are number of
capsules on branches and yield of seeds per. plant in
reproductive factor, height upto first capsule in height
factor, circumference of capsule and number of. seeds per
capsule in seed factor, number of fruiting nodes per. .
20 cm in density factor, number of days to maturity in 
growth factor. .
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„ . High communality obtained in almost all cases,
indicates the high reliability of the results that, are 
obtained (Shetty, 1969)* Similar results are obtained 
in the present study also. Environment correlation 
matrices have given same factor pattern in different 
situations, under study, while phenotypic and genotypic 
correlation matrices fails to give same factor pattern 
in two environments. So, the environment correlation 
matrix is found to be the appropriate estimate of popu­
lation correlation matrix and can be used for factor 
analytic studies. Similar results are reported by Murty 
and Arunachalam (1967) and Muralidharan (1986).

5.3 Genotypic dependence structure

In the present study, during both rabi and summer, 
genotypic correlations are found slightly higher than the 
respective phenotypic correlation coefficients. This 
indicates the,masking effect of the environment to the 
total expression of the genotypes. This may be-due to 
the high experimental error detected in the conduct of 
the experiment. These results are in accordance with the 
reports of Dabral (1967); Sanjeeviah and Joshi (1974); 
Thangavelu and. Ra jasekharan (1983) and Sverup John (1985).
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All correlation matrices with unities in the ■ 
principal diagonal are Gramian matrices - matrix with 
Gramian properties (Harman, 1967)* Here the genotypic 
correlation matrix of order 15 is found to be in inde­
finite form under both the situations. This may be due 
to the fact that they are not estimated by product-moiaent 
methods. Kendall (19B3) gave a warning against the' 
attempts at component or factor analysis of matrices 
which are not obtained by product-moment methods. The 
correlation matrices estimated by other methods may not 
necessarily positive definite, and in certain cases some 
of the latent roots may turn out to be negative. Trial 
and error method is used to make the genotypic correla­
tion matrix in positive definite form. The variables 
with high genotypic correlation coefficients are eliminated 
one by one and the resulting matrix is tested for positive 
definiteness. The process is repeated till thb matrix 
reached In positive definite form. Genotypic correlation 
matrices of order 10 and 9 are thus obtained respectively 
in uplands and rice fallows. Similar results were reported 
for the genotypic correlation matrices under different 
environments in a study on genetic divergence of groundnut 
varieties (Muralidharan, 1986),

' i
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Three factors are identified with PF analysis.
The first factor consist of.number of fruiting nodes per 
20 cm, length of capsule and. circumference of capsule., 
This is a combination of seed and density characters.
The second factor is, associated with height and .vegeta­
tive character and third, factor is concerned with growth 
and.quality. ■ ■

First factor is same in both ML and EF methods. 
But the second factor in ML is‘ bklended with height and 
yield. The number of branches and oil content form the 
third factor. '

In the rice fallows, first factor consisted of 
number of days to maturity and height of the plant.
These characters are associated with growth factor,. The 
number of branches forms the second factor and third 
factor is blended with number of capsules on main stem 
and yield of seeds per plant. This Is a reproductive 
factor. ML analysis also Identified the same factors , . 
with a change In the contribution of variance. ,

In both situations the ML analysis failed to give 
a satisfactory fit to the reduced genotypic correlation
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matrix. Another fact to be noted is that the same pattern 
of factors is obtained even after varimax rotation. Since 
the genotypic correlation .matrices in two cases are of 
different order and the pattern of factor solution is 
also different, a comparative study is hot worth.' Geno­
typic correlation matrices are not suitable for this type 
of analysis as they do not possess the properties of 
Wishart distribution. In the present study the 100 varie­
ties were selected from 252 varieties based on the general 
performance of plants. This may be one reason for getting 
genotypic correlations highly skewed. Murty and Arunachalam 
(1967) has reported that directional selection by man 
resulted in highly skewed genetic correlations. He also 
pointed out that genotypic variance-covariance matrix need 
not necessarily be an estimate of the parameter of a multi­
variate normal distribution.
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SUMMARY

Multivariate statistical techniques are -widely- 
used in plant breeding research to estimate the degree 
of divergence in morphological and quality traits as 
they are intercorrelated to varying degrees. Factor 
analysis is considered as the queen of analytic methods 
due to its power and elegance in studies of this type. 
Principal factor method and maximum likelihood method 
are two ways to extracting the factors of divergence* 
of which maximum likelihood method is considered as the 
best one as it satisfies certain properties of a best 
estimator. Also it allows for the determination of an 
adequate number of stable factors from the point of view 
of goodness of fit of the factor-model.

The available data on various morphological 
characters and oil content in sesame with respect to 
hundred varieties grown in upland and rice fallow in 
1981 “*82 were utilized for the study. The MAN OVA revealed 
significant differences among the varieties for aggregate 
effect of all the above characters indicating considerable 
variability among the experimental material. The various 
factor-models were tried for the phenotypic j, environment 
and genotypic correlation matrices as factor analysis alms
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to explain the intercorrelations among the numerous varia­
bles in terms of simpler relations.

Principal factor analysis allows for the deter­
mination of a m-factor pattern where m refers to the 
number of principal components whose eigen values are 
greater than or equal to one (Harman, 1967). As such a 
five-factor model was fitted to the phenotypic and environ­
ment correlation matrices under both situations. The five 
factors identified for phenotypic correlation matrix in 
uplands were reproductive, vegetative, height, seed and 
growth factors. In rice fallows they are reproductive, 
growth, seed, weight and density factors. The maximum 
likelihood method resulted in the fitting of an eight- 
factor model in uplands and fails to give an adequate 
factor-model in the rice fallows. The additional factors 
identified in uplands were weight and quality factors.
In both situations the first factor Identified was repro­
ductive factor. The factor pattern identified in the 
two environments differ slightly. . -

The analysis of environment correlation matrix by 
principal factor method Identified five factors viz., 
reproductive, height, seed, density and growth factors 
for the parsimonious summarisation of the data under the
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two environments. The maximum likelihood analysis revealed 
that an additional quality factor was working in uplands 
and a weight factor in rice fallows. It shows an adequate 
fit of an eight-factor model in uplands and a six-factor 
model in rice fallows.

The characters which were more amenable to change 
due to selection in uplands were yield of seeds per plant 
in reproductive factor, height upto first' capsule In 
height factor, circumference of capsule In seed factor, 
number of days to maturity In growth factor and number of 
fruiting nodes per 20 cm in density factor. In rice fallows 
the same characters were Identified in height, growth and 
density factors. The characters number of capsules on 
branches and yield of seeds per plant were Identified 
in reproductive factor, circumference of capsule and 
number of seeds per capsule In seed factor.

The genotypic correlation matrices under the two 
environments were found not suitable for factor analytic 
studies as It lacks properties of this type of analysis.
The environment correlation matrix was found to be appro­
priate for factor analytic studies as It gives stable 
factor pattern under two environments.
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Appendix j Mean values of various characters (Environment 1)

Variety
' X1 X2 X3 X4 X5 X6 . X7

1 82 .6 2 2.85 40.08 7.84 6.65 14.50 9.55
2 . 72.40 4 2 .7P 37.68. -9.07 3,25 12.30 9.25
3 71*39 2.15 41.71 5.31 1.70 1 7.00 9.45
4 64.69 1.75 37.17 8.65 2.60 11.25 9.15
5 80.83 3.45 ^3.35 7.76 12 . 1 0 20.35 9.30
6 , 85.20 . 2,80 43.49 7.15 ' 5.50 ’ 12.65 iO.30
7 77.75 2.45 43.61 7.85 5.05 12.9o 9.75
8 77.01 2.45 38.62 7.47 4.05 11.50 9.30.
9 68.45 1.85 34.85 15.53 3.4o 18*9o 10.25

1 0 « 59.87 2.25 36.91 8.16. 4,9o 13.05 8.65
1 1 59.41 2.3o 36.28 8.93 2,65 1 1 . 6 0 9.85
1 2 76.53 2 .2 o ’ 39.38 10 .6 6 4.85 15.5o 9.60
13 75.22 ■ 2.30. 43.01 ■ 8.35 4.45 1 2 .8o 10.45
14 73.77 2;5o‘ ' 38.27 11.59 4,70 * 16.20 10.25
15 74.31 1.25 34.05 13.41 1.85 15.25 10.50
16 87.78 1.55 40.99 16.15 4.2 b 20.35 10.80
17 68.48 1.95 .36.61 7.44 1.75 9.2 o 9.75
1 8 ; 96.05 1 1 ,2 o 35.02 '15.06 ‘ 6 .10 ‘ 21.15 9.45



1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

Characters

X8 X9 X10 X11 *12 X13 X14 *15

2.25 2,5* .60 43.43 82.5 2.76 . 46.22 2,18
2.1& 2.5o 58 40.81 82.0 2.86 44.15 1.24
2.35 2.45 60 49.07 80.5 3.04 44.02 1.01
2.45 2,4o 60 41,55 80.5 2.57 44.19 1.34
2.25 2.5o 54 45.86 81 -o 2.89 44.30 2.53
2,55 2.65 56 45.28 86.5 2.74 46,68 1.74
2.30 2.25 62 42.28 83.5 2.90 47.14 1.92
2.4o 2.45 67 44.96 82.5 3.05 51.49 1.72
1.95 1.80 40 42.72 79.5 2.98 48.15 2.14
2.3o 2.6o 66 48.67 84.5 3.22 49.11 1.79
2.55 2.4o 72 38.76 84.5 3.03 42.57 1.98
2.35 2,5o 50 43.10 81 *o 2.53 44.30 2.35
2.4o 2.95 84 47.56 83.5 2.76 48.91 3.17
2.25 2.1o 46 40.58 78-0 2.80 44.13 1.84
2.7o 2.60 60 36.45 79.5 2.49 43.60 1.71
2.05 2.40 54 35.42 77-o 3.82 45.83 2.69
2.4o 2.10 50 37.07 82.0 2.98 44.29 1.12
2.65 2.75 64 38.94 82.o 2.63 47.13 3.61



1)1

Characters
I'iety

, X1 X2 *3 V X5 X6 V
19 83.83 1.6o 44.45, 17.13 3.10, 20.20,. ,.10.95;
20 59.15 2.2o 35.31. 7.15 1.2& 8.35 , 9.304
21 71.36 2.05 33.86, . 16 .83 ■ 3.03 19.4o 10.35
22 93.69 2.05 41.72 16.3.1 1.2$ 28.3o . 10.35
23 72.57 2.5o 29.84 11.90 3.6o 15.50 8.5o
24 83.67 2.7o 41.05 11.54 5.45 17-od . 1 0 . 0 3
25 73.22 1.85 33.03 10.65 6.85 17.50 8. Id
26 101*24 1.7o 42.52 17.19 5.9£> 23.10 , 10.33
27 62.13 1.85 35.70 10,24 2.15 12.4o 9.35
28 74.65 2.65 31.56 13.16 10.70 18.85, ,10.30
29 59.04 3.1o 32.68 8.02 5.7o 13.7c 9.33
30 79.56 2.95 39.49 11.00 9.75 20.75 9.95
31 71.33 2.5o 34.12 10.99 5.85 . 16.85 9*25
32 71.56 3.30 35.53 10.67 6 -op 16.65 10.20
33 76.50 0i3o 37.91 12.36 2.3Q 14.9o IO.60
34 71.00 1*45 29.86 11.05 4.6o 15.65 8.50
35 101.59 1.9° 40.74 15.51 10.30 25.30, 14.95
36 59.61 0.25 29.38 9.20 0.70 9.90 9.55



IV

Variety

X8 X9 X10 X11 : X12 X13 iX14 *15

19 2.35 2.35 62 38.91 ‘ 83 -0 •' 2.58 45.70 . 2.93
. 20 2.25 2.20 48 47:46 86 .o 2.66 •45.51 , .1.14
21 2.05 2.70 56 43.74 82.5 ■ 2.73 45.98 ;,2,22
22 2.5° 3.1^ 70 43.27 • 82.5 ■ 2.71 * 46.86 , 3.88
23 2.25 3.10 91 41.63 81 *o - 2.85 * 43.38 ■ 2.53
24 2.10 2.45 48 40.55 79.5 * 2.29 46.24 : . 2.23
25 2,40 2,3ft 52 34.07 ' 75‘.o 3.04 . 41.76 •,1.85
.26 2.45 2.5o 60 36.89 * 8l*o * 2.82 * 45.74 ' . 1.54
27 ' 2 -oo 2.25 60 43.79 88.o 2.80 45.85 , 1.66
28 2.15 2.40 54 44.37 ; 86-o 2.42 ■ 43.99 ;, ,2.92
29 2 *oo 2.1 o 50 45.93 ■ 81-0 - 2.43 * 44.31 !; 2.04
30 ‘2.25 2.25 52 46.08 ' 84.5 2.33 45.17 . 3.14
31 1.95 2.35 50 49.55 82.0 2.34 44.12 , 3.66
32 '2.25 2.25 67 44.28 84 .0 2.31 . 48.40 ;. 2.62
33 '2.45 3.05 84 38.64 79.5 2.79 46.67 . 2.15
34 ‘2.65 '2.4o 50 38.97 85 -o * 3.18 * 47.19 . 1.52
35 2.6o , 2.75 70 37.84 83.5 2.94 50.20! , 2.91
36 ' 2.4o 2.4o 66 44.45 87.5 • 2.56 49.24 , 1.33



Variety Characters

X1 X2 X3 X4 *5 *6 x?

37 73.51 2,6 40.56 10 .9 0 5.75 . .16 • 60 9*7°
38 80.62 1.85 41.57 1 2 . 9 2 1.70 14.6o , 9.8°
39 93.76 2.75 48.49 12.03 7.1° 1 0 . 1 0
40 8B.93 i.7o 42.20 15.75 2.85 l8.6o .9 .,80
41 72.19 d.7o 34.45 10.14 0.20 10.35 9 . GO
42 77V16 i.7o 43.45 11.42 5.50 16.9c 9.5o
43 79.10 1.85 43.98 1 3 . 2 1 2,35 . 15.55 9.3p
44 109*30 1.9o 44".19 15.45 10,85 26,6c ; 9.80
45 69.75 1'.9o 37.22 12.36 1.4o 13.75 9.35
46 81.06 0.35 32.51 17.10 0.05 17.15 10.30
47 66.16 3.25 45.68 . 3.00 2.60 , , 5.6o 7.65
48 76.88 2.20 38.99 11.12 6.75 17.85 ■ 9.80
49 79.46 1.75 34.52 12.63 3.6o 16,20 Q*95
50 80.13 3.05 45.73 7*81 7.5o 15.30 8.90
51 75.12 2.20 41,7.8 9.97 6.25 16.25 ■ 9.10
52 69*05 2.50 46.78 , 6.60 2.8c 9.40 830
53 75.69 3 J 5 45.46 7.79 5.60 13.40 9.95
5.4 74.44 , 2.65 39.27 7.83 4.35 12.2o 9.1o



Ml

Characters

X8 X9 X10 X11 ^ 2 x13 , *14. X15

37 2 -DO 2.25 50 46.11 84.5 2.81 , 42.49 ■ 2.02
38 2.3° 3 • oo 68 47.03 80.5 2,46 . 43.14 . : 2.98
39 1.95 2.2D 46 47.99 92-o , 2.40 • . 42.70 , 1.80
40 2.'5o 3.05 92 44.95 84.5 . 2.52 , 46.46 - 2.80
41 2.45 3.50 108 • 44*14 81.0 3.49 . 44.09 ■ 1.13 =
42 2.5o 2.35 49.5 42.73, 83-o .3.12 45.37 ■ 2.88'
43 2 *0o 2.4o 48 38.39, 80.5 2.68 44.38 1.65
44 2,5o 2.45 74 37.41 87o 2,70 , 48.25 3.25
45 2.30 2.5o 48 41.43 s 78.5 3.04 , 44.87 ■ 1.83
46 2.75 2,5o 76 39.40 85.5 3.16 : 47.30 . 2.22-
47 2 - oo 2.35 42 50.50 79.5 4.12 45.21 . 0.75 •
48 2.15 2.5o 52 37.2? 79.5 .3.75 • 43.55 >' 2.63
49 2.95 2.80 72 41.09. 84-0 3.00 . 47.42 .. 2.42
50 2.1o 2.2o 50 47.74 81 -o 2.81 45.13 * 1.39
51 2.45 2.50 64 41.47 t 79.5 2,81 \ 41.6 . , 3.79
52 2.1o 2,2o 50 45.85 82.5 3.30 . 42.48 - 1.04
53 2.3o 2.75 52 45.56 20.5 3.23 , 44.95 3.05
54 2.35 2.3o 56 40.24 CD Ul o 2.71 .,44.06 . 1.58



55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

v f i

Characters .......... ,

*1 x2 ^  X4 X5 X6 3

71.13 3.55 , 42.50 9.80 8.25 . 18.05 ■ 9.15
81.35 2.20 44.89 10.49 3.25 13.75 9.25
68.95 2.85 35.57 1 7.38 2.90 '10.3° 9.95
90.61 2.30 53.67 6.35 4.75 11.10- 9.40
88,35 0.75 34.70 14.86 2.45 17.30 11.05
75.97 2.4e 47.41 7.09 5.15 12,25 9.90
88.00 3.45 57.00 5.75 5.8© 11.25 8.7©
81.03 2.9o 52.00 4.18 3.45 ; 7.65 9.2o
78.82 2.85 42.43 7.87 6.25 14.15 10.55
82.77 3.05 44.83 6.31 ' 7.45 13.8© 8.7o
89.16 '3 -oci 52.82 '10.88 5.95 16.85' 10.45
91.88 2.15 35.36 12.6i6 5.05 17.75 1 9.05
122.58 2.3o 47.93 19.01 12.85 31.90 9.15
75.10 3-do 4T.44 9.33 8.25 I7 .6O 9.90
98.53 2.85 50.17 10.99 4.8o 15.75 10.1©
73.75 2.3o 48.08 8.27 3.05 11.35 9.50
89.76 2.15 50.81 8.17' 5.35 13.55 10.15

■ 64.08 3.30 40.12 4.23 1.65 5.90 10.25



V/N

Variety Characters

X8 X9 X10 X11 X12 ^ 3 ^ 4 X15

55 2.4o 2.10 54 46.30 79.5 2.55 40*48 3.41
56 2.85 2.6̂ > 70 44.27 87.5 2.78 46.11 1.86
57 1.9o 2.15 46 42.93 79-0 2.92 47.22, 1

0.78
58 2.45 2.60 58 55.95 86,5 2.69 44.82 1.06
59 2.15 2.55 64 39.61 81.5 2.76 44.13 2.36
60 2.5o 2.50 52 45.96 82-^ 3.11 40.84 0.81
61 1.85 2.1,0 50 47.42 85-0 2.99 45.83 1.61
62 2 -oo 2.15 52 48 .'35 86-p 3.13 46.56 1.13
63 2,4o 2;4o 50 46*56 81-o 2.73 46.88 2^29
64 2.45 2:45 56 43.33 82.0 3.23

i  f
46.80 2,25

65 2.15 2;35 60 51.05 86 ,-o 3*22 42.51 2^64
66 2-oo 2.5o 56 39.32 85.5 2.74 42.05 1.85
67 2,85 2!.4o 62 36.42 84,-o 2.54 46.70 5.74
68 2.2o 2’.5o 54 41.30 82-d 2.77 46.25 1.42
69 2.55 2.35 66 42,21 83 -o 2.51 47.71 2.29
70 1.95 2.45 42 49.26 33.. 0 3.07 46.07

i 1
0*91

71 2,3o 2.55 60 49.67 86 .0 2.78 45 .,66 1.67
72 2.25 2.25 52 49.00 81.5 ,3.22 ,49.59 1.21



73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90

i
IX

Characters

X1 x2 x3 V V X6 X?

78.07 3.35 53.89 4.09 3.15 7.25 9.45
73.17 3.15 44.40 7.33 4.4o 11.75 8.36

87.67 3.36 38.48 7.34 5.95 1 2 ,8o 9.55
74.48 2,85 39.82 7.33 4.00 11.35 9.75
81.38 2,1o 50.95 9.28 3.5® 12 .8 0 1 0 'DO
78.75 2.85 43.75 12.05. 7.15 1 9 .2o 10 .6 0
84.68 0,6o 30.78 14.51 3.10 16.6o 9.30
81.83 2.5o 48.49 9.59 8.85 18.45 9.85

110.39 2.25 46.03 1 7 . 6 6 13.66 31,35 9,16
85.02 3.25 54.23 8,7? 8.95 18-do 9.5o
80.21 2.2o 47.76 9.72 4 -DO 13.70 9.35
73,41 3.75 38.32 7.21 5.65 12.85 9.25
101.35 2.3o 57.45 9.68 3.95 13.6o 10.05
74.37 2.46 41.64 8.31 5.20 13.5o 9.20
77.97 1.85 47.22 4.61 1.25 5,85 9,66
76.33 2 .10' 44,07 3,73 1.65 10.35 9.90
94.02 2.46 55.40 7.44 6.80 14.20 9.95
95,64 3.1o 44,51 9.02 9.1o 18 .10 1 0 . 1 0



X

Variety Characters

X8 X9 X10 X11 ^ 2 X13 X14 X15
, !

73 2.5o 2.4'o 52 52.06 84.5 2.65 43.06 0.89
74 1.95 2.25 46 43.14 79.5 2.59 46.78 2.49
75 2.5o 2.55 54 44.46 79’.o 3.41 46.14 1.74
76 2.16 2.2b 52 44.12 80'0 3.30 46.52 1.28
77 2.25 2.5b , 50 47.13 82.o 3.04 44.83 1.44
78 2.45 2.35 58 49.25 86.5 2,41 45.23 1.94
79 2.5o 2.5o 62 - 36.96 84-o 2.93 44.24 2.57
80 2.4 b 2.8 b 58 45.62 81 ;5 3.11 44.35 2.35
81 2.25 2.45 62 40.10 79-d 2.40 46.85 4.45
82 2.35 2.55 58 53.59 85-d 2.66 44.08 2.09
83 2.35 2.35 54 47.89 87-o 2.92 45.15 0.96
84 2 -,oo 2.35 56 43.87 84.o 2.82 46.32 2.05
85 2.65 2.55 54 42.34 85.o 2.98 46.68 1.94
86 2.5b 2.35 62 46.61 82.5 2.68 46.81 1.75
87 2.45 2.95 102 49.46 84.5 2.43 44.37 1.44
88 2,3b 3 ■ o 'o 82 44.93 79 'O 2.74 43.72 1.09
89 2.55 2.55 63 48.80 85.5 3.36 46.23 2.07
90 2.8o 2.6o 70 40.65 84 * o 2.44 . 45.74 2.59



X I

Variety Characters

• h X3 ■ X5 ■ X6 ■■*7

91 118.94 2,4o 49.06 is.58 18,20 ' 36,80 '9.20
92 58.17 2.10 32.02 9.46 1,05 10.50 ' £5.65
93 85.20 2.80 46.34 10.15 9.15 19.30 10.30
94 121.70 1.65 54.95 20.04 7.95 23-00 10,55
95 60.75 2 ' DO 37.23 8.26 2.3o 10.55 '9.70
96 92.87 1.95 42.92 12.24 7,45 19.70 9.35
97 78.71 2.85 46.00 5.09 ' '3.05 8.15 f 9.45
98 74.63 2.7o 39.30 8*66 ‘7.35 , 16-00 9.35
99 87.47 '2.3o 49.63 20.82 7.15 27.95 10,55

100 105,69 ’ 2.65 39.69 15.00 8.7o 25.7 8.55



Variety



Appendix n Between dispersion matrix of data A

127.186 -0.5^3 29.353

0.405 1.666

35.010

16.665 18.348 35.868

-1 .410 0.626 -0.798

-7.28 3.271 -3.406

9.927 1.826 11.767

5.721 7.723

19'. 685

1.055 1.378 0.676

-0.115 -0.059 -0.072

-0.225 0.064 -0.100

0.491 0.268 0.199
-0.036 0.160 -0.031

0.388 0.445 0.168

0.130 0.030 0.018

0.034 0.015

0.046

12.174 -12.473 3.143

-3.643 1.478 -0.109

-15.103 13.081 3.478

8.764 -9.664 .-0.586

-6.439 -1.378 0.048

3.035 -10.972 -0.730

1.443 -0.562 0.128

0.932 -0.292 -0.007

2.048 -0.04 -0.067

95.050 -3.530 1.911

15.971 3.937

4.267

-0.452 4.716 4.322

-0.005 -0.042 -0.061

0.169 0.711 -0.713

-°.335 (i 0.613 1 .27

-0.224 0.522 0.876

-0.544 1 .2 2 2.182

-0.041 0.453 0 .0 11

-0.005 0 .1 1 1 0.066

-0.001 -0.001 0.042

-0.638 1 .914 1.169

-0.008 -0.533 -1.328

-0.221 0.82 -0.248

0.106 0.029 -O.O67

4.206 0.199

0.694



Appendix III Within dispersion matrix of data A

94.286 0.722 35.347 19.639 15.714 34.316 3 .248 0.654

0.169 0.632 0.1 89 0.355 0 .565 0 .026 0.016

24.044 5,628 5.514 11.238 1 .462 0,211

8.992 4.584 13.219 1 .179 0.113

8.566 12.445 

25.130

0.585  

1 .841 

1 1 1 1 5

0.121

0.223

-0 .016

0.078

0 .108 7.001 -7.665 0.652 -0.149 -0.101 4 .03 6

0.012 0 .349 -0.255 0.097 -0.003 -0.003 • 0 .057

-0.036 3.201 -3.373 0 .126 -0.112 -0.046 1 .316

0.016 0.813 -0.797 -0.182 -0.011, -0 .035 1 .508

0 .039 1 .988 -1.422 -0.853 -0 .0 29 -0.012 1 .559

0.068 2 .228 -2.223 -0.991 -0 .040 -0.053 2.933

0.004 -1 .118 -0.123 0.103 0 .0 1 -0 .007 0 .214

0 .027 0.806 -0.155 0 .1 3 2 0.001 0.001 0 .0 2 9

0.047 0 .739 -0 .038 0.056 0 .005 0.002 0 .014

112.258 -1.445 5.958 0 .225 -0 .099 0 .634

6.517 0.737 -0 .008 - 0 . -0.319

7 .127 0 .059

0 .013

-0.024

0 .002

0 .01 6

0 .00 8

-0.001

-0 .002

0 .435



XV

'Rpp<±.ndi'KiI/ Mean values of various characters (Environment 2)

Characters
Variety-’, X,, X2 '

1 92.22 2.57 53.3
2 86.82 3.40 33.9
3 85.24 3.06 48.6
4 83.30 3.62 50.1
5 84.93 3.40 48.2
6 80.37 2.6 47.3
7 85.85 2.63 52.3
8 90.10 3.26 55.5
9 71.41 2.19 26.7

1 0  .
78.78 2.79 33

11 60.42 1.78 30.7
12 66.81 1.81 42.6
13 77.03 3.47 49
14 74.8 1.93 30.7
15 85.52 1;21 34.5
16 74.46 1.91 27.9
17 70.04 3.24 30.9
18 80.00 1.37 30.5

13.6
\

13.7 27.3 9.8
17.9 21 38.9 8.2
11.7. 12.4 24.1 8.6
12.1 14.6 26.7 8.4
9.5 13.8 23.3 7.8
8.3 8.7 17 9.1

12.8 16.4 29.2 9.8
9.7 9.9 19.6 9.3

22.5 8 30.5 8.6
12.4 13.7 26.1 8
9.9 4.5 14.4 9.9
7.5 5.9 13.4 8.8
7.9 6.5 14.4 8.9

16.2 6.9 23.1 8.5
21 2.2 23.2 9.7
13.3 8.1 21.4 7.8
16 15.5 31.5 9.7
15.2 8.1 22.8 10.6



Characters
Variety v, X8 X9 X10 X11 X12 X13 X14

1 2.45 2.46 67-2 41.1 84.4 3.16 47.31
2 2.37 2.28 43.8 40.1 80.8 2.98 44.41 H' 2-7-
3 ■ 2.2o 2.46 46.9 39.5 80.3 3.92 44.00 ■3-n
4 2.52 2.47 56.4 00• 81.5 3.01 44.51 3- 07

5 2.49 2.42 56 40.4 77.9 3.33 44.81 2-9 7
6 2.55 2.6o 54.4 43.8 84.7 3.50 47.61 2-33
7 2.44 2.41 54.6 40.1 82.7 3.36 48.26
8 2.46 2.47 53.2 38.3 84.5 3.42 51.61 3.'04

9 2.46 2.48 50.6 33.1 77.2 2.95 48.61
10 . 2.49 . 2.39 ,58.8 40.5 81.3 • 3.40 49.86 3-6“1
11 . 2.26 2.45 .49.8 34.6 78.6 3.21 43.25

. 12 2.79 2.46 .59.8 40.9 -77.5 3.33 45.55 2-0|

. 13 2.3o . 3.39 .93.2 45.3 38.5 3.59 52.0
, 14 2.37 , 2.16 51.2 38.2 84.3 3.1o 44.45 2--<5 8
. 15 2.55 2.55 49.8 38.4 82.6 2.99 43.85 1-6,8

16 2.44 2.55 52.6 36.7 75 0 - 3.22 46.05 3' 10
17 2.79 2.4o 62 o 37.5 76.2 3.03 45.00
18 3 • oo . 2.6o 83.6 38.3 79.8 ■ 3.29 47.30 3'9S-



yu/i

Variety.
Characters

X1 X2 X3 X4 X5 X6 *7

19 7 0o 40 2.00 31.7 13.4 '6.8 2 0.2 8.7
20 85.37 0.60 25.8 28.1 1 . 6 29.7 8.6

21 78.37 2.42 44.5 15.5 7.2 22.7 8.7
22 82.07 0.85 36.9 15.9 4.2 20.1 9.5
23 72.09 2.71 29.5 . 11.4 3.6 15 7 -0

. 24 69.65 2.37 28.8 14.3 5.4 19.7 8.6

25 81.98 2.44 2 7 . 2 17.7 23.2 40.9 1 0 . 6

26 85.51 2.05 32.4 20.3 20.1 40.4 ' 10.7
27 68.60' 2.08 29.9 1 5 . 0 8.5 23.5 8.4
28 74.05 3.31 38.4 1 0 . 6 1 1 . 2 2 1 . 8 7.4
29 80.56 3.24 40.2 14.2 14.5 28.7 9 • 0
30 82.43 4.03 36.75 13.7 2 2 .8 36.5 8.2

31 68.48 2.03 36.7 1 1 .5 7-0 ' 18.5 8.8

32 75.88' 3.4(5 35.1 1 0 . 8 1 1 • 0 2 1 . 8 8 . 0

33 76.05 1.72 28.7 12.4’ 3.7 15.8 9.9
34 84.16 1.98 46 . 9 17.2 8.8 26-0 9.8
35 82.49‘ 2.15 37.1 13.6 1 8 . 6 32.2 1 0 . 7

36 65.6 2' 1.45 3 2 . 1 9.4 2 . 2 1 1 . 6 10.4



19
20

21

22

23
24
25
26
27
28
29
30
31
32
33
34
35
36

x u i i  i

Characters
Xg Xg X,jQ X1 1  X1 2  X13 X1 4

2.34 2.28 49.2 36 ■
2.14 2.5 55.8 37.4
2.37 2.36 47.7 40.8
2.64 2.53 54.2 36.8
2.02 3.22 108.3 38.5
2.24 2.24 46.2 39.5
2.57 2.49 60.2 37.9
2.52 2.54 57.6i 38.2
2.16 2.28 47.2 37.4
2.18 2.16 49.4 40.1
2.46 2.4 56.8 40-0
2.36 2.32 52.4 41.2
2.04 2.29 47.6 41.3
2.35 2.41 53.4 41.1
2.59 3.29 105.4 37.1
2.05 2.42 44.4 39.6
2.59 2.75 66.0 41.4
2.53 3.03 77.8 41.8

78-0 2.85 46.15 4 4

81.8 3.32 46.60
80,4 3.25 46.05 ■3 ■'3S

86.4 3.17 47.65
76.7 3.37 47.60 2.'42.
78.2 2.96 47.10
87.8 3.1° 42.85
78.5 3.55 46.31 3-04

75.3 3.05 46.11
79.3 3.06 44.51 2. ■ £>£>

82.5 3.06 44.60 4-IS
81.9 3.03

‘j
48.26

83.9 3.05 44.60
85.9 2.84 48.85
79-0 3.1° 49.65 0.-3O
82.2 3.30 48.40
.80.6 3.60 52.80 3-t|

77.7 2.7 50.50 ! ’£>1



XIX

Characters
Varieti/Ev X1 X2 X3 X4 X5 X6

. X7
37 80,61 5.58 32.2 13.8 14.5 28.3 ■8. 0

38 62.36 1.32 34.1 5 ■ 0 2.7 11.7 9.7
39 94.27 3.35 53.9' 12-0 8.8 20.8 10.2
40 69.94 0.94 31.3 10.7 1.5 12.2 11.3
41 69.74 2.24 26.3 12.3 6.4 18.7 8.1
42 74.14 1.27 34.4 12.2 '2.1 14.3 10.5
43 70.66 2.23 30.7 15.1 7 0 22.1 '8.2
44 79.32 1.79 41.8 11.3 6 -o 17.3 12.2
45 69.95 2.67 28.6 15-o 17.1 32.1 8.5
46 86.68 0.97 37.2 16.8 10.7 29.5 1*0.2
47 92.27 3.70 61'. 9 10.6 14.1 24.7 9.1
48 72.92 3.33 39.9 10.1 15.1 25.2 '9.0
49 70.83 1.86 32.9 9.3 4.2 13.5 '7.7
50 76.20 4.36 39.7 15.6 22,8 38.4 11.2
51 83.86 2.66 40-o 15.5 13.3 26.5 11.2
52 79.46 2.39 47.1 12.0 '8.5 20.5 ‘9.4
53 75.88 2.66 43.4 10.5 4.9 15.4 9.1
54 81.55 2.92 47.8 12.4 15.4 27.8 9.1



XX

Characters
Variety j Xq X^ X1q X12 X^

37 2.46 2 :3 7 54*. 4 39.4 79.7 2.85 42.81
38 2.52 2.73 58.2 40.7 76.6 2.64 43^85 Q.-2-8
39 1.92 2.45 46.2 47.9 92.1 2.38 43.5
40 2.35 2.93 69.4 42.3 CO 2.65 47.1 W
41 2.53 3.35 92.8 37.8 82.9 4.21 49.65 og
42 2.64 2.49 62-0 41..9 82.7 3.59 46.15 3'^S
43 2.4o 2.27 42.9 39.5 75.9 3.41 48.75 3.-3H
44 2.63 2.50 68.2 40.9 89-O' 3.09 48.5
45 2.4t> 2.35 47.5 38.3' 79.2 3.36 48.6 H'38
46 3.01 2.88 78.2 38.8 82.5 3.82 48.7 •4-0̂
47 2.47 2.44 50.6 41.9 91.5' 4,56 43.4 3i±

48 2.77 2.72 55.4 38.7 81.2 4.26 44.05 2,-ni

49 2.63 2.55 55.2 37.9' 79.6 3.12 48.05 2..0SL
50 2.27 2.45 53-0 43.8 82.1 3.21 45.75 3.^
51 2.53 2.56 58.y- 39.6‘ 79.8 2.59 42.54 £■<4*1-
52 2.63 2.47 55-6 42.7 88.2 ‘ 3.40 43.04 a-'ai
53 2.36 2.63 52.2 39.9' 81.3' 3.39 46.39
54 2.45 2.46 57.8 43.0 84.4 2.77 44.24



xxi

Characters
Variety---; X1 X2 X3 X4 X5 Xg X?

55 74.67 . 2.79. 40.4 10.6 , 7.2 1 7 . 8 8.1
56 81.01 2.09 46.6 9.6 4.2 . 13.8 9-e
57 74.09 3.02 35.7 . 12.6 9.8 22.4 8.4
58 89.35 . 2.96 48.7 12.1 8.4 20.5 9.75
59 76.85 . 1.08. 32.8 . 14.7 3.5 18.2 9.&
60 64.82 , 1.73 48.2 6.8 3.9 10.7 9.1
61 83.53 , 2.81 55.5 . 12.1 11.5 23.6 8.5
62 108.98 , 5.34 74.6 12.5 . 22.5 35-0 11.6
63 68.90 2.50 42.1 9.1 5.5 14.6 9.3
64 90.96 3.06 45.6 11.4 14.8 26.2 7.7
65 , 79.79. 2.43 42.0 13.2 9.9 23.1 8.1
66 89.62 1.94 40.1 18.4 3.7 ,L

22.1 7.4
67 90.01 3.27 41.8 17-1 9.4 26.5 9.2
68 76.76^ 3.7, 39.8 11.6 15.7 27.3 9.1
69 76.17, 2.23 50.4 8.3 5.2 13.5 8.3
70 75.24 1.62 45.1 11.3 4.3 *p 15.6 9.9
71 78.09 2.98 43.7. 11.4 8,1 19.5 8.7
72 80.58, 2.31 40.9 14.1 15 -o 29.0 9.4
73 89.21 3.37 53.1 11.4 12.5 23.9 8.9



Characters

Varietur ‘ X8 X9 X10 X11 X12 *i3 X14

55 2.7c 2.51 55.8 40.8 86.1 2.89 40.24 3- lo
56 2*781 2.58 56.3 39.4 85.5 3.25 47.3 1-1\

57 2.52i 2.63 ' 70.8 37.2 70.8 2.33 43.75 I- 6ft
- 58 2.40 2.42 52.8 47.2 89.5 2.92 45.1 2.- Og
59 . 2.62 2.65 59.2 37.6 •V00 2.75 44.79
60 2.55 2.55 56.8 40.9 87.1 3.40 40.75 I- 2-S
61 2.30 2.38 58.8 44.6 90.4 3.41 46.79
62 2.43 2.44 58.2 49.8 88-0 3.52 46.64 /?■ 0 g
63 2.50 2.79 49.3 42.3 91.1 3.7o ‘48.09 2-'32.
64 2.44 2.31 52.o 41.8 86.7 3.09 47.59
65 2.24 2.33 40.8 45.7 84.6 3.04 46.24
66 2.1o 2.50 54,3 40.6 79.6 2.69 42.75 ■X'32.
67 2.96 2.50 71.6 41.3 80.6 2.77 ‘47.25
68 2.47 2.56 57.6 41.2 77.0 2.78 47.80 2--3 8
69 3.41 3.03 65.2 43.1 77.8 2.93 48.45 I-
70 2.49 2.44 53.4 46.6 90.2 3.OS 46.60 1-2.2
71 2.35 2.42 51 ;8 46.5 91.6 3.40 45.79
72 2.57 2.43 59.4 40.5 84.2 3.56 50.84
73 2.59 2.47 61.6 46.8 86.8 2.89 48.69



*x i n

Characters
Variety.- X1 X2 X? X^ X^ X6 X?

74 77.97
75 83.59
76 76.53
77 85.31
78 80.37
79 79.68
80 91.84
81 75.63
82 83.22
83 74.35
84 77.41
85 84.23
86 80.87
87 74.76
88 90.01
89 87.42
90 90.19

2.43 43.9
2.80 44.8
2.91 42.5
2.64 48.1
2.07 45-o
2*10 33.1
2.49 50.6
1.81 40.7
2.34 44.4
2,60 45.6
3.66 43.5
2.84 51.6
3.14 47.7
1.17 49-0
3.40 32.8
3.93 58.3
3.13 46.8

9.8 8.5
10-0 13.4
9.7 . 10.9
12.3 8.6
13-0. 9-0
22.8 14.1
11.6 12.5
11.7 5.1
11.5 9.9
11.6 5.6
8.8 11.2
11.5 3.2
10.8 12.3
6.7 1.6

18.0 29.6
9.4 1 3 . 8

10.3 14.2

18.3 7.6
23.4 7.5
20,6 7.7
20.9 8.9
22-0 8.3
36.9 9-0
24.1 7.2
16.8 10.1
21.4 8.9
1 7 . 2 9.2
20-0 '9.1
14.7 11.0
22.6 8.6
8.3 8.5

47.6 8.4
23.2 '8.8
24.5 8.3



X X I V

Variety j

Characters

X8 X9 X10 X1 1 X1 2 X13 X14

74 2.27 2.41 49.6 44.1. 36.6 3.35 46.59 3- ssr
75 2.44 2.47 60,0 43-4 90.6 3.42 47.29 3- 00

76 2.3Q 2.37 58.6 40.2 87.9 3.08 47.85 2.'97
77 2.53 2,45 58.9 42.3 87.4 3.08 45.65
78 2.54 2.37 51.6 44.0. 88.2 3.00 46,60 xie-
79 2.75 2.51 60.6 37.8 81 .0 3.00 ,43.1o
80 2.35 2.46 52.6 42.4 84.2 3.14 44.5o S'Ot
81 2.75 2.44 65.8 42.2 80.9 2.79 47.80
82 2.42 2.38 55.4 44.2 80 .0 3.24 45.2o
33 2.34 3.59 96.6 46o 82.7 3.45 45.7o 2- 0/
84 2.4o 2.46 53.4 43-0 88.1 3.67 46.60 3-2.1
85 2.77 2.51 67.1 47.3 88.1 3.31 47.5o il-od
86 2.54 2.52 61-0. 40^7 78.7 2.88 48.4d IM3
37 2.41 3.59 9 6 .2 46.6 89.1 2.99 45.3o 1-97
88 2.44 2.43 52-0 38.7 84.6 2.93 44.6o H-W

89 2.36 2.46 59.4 44-0 88.8 3.25 45 .60 3-2 9
90 2.65 2.47 58.8 39.1 90 .0 3.35 46.1o 3-21



xxu

Variety'
Characters

x1 X2 X3 X4 X5 X6 X7

91 7 1 . 2 1 2,19 30,5 11.2 11,4 22.66 6,3
92 70,60 0.72 32,4 14,8 3.2 1 6 'GO 10.7
93 76,43 2,88 35,1 11,4 12.9 24,36 8.1
94 85,89 1,84 37.7 14.8 11.9 26.2b 11.5
95 74,52 3,21 31,2 15,5 16.2 31.7o 9.2
96 74,95 2.02 37,1 11-0 6,1 17,10 8.2
97 87.74 2.55 59,1 11.5 8,3 19.3o 1 8,3
98 73.29 0,01 27,8 12,95 2 :0 13.15 8,7
99 85.20 2,81 35.7' 17,6 13,4 31.1o 9,1
100 70.27 1,20 35,7 7,8 2,1 9.9o 7.2



I

Xxv i

Characters

Varieties X8 X9 ' X10 X11 X12 X13 X14

91 2.33 2.24 59.4 37.5 78.6 2.85 43.6
92 2.34 2.42 56.2 39.6 78.4 2.70 40.45 2.- 32
93 2.42 2.37 5 2 i 6 40-0 86.7 3.25 43.79
94 2.78 2.43 57.8 40.4 85.3 3.12 47.35
95 2.39 2.32 50.8 40.7 87.5 3.05 41.35 3*^
96 2.32 2.45 49.6 41.7 84.4 2.95 44.25 3 -OS
97 2.45 2.35 54.4 44.5 83.4 3.39 44.55 a-es
98 2.47 2.38 58.4 36.9 79.3 3.39 44.65
99 2.75 2.70 - 59.'o 59.9 77.9 2.77 47.20 3-17

100 3.23 2.65 69.9 41.5 83.4 3.17 44.60 1-70



Appendix V Between diapersion matrix of data B

2.164 33.708 -0.737 10.435 9.685 0.088 -0.212

0.536 2.993 -0.686 2.571 1.893 -0.197 -0.038

67.092 -14.849 4 .589 -1 0 .2 1 9 0.190 -0.075

8 .188 1.067 9.251 0.157 -0.124

18.972 20.074

29.354

-0.155

-0 .02

0.837

-0.129

-0.257

0.044

0.049

-0.480 -13.184 8 .878 12.489 0 .1 1 9 1.168 0.492

-0.060 -1.820 0 .736 0.586 0.043 -0.007 0.156

-0 .074 -7.101 18.487 21 .002 0.599 0.428 -1.021

-0.260 -8.482 -3.784 -4.144 -0.222 -0.633 0.417

-0.613 -19.937 0 .0 7 5 . -0.097 0.211 -0.134 1 .475

-0.873 -28.655 -3 .715 ' -4.184 -0.007 -0.787 1.875

0.034 1.785 0 .298 0.331 -0 .002 0.228 0 .013

0.009 0.655 -0.076 -0.104 -0.003 0.064 -0.026

0.061 2 .7 0 2 0 .116 -0 .008 0 .017 0.193 -0 .084

140.524 1 .6 3 ’ -4.581 0 .36 8 9.832 -2 .637

7 .339 7.35 0 .00 8 0.305 -0 .588

1 6 .3 2 2 ' 0.371

0.087

-0.821

0.172

5.93

-0 .003

0 .022

-0.100

0.251



Appendix vr Within dl3per3ion matrix of data B

56.18a 1 .882 21 .'908 1 it . i i i*1 2 1 .999 35.779 1.899 0 .279

0.659 1.91 3 0 .397 2.196 2.591 0.091 -0.002

32.961 1 .691 7.099 8.589 1.233 0.093

9 .972 7.170 16.636 0.959 0.109

27.569 39.673 

51.260

0.782

1.736

0.627

0.125

0 .232

0.013

0.019

0 ,226 6 .199 -0.586 3.516 0.261 0.053 9.001

0 .00 8 -0.333 0.271 0.386 -0.019 -0.002 0 .269

0.019 -3.367 0.791 2.695 0 . 1'81 0 .069 0.797

0.089 1 .526 -0.582 -0.135 0.059 -0.007 1 .579

0.209 3 .379 0.78 6 9.155 -0.062 -0 .009 3.708

0.296 9.887 0 .298 3.981 -0.005 - 0 .0 1 1 5.302

-0.009 -0 .252 0.259 0.367 0 .0 12 -0 .007 0 .129

0 .003 0.275 0.005 0 .039 0 .009 O--O003 0 .09

0.025 .. 0 .395 -0 .05 6 -0.067 -0 .006 - 0.001 0 .01 9

36.937 -0 .928 0.909 -0.199 -0.092 0 .952

2.730 #o CD 0 .025 -0.005 0 .152

8.172 0 .153

0.065

0.015

0.001

0.007

0 .073

-0 .00 9

0 .0 0 1 

1 .2 9 9



COMPUTER PROGRAMMES<BASIC) USED FOR THE ANALYSIS

A P P E N D  I X - V  I I

5 REM PROGRAM FOR COMPUTATION OF PRINCIPAL FACTOR SOLUTION
10 DIM D < 20 , 20) , A ( 20,20) ,V <20) ,A J (20 ) ,F M T <20> '
25 DIM d Ia G ^ o ! fU^ 0 , 'B<20'2 0 ? 'EA<20'2 0 ) 'EV:20^ 0 ) 'EEACi°'2 0 ) 'SSV(20,20>,EP<20),E^,30>
27 DIM V A ( 20 , 20> , VC(20>
30 INPUT "N,N F ,EPS,N O " ;N ,N F ,E P S ,NO -
32 INPUT "FILE N A M E F L $:OPEN " I " , #1 ,F L 5 
34 INPUT "El GEN V A L . LIMIT" ;VCONET
36 INPUT "1st trial [Y / I";FTS
37 |;_FT. <,.•*. THEN" Z = 1 : INPUT "NO OF FACTORS" ; M : FOR I., TO N:INPUT "DI AG ELTS" ;DIAG( I ) : NEXT I
45 RESTORE 
70 FOR 1=1 TO N 
30 FOR J=I TO N 
92 INPUT # 1 ,D<I,J>
100 D< J, I )=D( I ,J)
110 NEXT J
120 NEXT I
124 TRES=0
125 IF Z=0 THEN 130 
1 26 FOR 1 = 1 TO N
127 D<I,I)=DIAG(I)
128 NEXT I
130 FOR 1=1 TO N 
140 FOR J=1 TO N 
150 E A (I ,J)=D(I,J)
160 NEXT J ':LPRINT
161 NEXT I ■
>62 FOR 1=1 TO N 
164 TRES=TRES+D<1,1)
166 NEXT I
170 GOSUB 1530 
172 FOR 1=1 TO N 
'174 V ( I ) =EA (1,1)
176 FOR J-l TO N
177 W( I , J ) = EV ( I , J)



178 NEXT J :NEXT I .
180 LPRINT " ESTIMATES OF PRINCIPAL FACTOR LOADINGS"
181 IF Z=1 THEN 190 '
182 M=N
183 RN=0
184 FOR I=1 TO N
185 IF V (I ) < VCONST THEN RN=RN+1
186 NEXT I
187 M=M-RN
190 FOR 1=1 TO M
200 SS=0 '
210 XF=SQR<V<I))
220 FOR J=1 TO N
230 SS=SS+W(J,I)*W(J,I)
240 NEXT J
250 ~SS = XPISQR<SS)
260 FOR J=1 TO N
270 A( I ,J > =SS*W< J, I ) .
280 NEXT J :NEXT I ■
290 FOR J=1 TO N
300 LFRINT J ;" "; ,
305 DIAGiJ)=0 
310 FOR 1=1 TO M
315 DIAGCJ)=3IAGCJ>+A<I,J>*A<I,J)
'320 LPRINT A < I ,J > ;
330 NEXT I:LPRINT:NEXT J
331 LPRINT:LPRINT "DI AG ELTS" :FOR 1 = 1 TO N :LPRI NT DI AG( I ) ; :NEXT I;LPRINT
332 Z =1 .
333 FOR 1=1 TO N
334 IF ABS<DIAG< I 1-D( I , I > ) >EFS THEN GOTO 122
335 NEXT I '
340 NFF=M
345 LPRINT:LPRINT "VARIMAX ROTATION WITH ESTIMATES OF PRINCIPAL FACTOR LOADINGS"
347 FOR 1=1 TO NFF:FOR J=1 TO N :VA<J ,I)=A<I,J ):NEXT J,I
348 GOSUB 3020
1525 END -
1527 REM SUBR.BRANCHING FROM 170 
1 5 30 NN =1
1540 IF NN= 0 THEN 1620 
1550 FOR EI=1 TO N 
1560 FOR EJ =1 TO N 
1570 IF EI< > EJ THEN 1600 
158 0 EVt El ,EJ> = \



X A X l'

1590 GOTO 1610 
1600 EV< El ,EJ)=0 
1610 NEXT' EJ ,EI 
16 20 ENR = 0 .
1630 EMI=N-1 ‘
1640 FOR EI=1 TO EMI 
16 5,0 EF (EI)= 0
16 60 EMJ = EI + 1
1670 FOR EJ = EMJ TO N
1630 IF EF<El)>ABS<EA<El,EJ)> THEN 1710 
1690 EP(El)= ABS< EA<El ,EJ) )
1700 EMM(EI)=EJ .
1710 NEXT EJ:NEXT El 
1720 FOR E I = 1 TO EMI
17 30 IF EI< = 1 THEN 1750
1 740 IF EPMAX > EP < E I ) THEN 17.8 0 
1750 EPMAX=EP(EI) ■
1760 EIP = EI
1770 EJP = EMM< El) '
1780 NEXT El
1790 IF ENR=0 THEN EBPLN = ABS<EPMAX) * 9 . 999999E-10 
1800 IF EPMAX<=EEPLN THEN 2641 
1810 ENR=ENR+1
1820 IF EA<EIP,EIP)>=EA(EJP,EJP> THEN 1360
1830 ETA=-2*EAI EIP , EJP ) / < ABS < EA < E I P , E I P ) - EA < EJP , E JP ) ) +SQR < ( EA ( El P , EIP )-EA ( EJP , EJP ) ) ̂  2 + 4 * EA < El P EJP ) A2 ) !
1840 GOTO 1870
1850 GOTO 1870 ‘
I86 0 ETA=2*EA(ElP,EJP)/ (ABS(EACEIP,EIP)-EA< EJP,EJP) )+SOR i (EA<EIP,ElP)-EA< EJP,EJP >>A2 + 4*EA(EIP,EJP)A2 > >
1370 ECO=l/SQR<<1+ETA*ETA>) . ,
1880 ESI=ETA*ECO 
1890 EAI=EA(ElP,EIP)
1900 EA(EIP,EIP)=ECO*ECO*(EAI+ETA* C 2*EA(EIP,EJP)+ETA* < EA < EJP,EJP) ) > )
19 10 EA < EJP,EJP)=ECO*ECO*< EA(EJP,EJP)-ETA*(2*EA < ElP,EJP)- ETA * EAI ) )



X X X I  I

1920 EA(EIP,EJP) = 0'
1 930 IF EA(EIP,EIP)>=EA(EJP, EJP) THEN 2030
1940 ETT=EA< EIP ,ElP)
1950 EA <EIP,EIP)=EA<EJP,EJP)
196 0 EA(EJP,EJP)= ETT
1970 IF ESI> = 0 THEN 2000
1930 ETT=ECO
1990 GOTO 2010 '
2000 ETT=-ECO
20 10 ECO=ABS(ESI) j ' .
2020 ESI=ETT
2030 FOR EI=1 TO EMI
204 0 IF E I - E I P > 0 THEN 2070
2050 IF El-EIP<0 THEN 2080
2060 IF EI-EIP=0 THEN 2210
2070 IF EI=EJP THEN 2210
20S0 I F  EMM < EI > = EIP THEN 2100
2090 IF EMM( E I > < > EJP THEN 2 2 1 0
2100 EK= EMM< EI >
2 110 ETT = EA < EI ,EK>
2120 EA(El,EK)=0
2 130 EMJ = EI+ 1
2140 EP(El> =0
2 1 5Q FOR EJ = EMJ TO N
2160 IF EP<El) >ABS<EA<El , EJ) ) THEN 2190
2 1 70 EP C El)=AB S (EA < El (EJ) )
2130 EMM ( El > =EJ
2 190 NEXT EJ
2200 EA(El,EK)=ETT
22 10 NEXT El
22 3 0 EPCEIP)=0
2240 EP(EJP)=0



2250 FOR EI=1 TO N
2260 IF El > EIF THEN 2380
2270 IF EI=EIP THEN 2570
2280 ETT=EA < El ,EIP)
2290 EA(EI ,EIP) =ECO*ETT+ESI *EA (EI,EJP)
2300 IF EF<El)>=ABS(EACEl,EIP)) THEN 2
23 1 0 EP < El )=ABS(EA(El rEIP) )
2320 EMM< El )=EIP
2330 EA< El ,EJP > =-ESI*ETT + ECO*EA(El,EJP)
2340 IF EP < E I)>=ABS<EA(EI,EJP) ) THEN ?5
23 5 0 EP(EI) =ABS(EA < El ,EJP) )
2360 EMM< El )= EJP
2370 GOTO 2570
23 8 0 IF EI> EJP THEN 2480
2390 IF EI=EJP THEN 2570
2400 ETT = EA< ElP,El )
241 0 EA< ElP,El) =ECO*ETT + ES I * EA (El,EJP)
2420 IF EP<ElP)>=AES<EA(E IP,EI )) THEN 7
2430 EP(EIP)= AB S (EA( E I P , E I) >
24 40 EMM <EIP > = EI
2450 EA ( E I , EJP > = - ETT *' E S I + ECO * EA ( El , EJP >
24 60 IF EP<El)>=ABS(EACEl,EJP)) THEN 25
2470 GOTO 2350
2480 ETT = EA< EIP,El )
2490 EA(ElP,EI> =ETT*ECO+ESI *EA(EJP,El >
2500 IF EP<ElP)>=ABS<EA<ElP,EI ) > THEN 2-
25 1 0 E P ( E I P ) = A B S ( E A ( E l P , E I ) )
2520 EMM ( E IP)= EI
25 3 0 EA(EJP,El ) =-ETT*ESI+ECO*EA( EJP,E I>
2540 IF EP<EJP ) >=ABS ( EA ( EJP,El >) THEN 7
255 0 EP < EJP) =ABS(EA < EJP,El ) )
2560 EMM< EJP > = EI
257 0 NEXT El
2580 I F NN = 0 THEN 1720
2590, FOR El=1 TO N
2600 ETT = EV< El ,ElP )



to 
to

x * * i v

26 10 EV < EI(EIP) =ETT*ECO+ESI*EV< El ,EJP)
2620 EV<El,EJP)=-ETT*ESI+ E C O * E V <El,EJP)
2630 NEXT El
2640 GOTO 1720
2641 FOR El=1 TO N 
264 2 EP < El > = l ;SUM1=0
2646 FOR EJ=1 TO N :SUMl=SUMl+EV<EJ,EI>*EA<EJ,EJ>2643 NEXT EJ
2649 IF SUMl<0 THEN EP(EI)=-I
2650 NEXT El
2652 FOR EI=1 TO N
2654 FOR EJ =1 TO N
26 5 6 EVIEJ,El)=EV < EJ,El) *EF<El )
2658 NEXT EJ:NEXT El
2659 LPRINT "NO OF ROTAT I ONS 11 ; ENR
2660 LPRINT "El GEN VALUES & CORR. El GEN VECTORS":FOR EI =
2670 REM LPRINT "El GEN VALUES",EA<El,El>
672 LPRINT EA(EI,EI);" '
6S0 REM LPRINT "CORRESPONDING EIGEN VECTORS"

2690 FOR EJ =1 TO N ■
2700 LPRINT USING " #4t . ####" ; EV < EJ, E I ) ;
2710 NEXT EJ 
2720 LPRINT 
2730 NEXT El 
2740 RETURN
3010 REM SUBROUTINE BRANCHING FROM 1524
3020 REM INPUT "NO OF FACTORS, NO OF VAR IABLES" ;VN,VM
3022 VN=NFF:VM=N
3030 EF=.00116
3032 GOTO 3030
3040 FOR VJ=1 TO VN
305 0 FOR VK =1 TO VM . .
3060 VA<VK,VJ)= A (VK,VJ)
3062 REM INPUT "VA<fc, j ) " ;VACVK,VJ)
3070 NEXT VK : NEXT VJ

TO N



3030 FOR VJ=1 TO VM 
3090 VC<VJ)=0 .
3100 FOR VK =1 TO VN
3110 VCIVJ)=VC(VJ) +VA <VJ,VK)A 2
3120 NEXT VK
3130 LPRINT "VARIABLE" ;VJ, "COMMUNAL ITY" 
3140 VC(VJ)= SOR(VC(VJ) )
3150 FOR VK =1 TO VN . '
3160 VA<VJ,VK)=VA(VJ,VK)/VC(VJ)
3170 NEXT V K : NEXT VJ 
3130 VN1= VN-1 
3190 VNR=0
3200 FOR VI=1 TO VN1 
32 10 VI1=VI+ 1 
3220 FOR VJ=VI1 TO VN 
3230 VA1=0
3240 VB1=0 '
3250 VC1=0 
3260 VD1=0 
3270 FOR VK=1 TO VM
3280 VU=VA<VK,VI>A2 -VA<VK,VJ)A2
3290 Vv=VA(VK,VI)* V A < V K ,VJ)*2
3300 VA1=VA1+VU
3310 VB1= VB1+VV
3320 VC1=VC1+VUA2-VVA2
3330 VD1=VD1+VU*VV*2
3340 NEXT VK
3350 VON =VD1-2 *VA1*VB1/VM 
3360 VQD=VC1-CVA1A2-VB1A2)/VM '
3370 IF ABS<VQN)-ABS(VQD>(0 THEN 3710
3330 IF ABS(VQN)-ABS<VQD)>0 THEN 3490
3390 IF A B S < VQN)-ABS(VQD)= 0 THEN 3570
3400 VEM=ABS(VQN/VQD)
3410 IF VEM-EP <0 THEN 3450



XOkX.VJ

; V C ( V J )



3420 VCS=COS<ATANtVEM>>
3430 VSN=SIN(ATAN<VEM))
3440 GOTO 3590
345 0 IF VQD > = 0 THEN 3710
3460 VSP=.70710678#
3470 VCP=VSP
3480 GOTO 3740
3490 V E M = A B S (VQD/VQN)
3500 IF VEM< VEP THEN 3540 
3510 VSN=1!/ SQR (1+VEMA2)
3520 VCS=VSN*VEM 
3530 GOTO 3590 
3540 VCS=>0 
3550 V CN=1 
3560 GOTO 3590 
3570 VCS=.70710678#
3580 VSN=VCS
3590 VEM=SQR<<1+VCS)*.5>
3600 VCS1=SOR((1+ VEM)*.5) -
3610 VSN1=VSN/ (4 *VCS1* VEM)
3620 IF V QD > = 0 THEN 3660
3630 VCP=.70710673#*(VCS1+VSN1)
3640 VSP= . 707il 0678#* < VCS 1-VSN1 )
3650 GOTO 3680
3650 VCP=VCSi
3670 VSP=VSN1 ‘
368 0 IF VQN > = 0 THEN 3730
3690 VSP=-VSP
3700 GOTO 3730
3710 VNR=VNR+1
3720 GOTO 3780
3730 FOR VK=1 TO VM



XX)OVI



3740 VEM=VA(VK,VI)*VCP+VA(VK,VJ)*VSP 
3750 VA < VK, V J )= VA < VK, V J )*VCP-VA(VK;VI)* VSF 
37 6 0 VA < V.K , V I ) =VEM 
■3770 NEXT VK 
3780 NEXT VJ 
3790 NEXT VI
3800 IF VNR < > < VN*VN1 ) / 2 THEN 3190
3810 FOR VK =1 TO VM
3820 FOR VL =1 TO VN
3830 VA<VK,VL)=VA<VK,VL>*VC<VK)
3840 NEXT VL:NEXT VK
3850 LPRINT "NEW FACTOR PATTERN"
3860 FOR VJ=1 TO VM
3870 LPRINT VJ 
3880 FOR VK=1 TO VN
3890 LPRINT USING "###.#####"; VA < V J , VK );
3900 NEXT VK:NEXT VJ ■
3910 FOR VJ=1 TO VN
3920 VC( /J )= 0
3930 FOR VK=1 TO VM
3940 VC<VJ)=VC<VJ)+VA<VK,VJ)A2
3950 NEXT VK:NEXT VJ -
3960 FOR VJ=1 TO VN
3970 VC<VJ)=VC<VJ)/VM ■
3980 NEXT VJ 
3985 LPRINT
3990 LPRINT "PROP. VAR ACCOUNTED BY EACH FACTOR' 
4000 FOR VJ=1 TO VN
4010 LPRINT VJ,VC<VJ> .
4015 NEXT VJ 
4020 RETURN





5 REM PROGRAM FOR C0MPU1YTM ON OF MAXIMUM LIKELIHOOD SOLUTION 
10 DIM D<20,20),A (20,20),V (20),AJ(20>,FMTC20)
20 DIM W<20,20>,U(20 >,B(20,20),EA(20,20),EV(20,20),EEA(20,20),EEV(20,20),EP(20),EMM( 
25 DIM DIAG(20)
27 DIM VA( 20,20) ,VC(20 )
30 INPUT "N,NF,EPS,NO";N ,N F ,EPS,NO 
32 INPUT "FILE N A M E F L $:OPEN "I",#1,FLS 
70 FOR 1=1 TO N 
SO FOR J=I TO N 
92 INPUT #1,D (I,J ) ■
100 D(J,I>=D(I,J)
110 NEXT J
120 NEXT I
130 NFF=NF
140 FOR J=1 TO N
150 FOR 1=1 TO NFF
160 PRINT "A" ; I , J
170 INPUT A (I,J) ' '
180 NEXT I:NEXT J
360 FOR I=1 TO N .
3 7 0 V < I)= 1
380 FOR J=1 TO NFF
39 0 V< I) =V< I )-A(J r I) *A (J , I )
4 00 NEXT J :LPRI NT V(I);: NEXT I: LPRINT
41O FOR 1=1 TO NFF
420 FOR J=1 TO N
430 W( I , J ) = A ( I , J ) / V < J )
440 NEXT J :NEXT I 
450 FOR 1=1 TO NFF 
460 FOR J=1 TO N 
470 B < I,J )=A(I ,J)
480 NEXT J :NEXT I 
510 FOR 1=1 TO N 
520 U (I)=0 
522 FOR J=I TO N
530 U<I>=U<I)+W(1,J)*D(I,J) ■
535 NEXT J
540 U< I > =U < I >-A< 1 , I )
550 NEXT I 
560 H= 0
570 FOR 1=1 TO N 
580 H = H + U ( I > *W( 1 , I )
585 NEXT I 
590 H = ABS < H )
600 H=1/SOR(H )
610 FOR 1=1 TO N
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620 A < 1, I >=H*Ut I )
630 NEXT I
640 FOR 1=2 TO NFF
650 11=1-1
660 FOR J=1 TO II



xxx x
985 B < I,J >=A ( I , J)
990 NEXT J :NEXT I
991 FOR 3=1 TO N
992 LPRINT J
993 FOR 1=1 TO NFF
994 LPRINT A (I,J); . •
995 NEXT I:LPRINT:NEXT J 
1000 GOTO 360
1010 LPRINT "MAX. LIKELY ESTIMATES OF FACTOR LOADINGS" 
1020 FOR J=1 TO N .
1030 LPRINT J .
1040 FOR 1=1 TO NFF .
1050 LPRINT AC I ,J> ;
1060 NEXT I:LPRINT:NEXT J
1062 LPRI NT: LPRINT "Coefft. of Uniqueness"
1070 FOR 1=1 TO N •
1OSO 'VC I )=D< I , I)
1082 V (I)=1
1090 FOR J=1 TO NFF
1100 VC I )=V< I)-ACJ, I ) *A<J, I )
1110 NEXT J : LPRINT VC I ) ; :NEXT I:LPRINT
1120 LPRINT "FACTOR VALUE","P.O. VARIATION EXPLAINED"
1130 FOR 1=1 TO NFF
1140 XX=0
1150 FOR J=1 TO N
1160 XX=XX+A(I,J>*A<I,J)
1170 NEXT J
1180 H=XX/TRES*100
1190 LPRINT I ,XX,H
1200 NEXT I
12 10 .FOR 1 = 1 TO N
1 220 B ( I , I )=V < I )
1230 NEXT I 
1240 FOR 1=1 TO NFF
1250 FOR J=1 TO N
1260 WCJ,I)=A(I, J )



XXX x"l

1270 NEXT J :NEXT I 
1280 FOR 1=1 TO N 
1282 B < I , I )=0 '
1290 FOR J=I+1 TO N 
1300 IF I=J THEN 1370 
1310 B (I,J)=0 
1320 FOR K =1 TO NFF
1330 B (I,J)= B<I,J)+A<K ,I>*W<J,X )
1340 NEXT K
1350 B< I ,J)=D( I ,J)-B< I , J>
1360 NEXT J :NEXT I
1370 LPRINT "RESIDUAL MATRIX AFTER REMOVAL 
1380 FOR 1=1 TO N 
1390 LPRINT I
1400 FOR J=1 TO I ■
1410 LPRINT B<J,I)i
1420 NEXT J :LPRINT:NEXT I
1422 LPRINT '
1430 XX=0 
1440 NCC=N-1 
1450 FOR 1=1 TO NCC 
1460 11=1+1
1470 FOR J=I I TO N '
148 0 XX=XX+B( I iJ)*B< I ,J>/CV<I)*V<J>)
1485 NEXT J :NEXT I
14 90 OON=NO-. 16666667#*<2*N+5 >-. 6666567*NFF 
1500 DF=.5*(CN-NFF>A2-N-NFF)
1510 XX=XX*OON
1520 LPRINT "AFP. CHI - SO" ; XX ; " WI TH " ; DF ; “ D‘. 
1530 STOP 
1540 END
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A B S T R A C T

Seaat&e is an Important annual oil seed crop grown 
In India. It is grown ia a very Halted area of 1A33 
haetarea in Kerala. The lack of high yielding varieties 
suitable to the seasons in different regions was the aain 
factor Halting the productivity of sesaase In our State.

i
The genetically divergent parents will produce better 
segregants in the hybridisation programs • The present 
study was undertaken to delineate the underlying causes 
of divergence in the sesame plants using the factor analytic 
methods.

Principal factor and oaxlaua likelihood factor 
analysis were carried out on a multivariate data on fifteen 
characters of hundred selected sesame varieties which are 
grown in upland during rabi, 1981 and rice fallows during 
summer, 1982* The analysis were done on phenotypic, environ­
ment and genotypic correlation matrices ujgler both environ­
ments • The phenotypic correlation matrices did not give a 
stable factor pattern during both rabi aad summer seasons. 
Also the genotypic correlation matrices under the two 
environments were found not suitable for factor analytic 
studies. The environment correlation matrices gave stable 
factor pattern under both the environments and this matrix



was found to be appropriate for factor analytic studies
The reproductive, height, seed, density and growth 

factors were identified as the underlying causes of diver­
gence in sesame under the two environments when the Principal 
Factor Analysis was performed. The Maximum Likelihood 
Factor Analysis revealed the additional factors viz., 
quality factor in uplands and a weight factor In rice 
fellows apert from the above factors. Maximum likelihood 
method is superior to principal factor analysis method as 
it gave a better fit of the factor-model. The characters 
which were most amenable to changes due to selection in 
these factors were identified in uplands as yield of seeds 
per plant as reproductive factor, circumference of capsule 
as seed factor, number of days to maturity as growth factor 
and nunber of fruiting nodes per 20 ca as density factor.
The same characters were identified as height, growth and 
density factors in rice fallows. The number of capsules 
on branches and yield of seeds per plant wore identified 
as reproductive factor, circumference of capsule and number 
of seeds per capsule as seed factor In rice fallows. The . 
factors relating to growth, productivity and quality were 
identified as the factors of divergence In sesame.


