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INTRODUCTION

Multivariate techniques are generalizations of
univariate techniques., Historically, statistical analysis
on multivariate data was done on individual measurements
by simpler univariate methods, which has got certain
limitations in drawing overall inferences. Multivariate
techniques helps to draw such overall inferences without

loss of information we are seejbiing from the data,

Factor analysis is a branch of multivariate
analysis developed by Spearman (1904) as a method of
analysing the dependence structure of a set of variables,
Today it is the most widely used method of reducing the
dimensionality of a set of variables by taking advantage
of their intercorrelations, This method helps to identify
fundamental and meaningful dimensions of a multivariate
domain. 4 matrix of correlations can be factorised in
an Infinite number of ways and a good account of these
approaches are discussed by Harman (1967)., Lawley (1940)
applied the method of Maximum~Likelihood to estimate the
loadings in a factor-model and now it remains the best
method of extraction of factor loadings. The most commonly
used technique 1s the principal factor analysis. But
the estimates obtained by Maximum-Iikelihood Factor



Analysis enjoys a powerful invariance property: "changes
in the scales of the response variate only appear as '
scale changes of the loadings" (Morrison, 1978) In'
addition the maximum-likelihood method provides ‘test of
significance for the determination of the number of
common factors. 1In a factor mbdel response'vérieteeis
represented as a linear function of e‘small number:of
unobservable common factor variates and a single laient
specific variate. The common factor generates the
correlations among the response variables while the
specific factor contribute only to the varliance of their

particular responses.

A factor is-a vector of correlation coefficients.
The most interpretable factor is one based upon corre-
lation coefficients which are maximally interpretaﬁle.
The varimax criterioc has become fhe most widelf accepted
method'for the orthogonal rotation'of the'factors siﬁce
{ts development by Kalser (1958). In this method the
variance of the squared 1oadings of each factor is |
maximised. The invariance ‘property of normal varimax‘
solution seem to be of greater significance and makes
1t to define mathematically the doctriné of simple
structure. The rotatlon of the factors helps:tc make

the best interpretation of the common factors,



In plant breeding programmes,'a khowlédge 6f the
nature and magnitude of genetic diversity in'ﬁorﬁﬁqld-
glcal characters is important for careful’ selection of
parents for crossing., The gredter the diﬁeréitylof genes
that & breeder hendles, better are the chances for the
selection of superior genotypes; Cofrelation:studies to
evaluate the assoclation of biometrical components on
yleld of sesame was conducted by many research workers.
But no study has since been made to identify those hidden
factors which have generated the dependent structure in
the response variable. The present study ié aimed ét |
identifying those hidden factors by applying factor
analysis via two methods - Principal Factor Analysis and
Meximum-Likelihood Factor Analysis.

Sesame is one of the 51dest anmual oil geed crops.
It has many favourable points, including a hiéhpercentage
of oll which resembles, but in some respects supefior'to
groundnut and sunflower oils. 1In respect of total world
production, India stands next to Chiﬁa and Ipdig's share
of world production is 24.6 percentage. Sesanme is fhe
most valued annual oil seed crop of Kéralé. It is grown
in very limited area of 1453 hectares with aﬂ aﬁnual seed

production of 3648 tonnes. The chief Ffactor limiting the
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productivity of sesame in the state 1s the .lack of high
vielding varieties suitable to the seasons in different
regions. The only improved variety evolved ip.Keralg

is Kayamkulam I. Sesame is grown in this state in uplands
during rabli season and in wet lands during summer, Improved
varieties suited fo these varied conditions will step up

the corop productlvity in the state.

The biometric studies on genetic diversity on a
large collection of different variéties of sesamumlwill
provide basic information for its improvement in plant
breediné programmgs; In sesamum the gerﬁplasm diversity
wili'affeqt the yielding abllity mainly on the genetic
characters that control them. .The preseﬁt study is

conducted with the following objéctives.

1. To create hypothesis on causative factﬁrs of diver-
gence working in the plaht pOpulatiop of sesame by
means of 'exploratory factor analysis' through the
method of "maximum likelinhood solution®.

2. To investigate the possibllity of fixing fewer stable

factors to delineate divergent plant populations.

3. To concentrate more on factors which are difectly

related to productiﬁity, reproductionlana vegetafion.



(o)

L, To co-pare the results obtained through Principal
: Factor Analysis and Maximum Likelihood Factor Analysis.

5, To investigate the possibility of conducting a -
nconfirmatory factor analysis" to test the hypothesié.
on factors and to f£ind out the unique ‘confactor posi--

tion' to determine the unique position of factors.
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REVIEW OF LITERATURE

Multivariate techniques are useful for analysing
the intercorrelated multiple measurements. In plant breed-
ing trials, as a large number of variables are involved,
effective breeding calls for the knowledge of genetic
variability among parents with regard to these characters
which are sought to be improved. Genetic divergence among
parents is important because a cross involving genetilcally
diverse parents is likely to produce high heterotic effect
and alsc more varlability could be expected in the segre~
gating generations. In such situation, factor analysis
is an appropriate method which gives insight into the
fewer causal influences (underlying factors) responsible

for differentiation among genotypes or populations.

2.1 Theoretical studies

2,1.1 Analysis of dispersion

Attempts have been made fo generalize the univariate
analysis of variance to the case of multiplé.variates. The
multivariate analysis of variance or MANOVA began with the
derivation of the simultaneous sampling distribution of the
variances and covariances in semples from a multivariate

nofﬁal population (Wishart, 1928).



A few years later Hotelling (1931) found the distri-
bution of a quantlty T which is a natural extensioh of
Student's t distribution to a sample from a multivariate

noxrmal population.

Wilks (1932 a), following the likelihood ratio
method of Neyman and Pearson (ﬁ928; 1931) and Pearson and
Neymaﬁ (1930) obtained suitable generalizations in the
analysis of variance applicable to several variables and

is the n gtatlistic.

Bartlett (1934) applied it for testing significance
of treatments witﬁ regard to two variébles ip a vérietal
trial and indicated 1ts general use in multivarlate tests
of significance. Wilks (1935) and Hotelling (1936) found
it useful for tésting.the independen&e of several groups

of variates.

Bartlett (1947) demonstrated the useful approxi-
mation of Wilk's A statistlic to a % 2.

2.17.2 Factor analysis

Factor analysis is an exploratory tool to provide
a posteriori insight into the underlying causes. of corre=-

lations among variables in multivariate theory. An



introspective analysis of the causative. forces responsible-
for inter and intra-specific differentiation can be mede
bylfacto;‘analys;s, It provides‘ﬁewer-stable~factors'to

delingapq divergent populations.

. Spearmen (1904) developed first the “theorems 'in
factor apalysis when he was attempting to undérstand the
nature of intelligence as. .a single general factor among
all tests of cognitive ability. Spearman differentiated
three types of factors, namely, a general factor which
was common to ali of the varlables, group factors which
were common to some of the variables but not to all of
them, and specific factofs that wefe peculiar to single
~ variables alone. In ﬁractice; the Spéarman two-factor
methods meet with the difficulty that group factors are
frequently encountefed. This two-factor theory was |
generalized in the next twenty years, principally by
Garnett (1919) and 'I'hurs’cone. (1931), into principles of -
multip;e :actOp.analyais. The multiple factor method is
supplementary to the épearman's two=factor method in that
there are no restrictions‘to the number of general factors

or the number of group factors.

Roff's'(1936) suggestion of filling each cell in
the diagonal with the square of the multiple correlation



of that variable with every other wvariable in the corre- -
lation matfix, had been advocated by Guttman.(1956).. It
is the best known' proposition and gives lower 1limit to

the communaiity.

The'computationloh the correlation matrix . has been
divided into two basic methods of calculation which are
‘in common use in extracting factors ie., in reducing a
correlation matrix to a factor matrix. They are the
principal axes method and centroid method. The latter
was introduced‘by Thurstone as a :substantial labour
saving approximatioh to the principal axes method. . Burt
(1941) referred these methﬁds respectively as 'the weighted
éummation' and 'thg simple summation' methods., The cen-
troid me?hod of factor analysis was outlined: by Holzinger
and Harman (1941).

Thurstone {1947) traced the'objective:of the factor
pattern as fo;lows: "the object of a factor ﬁroblem is to
account for their inter correiations, ip térms bf a sﬁall
number of derived variables, the smallest poégible numfer

.that is consistent with acceptable residual errors®.

Kendall (1950) made a useful distinction between

dependence and interdependence analysis in multivariate
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analysis. Analysis of dependence is concerned with how -
a certain specified group depend on other. and analysis
of interdependence 1s concerned with how .a group of
variables are related among themselves. Factor analysis

is latter type of multivariate analysis.

. 'Burt (1952) has given a full amount of tests of -
significance in factor analysis developed,upto-that'#ime.

The computation schemes of various factor analysis

methods were provided by Frutcher (1954)

Rao (1955) made a distinction between the method
of principal components and the common factor analyéis.
He introduced the concept of 'basis' of a vector space
for the characterization of factor analysis. In the
first characterlization, the factor variable explains
as much of variation as possible of original variasbles
which lead to principal factor analysis.' Iﬂ the second
charadterization, he bonsidered the factor variaﬁles
which 1s predictable from the original variables with the
maximum possible precision which lead to canonical factor
analysis. According ta the theory of canonical éérrelé—
tions the correlation (or its squares) between the two
linear combinations of factor variables and test scores

has to be maximized,



Factor analysis as a branch of multivariate analysis
is very useful in determining the number and nature of
causative influences responsible for the inter-correlation
of variables in any population. Essentially, it aims at
explaining a p x p correlation matrix (p varlates) by means
of a fewer number k (k<p) of meaningful factors (Maxwell,
1961; Lawely and Maxwell, 1963).

Kaiser and Caffrey (1965) explained the scale
invariance aspects of canonical factor analysis and alpha

factor analysis,

The better solution ls to start by declding the
number of common factors and then allowing the communa-
lities to adjust for it (Cattell, 1965 a). He has given
a brief sketch of the whole process of factor analysis.,
He Introduced the two types of factor models the 'elosed
model' for the method of *'component analysis' and the

"open model' for the 'factor analysis’,

In the closed model analysis unities are taken as
the dlagonal elements and take as many common factors as
varlables so that complete perfection as achieved within

the small set of variables sampled.

The open model, using a reduced matrix with



communalities in the diagonal, can produce fewer common
fadtors than variables and this model will not enable to
reinstate the test scores from the factor scores since
- full variance of any variable is partly contributed by
the common factors and the rest by specific factors. He
has given a good account of the approaches in deciding

' upon the number of common factors in a factor-model.

Cattell (1965 b) in another paper described the
role of factor analysis in research. The uée of factor
analysis as (a) hypothesis creating and (b) hypothesis
testing was given by him.

Hemmerle (1965) in his paper considered the problem
of computing estimates of factor loadings, specific
variances, and communallties for a factor analytic model.
Iterative formulae were developed to solve the maximum
likelihood equations and a simple efficient method of its

implementation on a digltal computef was described.

A general desc¢ription of the concepts, theories
and techniques of factor analysis has been giﬁen by
Harman (1967). | | .

Joreskog (1969) gave the relevant results for



confirmatory factor analysis, where the matrix of factor
loadings is uniquely identified by priori restrictipns
(usually by setting particular loadings to zero).

McDonald (1970)'méd9 a pﬁrely'theoreﬁical compa-
risoﬂ among the three factor score construction méthods
namely principal factor analysis, canonical factor enalysis
and alpha factor analysis. 'According to him, 1in'choosing
a factor model, there are in fact, at least three separate
cholces to be made which are relatively independent. The
first 1s the choice of basis in common factop space and it _
is the clearest defining characteristic of the three systems
discussed. The second 1s the cholce of an iterative
algorithm for the deterﬁination of commuhalities/unique-
nesses, The third is the declsion rule for the number of

common factors.,

Joreskog (1971) has given estimation procedures

for factor models involving several populations,

Joreskog and Gold berger (1972) have geveloped
a generalized least-squares procedure. The estimates
are scale free and asymptotically equivalent to the maxi-
mum likelihood estimates when the distribution is multi-

variate normal.
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A non-metric approach to factor analysis has been
considered by Kruskal and Shepard (1974). Although this
technique has some attractive theoretical properties, it
appears to be very sensitive to random variation in the

data.

Swain (1975) considered a class of asymptotically
efficient estimaters including both generalised least
square and maximum likelihood as special cases and derived

their large-sample properties.

Joreskog (1977) presents a general, all-encompasing
series of methods for orthogonal factor analysis by the
least squares and maximum 1ikeiihood methods. Many varia-
bles in the social sciences involve latent and structural
variables and Joreskog (1977) develéped estimation proce~
dures for several such methods, working directly from the

covariance matrix.

A few of the many methods developed for factor
extraction are centroid method (Thurstone, 1947), principal
factor method (Karl Pearson, 1901), meximum-1likelihood
method (Lawley, 1940) etc, Here we are considering
principal factor and maximum~likelihood methods..
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2,1,2.1 Principal Factor Method (FF method)-

| The literature on factor analysis contain a numbar
of alternative methods ‘and procedures for computation.‘
Anmong these, principal component method (also called
priﬁcipal—factor or princlpaleaxes solution) has several
attractive feetures. Each factor or principal components
as Hotelling calls it extracts maximum amount of variance
and gives the smallest possible residuals... However, -this
method is preferred in the present study malnly owing to
computat;onal facilities.

1

Hotelling (1933 a) developed the principal axes
method which provides an optimal solution at the sugges-.
tion of Kelley (1935).

Hotelling (1933 b) suggested the uSe of this method
with either unities in ‘the principal diagonal. The result-
ing factors are called "principal components" and are used
to reproduce the score matrix rather than the correlation
matrix. The number of principal components extracted is.

equal to the number of variables in the study.

Hotelling (1935) develeped an iterative method of
obtaining the loadings which can be carried'to'any degree

of accuracy.
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Principal component analysis is sometimes modified
by the .insertion of communalities in the dlagonal of the
correlation matrix and Rao (1955) called this method as

princlpal factor analysis,

Harman (1960) exhibited an outline form' of the
numerical calculations of the method with an 111ustra;
tive example. The first requirement in applying the
principal factor method is to determine some suitable
estimates of communality. According to him FF method
can be considered as an exoellent reduction of the
correlation matrix which provides a basis for rotation
to some other form of solution. The method also has the
advantage of giving a mathematically unique {least

squares) solution for a glven correlation matrix.

Schilderinck (1978) has given a complete plcture |
of the geometric and algebraic approaches of principal ‘

factor analysis.,
2,1.2:2 ‘MexlmumeLikelihood Metlod (ML method)

‘The distinction between the solutions obtained
by using the principal factor method and maximum like-
11hood method is that former corresponds to a priori



cholice of communalities and the latﬁer, the nuﬁbef of.
common factors. The ML solution is based on fundamental
statistical considerations. It considers explicitly the |
differences between the correlations among the ohserved
variables and the pypothatical values in the universe

from which they were sampled.

The efforts to provide a sound statistiéal basis
for factor analysis were made first by Lawley (19#6, 1942)
who suggested the use of "maximum likelihood method®",
due to Fisher (1922, 1925), in order to estimate the
universe values of the factor loadings from the giﬁen
emplrical data. Lawley's ML method is possiblé only
when the variatés are normally digstributed. It requires

a hypothesis regarding the mumber of common factors.'

Lawley (1940) and Rao (1952) had shown that "ML
solution” goes to and fro between communalities and number
of factors until 1%t hits on the combination which yields

the smallest res;dual.

Kaiser (1960) recommended (after considering
statistical significance, algebralcally necessary condi-
tions) the number of common factors as the number of

eigen values greater than or equal to one in the correlation
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natrix. He found thls number to be about one-sixth or.
one=third of the total number of variables, The éxpre-
ssion of ML method in factor analysis becomes more mean=-

ingful and clear with this foundation.

A more condensed derivation of ML methods were

appeared in a book by Lawley and Maxwell (1963).

'Hemmerle (1965) found that Rao's procedure con=
verges more rapidly than Lawley's procedure. Hemmerle
(1965) in his paper considered the problem of computing
estimétes of factor 1oadiﬁgs, specific variances and
Icommunélities for a factor analysis model, Iterative
formulae were developed to solve the ML équations and a
simple and efficient method of implementation of this

method on a digital computer was developed by him.

The ML procedure remained lmpractical for all
but for the smallest problems until the work of Joreskog

(1967, 1969), as the process converge very slowly.

In Joreskog's (1967) ML method he proceeds
systematically, fitting one, tWo, s....., factors and
tésting at each stage by a chi-square test to see whether

further factors are required. ' It also carries .a varimax
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rotation at each stage. He also presents an'ekample‘to
compare the ML factor estimates with those given by

principal components,

Since Joreskog's work appeared, Clarke (1970)
developed Newton-Raphson procedure for solving the log-

3

likelihood function.

Lawley and Haxwell (1971) have given expressioéns
for the standard errors of the latent roots and factor
loadings for both the unrestricted and restricted models
and later a correétion in the standard error by Jennrich

and Thayer (1973) was made.

- G111 (1977) has shown that the ML estimators are
consistent even when the underlying distribution for the

variables 1s non-normal.

Kendall et al. (1983) reported that the ML solu-
tion remaln scale-free 1f restrictions are imposed upon

the parameters.
2.1.2.3 Factor rotation

Kaiser (1956) ﬁ50posed'the 'varimax' method as a
modification of the quartimax method which nearly appro=
Ximates simple structure. He found that a variable with



communalities twice that of another will influence the .

rotations by four times as much. : '

As a last step in factor analysié Cattell (1965 a)
explained the rotational technique 11#9 1) simple structure
and 2) confactor rotation, In simple structure each .
factor affects only a few variables, But in confactor
rotation real factor does happen to operate on all or

most of the variables in the sample,

Cattell and Khanna (1977) described different
approaches to factor rotation in which he introduced one
kind of rotation criterion i.e., confactor rotation,
which arises when a second factorisation on the same

variables with another group is involved.

2.2 Applied studies

&

Lawley (1943) applied the ML method to factor
analysis of data collected for research in education.
Th;s.is a satis;actory method of deciding the number
factors required to account for the scores obtained when
the number of individuals tested is. reasonably large.

In this caée two general factors are needed to explain

eight:tests,
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Wallace and Bader (1967) employed the multivariate
approach of factor amalysis on 27 measurements of the
house mouse. The original’pripcipalliactorlsolutipn was
rotated to yleld the final varimax solution. Five common

factors were identified with respect to the 27 variables.

In order to determine the factors affecting the
use of fertilizers among the farmers, Shetty (1969) used
the principal component method of factor analysis. The
study revealed ‘that the fiyst four factors are sufficient
for the explanation of the observed inter-fa;m variations

in the use of fertillizers.

Walton (1972) used factor amalysis in identifying
ﬁhE'mérphological characters related- to- yield in spring

wheats.

Abraham and Hoobakht (1974) applied the technique
of factor analysls to extract basic factors underlﬁing
the observed soil variables. Scores based on four ﬁnder—
lying £actors could bz used fo; comparison of inter soil

variables,

Martin and Eaves (1977) adapted the analysis of
covariance structures to the simultaneous maximum likelie

hood estimation of genetical and environmental factor
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loadings and specific variances, The goodness of fit 1s
tesﬁéd by chi—équare and standard errors of baréme%er

estimates can be obtained,

. Denis and Adams (1978) performed, a principal ,
factor analysis on 22 morph010gical and yield—determining
traits of 16 cultivars and strains of dry beans. There
were at 1eaét two or threelprincipai:factoré to be examined
for biological meaning and from which to seek insight into
the baslc structural deslgn of bean planfs. o

Tikka and Asawa (1978) used correlation in 28
genotypes of lentil for factor'analysis through the prine-
cipal component method as suggested by Harman. Horéﬂthan
90 percent of the variability was extracted by two factors.
Within each factor, traits were ranked according to the
relative magnitude of factor loadings.:

Sundarem et al. (1980) useé centroid method of
factor analysis in cowyeé to study its evolutionafy
pattern. The analysis divided the nine characters ints
three groups of factors which accounted for 98 percent

of tatal variation.

Phenotypic correlations among seven traits in



ninety diversified strains of triticale were utilized

by Sewant et al. (1982) for factor analysis using the
principal component'methog. The factof analysis grouped
the seven characters into two maln factors which together

accounted for about 46 percent of total diversity.

Kendall et al. (1983) compared the ML factor
estimates with those gilven by principal components by
epplying it to fifteen characteristics of 48 appllcants

for a post.

' Kukadia et al. (1984) conducted a study to deter-
mine the importance of vafious'traits-for yield improve-.
ment in forage Sorghum. Genotyplc correlations were
subjected to factor analysig through the principal compo- .
nent method. Factors accounting for at least 10 percent
variabllity were retained and arranged in order of

variance.

- Bartual et al. (1985) used factor analysis,
principal component analysis and cluster analysis to
identify sets of varieties better adapteble. to the specific
environmental conditions. Results obtained from ML factor
anzlysis and principal component analysis were found to be

similar.
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A number of workers have discussed the importance
of genetic diversity in plant breeding programme. A brief

review of the past works are given as follows.

Murty and Anand (1966) brought out the role of
genetic diversity in choosing parents for breeding pro-
grammes using a set of 10 varieties of linseed of diverse

origin and F1's.

Murty and Arunachalam (1967) have conducted a
multivariate analysis of genetic divergence in the genus
Sorghum (wild and cultivated types) using quantitative
characters related to fitness under natural and human
selection, They utilized factor analysis to compare the
causal influences under natural and human selection for
the diversity found in this genus. The factors were
obtained by the centroid method. Factor analysis revealed

the adequacy of the three factors for differentiation.

Multivariate analysis for measuring the degree of
divergence between biological populations and for assessing_
the relative contribution of different characters to the
divergence has been established by the contribution of
several workers like Jeswani et al. (1970) and Somayajulu

et al. (1970).
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Ram and Pamwar (1970) presented the result of
multivariate analysls for a set of four characters related
to productivity in 18 varieties of cultivated rice. The
first two canonical roots accounts for 45 percent of the

total variability,

Hussaini et al. (1977) studied the 640 genetic
stocks of finger millet and the characters under study
did not show high mutual correlation. Twelve groups
have been i1dentified by ploting the first two standar-
dised principal components. Canonlcal varlate analysis

supported the above findings.

Gaur et al. (1978) studied the genetic divergence
in 67 potato varieties/hybrids and found that the characters
least influenced by the selection were mainly responsible

for adding divergence to the population.

Singh et al. (1982) estimated genetic divergence
among 48 exotic and 27 indigenous strains of chickpea.

Kamboj and Mani (1983) conducted a study to inves-
tigate the nature and quantum of diversity in a population
of hexaplold triticales. Eight yleld components for 100

genotypes were studied. The experiment was conducted in
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a simple lattice (repeated) design with four replications.
Grain yleld per plant and plant height contributed meximum

towards genetic divergence..

On the basis of multivariate analysis, Valsalakumari
et al. (1985) groﬁped 62 cultivars of banana into 8 clusters
considering 22 characters simultaneously; The characters
pulp/peel ratio on volume basis followed by weight of

frult contributed the maximum towérds divergence.

Murugesan et al. (1979) assessed the heritability,
co=efficient of varigtion, ppenotypic and genetic advance
as percentage of mean from 30 varieties of sesamum from
the germplasm collectlons. Thé high heritability accom=~
plished by high genetic advance indicated that most likeiy
the heritability 1s due to additive gene effects and ﬁass

selection for such traits should be practiced.

Paramasivam and Prasad (1980) conducted'a study of
F2~and F3 populations of 3 crosses of sesame. They found
that seed yileld was posit;vely and significantly assoclated
w}th pPlant helght, primary branches, secondary branches
agd cgpsule_number. The above characters were also found
to bg assoclated among one another and showed the poten-
tiality of these characters to be included in the selection

programme .
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A study was undertaken by Yadav et al. (1980) to
f£ind out the association of yleld and its component

characters in 22 genotypes of sesame.

Reddy (1981) noticed that the sead yield is a
major component of oil yield in sesame. The seed yield
can be lmproved by selecting the taller and less branched
plants with high capsule number.

Reddy and Reddi (1984) made an investigation to
assess the nature of gene action and to identify the
better combiners for seed yield, oil yvield and component

characters in sesame,

Cenetic parameters were assessed from nine varle-
ties of sesame by Kandaswamy (1985). The results indin
cated the number of branches, number of capsule, number
of seeds/capsule, and yleld might be given due importance
as indicated by additlve gene effects in selectlon pro-
granmes as eonsiderable improvement can be oﬁtained in_

these characters.

Krishnadoss .and Kadambavanasundaram (1986) studied
the correlation of yleld with six blometric characters

in 125 varieties of sesame, Among these, three characters
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had high significant positive cbrrelation with yield.
They also had significant and positive intercorrelation
among themselves, As such, improvement of these three
important component characters will result in the improve-~

ment of yield in sesame.
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MATERIALS AND METHODS
3.1 Materials

The material consisted of blometric observations ..
on 15 characters of 100 selected types of sesame varie=
ties raised at the College of Agriculture,.Véllgyani
during rabi (August to Decémber) in 1981 and =t the “

' Kayamkulam‘rice research station during sﬁmmef (Tanuary
to April) in 1982. The varieties were grown in a simple
lattice design, replicated twice. Each treatment con-
sigted of 27 plants at 30 x 1Sgcm spacing with a plot
size of 1.35 x 0.,90m. A random sample of 10 plants per
- type per replication was' selected and observations were
recorded. The observations on the following characters
were considered in the analysis. | -

1. Height of the plant {(cm)

2, Number of branches

3, Helght upto first capsule (cm)

4. Number of capsuleé on main stem

5. Number of capsules on branches

6. Number of capsules per plant

7. Number of -fruiting nods/20 cm

8. length of the capsule Scm)



9. Circumference of the capsule (cm)
10, Number of seeds/cap
11, Number of days to flowering
12, Number of days to maturity
13, 1000 seed weight (gm)
14, Seed. o1l content
15. Yield of seeds/plant (gm)
The varieties taken for the study are listed in
Table 3.1.1. ‘
Table.3.1.1' List of sesame varieties taken for the study
Code Name of the, variety Code Name of the variety
Number . Number
o1 Asthrango (local) 12 Gouri-Til
2 B14 13 Te=284
EREE-T 1820
4 BMI-3 15  IS-24
5 Bl=5 , _ 16 I5-50
6 BM3-1 17  IS=47-GP=37=1
7 BM3-7 18 C=447
8 BS5«18-6(B) 19 Kayamkulam=1
‘ 9 Culture 7-=1 : 20 Kayamkulam=2
10  ES-8 2 R '
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Code

Name of the variety

Code

Name of the
Number Number  varlety
11 G=P=111-2 22 KRR2
23 Muthukulem local No. 1 50 Si-bh
24  Muthukulam No. 9 51 S1-47
25 Ie=34337 52 S1<52
26 1IS-428-B 53 S51-57
27 Mutant K1 54 Si-71
28 North Kerala local No., 2 55 Si-72
29 o r W No,3 56 - Si=73
30 " " " No.8 57 S1-99
31 a " n No; 17 58 5i-256
32 n " " No. 24 59 $1-259
33 No, 42 60 $1-261
34 NP.63 61  S1-267
35 KIS 300 62 S1-865
36 P10 63 S1-866
37 P16 64 S1-877
38 P23 65 81-902
39 Ambalavayal 66 Si-914
40 P28 11 67 S1-2884
41 P38 68 51-918
42 si 1121 69 S1-925
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Code  Name of the variety Code Name of the variety

Number Number -
43 Pt 58~35=1 | 70 S1~928
B w31 | M si-934
45  RT(1) | _ 72 S1=950
46  RT(1)37 73 Si-§51
47  si-1 74 317953
43 Si-42 75 Si-973
L9  Si-43 76 $1=976
77 Si-983 89 T12-
78  Si=-1001 90 ™3
79 10-50-25 91 S1-2934
80 S1-1036 92 T17?
81  Si-2834 93 Te=25
82 Si=-1060 94 °  Sundar local
83 Si=1140 95 Timbl=0
84  Si-1149 96 TMV =1
8  Si-1154 97  TV-3
86 Si-1159 98 Vaﬁalathur
87 Si-1275 99 UT=43

88 S.Variety 100 Vinayak




3,2 Wethodologzy

3:2.1 . Structure of multivariate obsewaﬁions '

Multivariate analysis is concerned with analysing
nultiple measurements that have been magie on one or
several samples of individuals. The mulfivariate analysis
is concerned with the Jointness of p megéures on N

subjects.

. The mathematical model on which most of the multi-
variate procedures are based 1s on the sissumption of
multivariate normal distribution (m.-n.d.). This assump=-
tion of m.n.d. for multiple measures can be Jjustified
by the same centfal 11mi’;:. tﬁe:orem argument that leads
to the assumption of normality for a univariate measure=~
ment. "The multivariate normal distribution often occurs
because the multiple measurements are sums of small inde-

prendent effects" (Anderson, 1958).

ﬁeasurements on p biometrical charadters for
N (= Ing) varieties replicated g times wers denoted by
Xi;jo( _where (1 = 1,2,000e0} J = 1025000e@3 8= 1,2,00s.N)e
Supposé the random varlables Xj of interest have a multi-

variate normal distribution with mean L Hqrese "'p)1
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and covariance matrix ;fpxp = (573j). If the measure-~
ments of interest are in widely different units, a more

accurate picture of dependence pattern be obtained by

X3 - P31

standardising variable as Zi = I =2 1,2,0s0eeP

1

Then analysis of the dependence structure of 21.....Zp

which 1s given by the correlation matrix of X1;....Xp
- u b
is done, Thus the observed correlation among varilables

constitute the original data.

3.,2,2 Preliminary statistlical analysis

The data were subjected to multivariate analysis
of a simple lattice design. Lattice designs are an
important class_of row and column designs that are
widely used in practice. Simple lattlce design is an
incomplete block design, and there are N (= n2) treat-
ments arranged in n blocks of size n replicated twice,
the model to be fitted for the design is

Xypg = B+ P53 * By *Tps + ogrs

rys = 1,2,¢00s00 n (Federer, 195%)

Here all the above vectors consist of p elements

corresponding to p characters of each variety.



. Blocks within
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K is general mean effect

P4 1is replicate effect in 3j°° replicate

P 3r 1s incomplete block effect in the J

Tras is treatment effect

€yrs 1is the random component

~

t}.‘ replicate

The andlysls of variance for simple lattice design is

glven in Table 3.1:L’

Table 3.2.1 ANOVA for SLD

Sources of vatiation d.f. M.S.
Replication q-1
Treat (unadj.) . n2-1

q(n=-1) |
repln. (adj.) "o
Intra block error (n=1) (qn-n-1) E,
Treatment (adj.) n®=1

Total qn2-1

The treatments are adjusted by a weighting factor 4’



where ( )
E,. =B
b e
M m = Af Eb > Ee
n(q-1)E,
= 0 , otherwise

There is no need for adjusting the treatmental effects
1f M = o, .The intra block error 1s used to test the
significance of treatment effects (Cochran & Cox, 1957).

3.2.3 Analysis of dlspersion

Multivariate, enalysis of variance was first
developed by:W11ks (1932 a). Analysis of dispersion is
the prdcess which involves the technique of analysing
the variances and covarlances of varlables in multivariate
case (Rao, 1952). The total dispersion 1s split up into

various components as follows. .

Table 3.2.2 MANOVA of p variables

Source _ d.f Dispersion matrix
Devlation from n2-1”_ B
hypothesis

.2 ’
Error n“(p=-1) W

Totai pn2-1




The criterion arrived at by Willks (193é3 through the
generalised likelihood ratio principle is given by
A = [wl |
\w + B]

where

W is the within dispersion métrix
B is the between dispersion matrix

The statistic used for testing the homogeneity of treate
ment means for all the characters taken together is given
by V = = m lqge/\
where .

|V is distributéd as X2 with (N-1) p degrees of
freedom and i = Ng « 1 + (p+N) /2 (Bartlett, 1347).

3'2'4. Estimation of correlation matrix

The phenotyplc, environment and genotypic corre-
lations were estimated from the following analysis of

variance«covariance of the data,

Table 3.2.3 Anal&sis of covariance of SID

Source d.f. - Ms(X,) Ms(x:J ) MSP(XiXd )

Replication q~1

Blocks (adj.) a(n=1)

Treatment (adj.) 32-1 | msv,  msv, MV,

Intra=block (n=1) MSE MSE MSE

error | (qenet) ! J 13
Total anZ-1 MSP MSP MSP




Phenotyplc correlation coefficient Eﬁiﬁj -

MSPij

ipg = (usp, MSP, y1/2

1+ J

The environmental'correlatioh coefficlent

MSEij

— .,
(MSE, MSE, y4/2 1~ 3

reiej =

&

The genotypic correlation coefficient -

| EMSVi.r MSE) ( MSV, - MSE, le'
' 1 i i+

3.2.5 Factor analysis

Factér analysis is the common term for a number
of étgtistical techniques for the resolution of a set of
va;iables in terms of a small number of hypothetical
variables, cailéd factors., It reduces the multiplicity
of tests and measqrés to greater simplicity. The funda=-
mental sfep in the analysis of a body of obseréed daté |
is the formilation of a theoretical statistical model,



A l1linear-model 1is used in order to explain observed
phenomena in terms of simple theories. .The following

are the linear models employed in factor analysis.

3.2.5.,1 Factor analysis models

Principal component analysls (Pearson, 1901 and
Hotelling, 1933 a) and factor analysis (Spearman, 1904 )
are the two methods with different aims in analysing the

gtructure of a covarisnce or correlation matrix.

Principal component analys;s (PCA) is the method
of reductlion of a large body of data so that maximum of
the varlance 1s extracted. In this analysis, a set of
p standardised variates Zi, .....3{Zp'is transformed
linearly and orthogonally into an equal number of new

uncorrelated variables F1 9 FZ' cesscee I These are

p*
chosen such that F, has maximum varience, F, has the
next maximum variance subject to being uncorrelated ﬁith
f1 and so0 on. The new varlates are obtained by finding
the latent roots and vectors of the correlation matrix.

The linear model for component analysis is given by

Z= AF (1)

where

Z is the (px1) vector of Standardised Variables
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1s the pxp matrix of component loadings’

I3

is the px1 vector of compon factors

But the variance~oriented principal component
analysis is not appropriatd for investigating the corre-
lation structure of the observed data, since all thel
components are needed to reproduce accurately the corre-
1ation coefficlents among variables., However, for the
application of the method no hypothesis need be made
about the original vsriable{

in contrast to the method of principal component
analysis, factor analysis is correlation-oriented and '
explains observed correlations among variables in terms

of smaller number of hypqthetical factors.
The basic factor analysis model can be written
in matrix notation as

Z = AE +.¢ (2)

where

I~

is the px1 vector of standardised variables

1s the pxk matrix of factor coefficlents

| U

is the kx1 vector of k«p common factors

o

is the px1 vector of specific (unique) factors
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' This équation states that the observed variables
are weighted combinations of the common factors and the
unique factors. The common factors account for the
correlations among the.variableé‘and the unique factor
account for the remaining variance including error of
that variable. The total unit variance of a standardissd
variable Zi 1s made up of the communality attributable
to the common factor and the uniqueness, which is the

contribution of the unique factor (Harmen, 1967).

In factor .analysls it is usual to: discard the
sample mean vector and to make use of the covarilance
matrix or correlation matrix alone., The dispersion matrix
of the variates in Z is, defined as E (ZZ )-and is symme-
tric and positive definite of order P, The assumptions

are
CE(e')=0 (3)
E (FF ) = I, (4)
& E (ee') = Y (5)

where 7p is a diagonal matrix with diagonal elements
as vy,
I I i
Since E (ZZ ) = E EAF + e)l,(AF + el]
we have R = AA + Wo(8)

In practice A and w are unknown parameters which are
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to be estimated from experimental data,

Principal factor analysis method, centrold method,
maximam likelihood method, minimum residual method etc.
are some of the methods for estimating the parameters
A and v ., Among these methods some require estimates
of communalities while others require estimates of the

number of common factors.

3.2,5.2 Exploratory versus confirmatory factor analysis

A particular application of factor analysis is
exploratory or confirmatory according as the number of
parameters prespecified in the model equation of factor
analysis (Joreskog, 1969). In this study exploratory
factor analysis is done by the principal factor analysis
and maximum likelihood methods.‘

3.245.3 Estimation of communality

Communality is the amount of variance of the
characters accounted for by the common factors (Frutcher,
1954 ).

There are various methods of estimating communality.
But the squared multiple correlation (SMC) of each variable
with all other variables of the set seems to be the 'Best



-3
()

Possible' systematic estimate of communa;ity (Guttman,

1956)

The SMC of variable‘zi-is given by

= 2 : = 1 - 1
Srdci Rio1 2 000.9(1-1)’ (i+1)o--oop —-II
. B o
where ril ig the diagonal element of R~ corresponding

(7)

to the variable Z,. The SMC has another important property

that 1t is the lower bound of the communality (Harman,
1967).

. The maximum correlations in corresponding row or

column may also be taken asg initial estlimates of commu-

nality (Cattell, 1965. a) .

3.2.5.4 Principal factor analysis (PFA)

The application of the principal components to
the reduced correlation matrix with estimates of commi-
nalities in the dilagonal instead of.ggggslgads to the
principal factor analysis. This method ylelds a mathe-

natleally unique solution of component correlations.

From the classical factor, analysis model (2)

the relevant portion of the determination of the common



[N
[¥5:

factor coefficlents may ‘be

Z = AE (&)

or
21 = a11f1 + sensea +* a1k.fk
(9)

z,p ='-" ap1 f1 + oo‘o!o-o.o -+ apk .fk

The sum of squares of factor coefficients gives

2
m
indics-ﬁ-ﬁn dlnm  amvndewad Taaded A AL el PasadeAan £ '+f; +he‘

~ = - a . 2= —-w a= - 2

fhe'cdmménality of a partiecular variable while a,

communality of Z,. The principal factor method involves
the selection of the first factor coefficlents 2,4 80 as
to make the sum of the contribution of that factor to the
total communality & maximum. |

le, V, = 8112 + cesnsa +'ép12 ‘(10)'_
15 meximum. The coefficients a;, must be chosen such

that"V1 is maximum undsr conditions.

13 % £ 4 %n %o (11
i. j = 1,2, sesses P
where

Py = rai'énd rii is the cbmmunality'hi2 of the

i~th variable.
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This condition implies that the observed correla-
tions are to be replaced by the reproduced correlaﬁions{
implying the assumption of zero residuals. V1 iz maxi-
mised by applying the method of lagranglan multipliers
under the conditions (11): -The maximisation of V, leads
to the sysﬁem of p equations ip P unknowrn 841

iey, (Ry™ = N'I) @y=0 (12)

where R,I* is the reduced correlation matrix

ie, R1* = R1 -y
q1 is the latent vector corresponding to the latent
root )\1

N _f_u;iai.] and 7\2 = %13122 and SO on,

The linear homogeneous equation system (12) has only a
non-trivial solittion if its determinant is equal to

"ZeI'Q.’
ie, [R.I*— 7\11] =" 0 . (13)

The criterion regarding the number of common .factprs to
retain in the factor model 1s equal to the number of

principal components whose eigen values are greater than
one, The Invegstigator will usually be satisfied with an

even smaller number of factors.



, The characteristic equation (13) gives latent roots
M, N2, eeeese Nk = 0 and the assoclated orthogonal

Gharacte:.ristic Vectoi"s q.1 , q2’ seevscy qk

Jacobl method is used to find out the eigen values
and vectors of the matrix A, The idea of the Jacobl's
method 1s to pick up the largest off-diasgonal element
of the matrix and'to 'annihilate' it to zero by app}ying
a proper ofthogonal transformation. Then'the largest
remaining off-dlagonal eleﬁent:iound out and that 1s
annihilated., The procedure is repeated until the off-
diagonzl elements were sufficiently close to zero or
negligible, The diagonal elements of the matrix is a
close approximation to the elgen values, If the sugcessive
trensformation ﬁatrices were multiplied together, they
would produce an accurate approximation to the matrix of

elgen vectors (Mulaik, 1972).

Substituting the largest characteristic root 2 q

in (12) we' get corresponding characteristic vector.

9 = (G, G, eeeees dyg) ~(14)
The normalized characteristic vector a1 which fulfill
the gonditions (10) and (11) is | o

§1 =y
(%{. a,) 1/2 (15)
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then the first column vector of factorllbading matrix

+

'1s determined es &, = q,V% - (1e)

The second column vector of A is a, = aédTWE

end 8o on. This shows that By, By eeeess @TE scaled
. ’ 0 v

ndrmalized'characteristic'vectorsJ

The sum of the squares of factor loadings of the
variable gives.the corresponding. communality le, the
squared factor coefficients can be considered as the
percentage variance components of the common factor
(Harman, 1967). The iteration process is.continued with
the new estimates of communalitles until a specified
_ degree of convergence 1s occurred. The conirolling

\

equation to ensure that no vital information 1s lost is

SRS A - (7

| There are mahy‘equiﬁalent matrices which all
satisfy R,* = AX . It implies also the making of a .
reasonable cholce among the many possibilities to perform
a finalpiatrix A, which contains a suitable interpretation
of the relatlion ﬁnder’ré;éaféh. This results in the

rotation of the factors of the initial Watrix A.

3.2.5.5 Factor rotation

After extraction, the matrix of factor loadings



are submitted to varimex orthogonal rotation, the effect
of whichJisﬁto accentuate the iarger loadings in each
factor and suppress the minor loading coefficients; and
in this way improve the dpﬁortgnity of achieving a
meaningful-biblOgical intérpretatiog‘of“each factor
(Denis and Adams, 1978). 3

Kaiser's (1958) varimax rotation is one in which
factors ére rotated in such a way that the new loadings
4£end to be either'relativeiy large or relatively small
in absolute magnitude compared with the original ones,
The simplicity of a factor 1s defined as the variance of
its squared loadings |

| p "‘. 2 2 9‘- ‘ I
e T {p " (o2 B CF e 'hiz)zj - (18)
= i=1

2
P

where aim.is the new factor .loading for variable i on

factor m, where j. = 1,20--.0. Pp&m= 1,200'01“0 K

For entire factor matrix the normalized varimex criterion . .

1s

o= j=g ool '-'121&1&1 /oy )] (19)

p2

vhere h12 is communalitywof-ith.variable.



The fundamental rationale for attempting to establish
the normal varimax criterion is that thé normal varimax
solution is invarient under changes in the composition

of the variables.

3.2.5.6 Maximum likelihood factor analygis

Alternate methods that circumvent many of the
problems of principal factor analysis have been suggested.
One such method is maximum-likelihood factor analysis
proposed by Lawley (19&0) and 1ater which provides maximum
likelihood estimates for the factor 1oadings. Maximum
likelihood solution requires en estimate of the number
of common factors. A ML solution has the same general
appearance as a PF solution, but it does not have thel
latter's prbperty of accounting for a maximum amount of
variance for a specified number of factors. Also, while
a FF éolutiqn is uniqué for a given body of data, a ML
solution differs from anothef bﬁ a rotation tﬁérman; 1967) .«
When astiﬁating‘a poﬁuiafidn parameter, if a sufficient:
statistic exists to estimate the parameter, the maximum
likelihood estimator is qsually,based on it. Moreover,
the ML estimator is a cohéisteﬁt estimator as well as
frequently a2 minimum variance ésﬁimétor (ﬁulaik, 1972),
A well known property of ML meppodiof factor analysis is
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that it is independent of the units of measurement in the

characters.

The modei to be used in thi;s ‘method is (2). Also X
follows ﬁxultivériate normal distribution with mean vector u

and covariance matrix £ .

The sample covariance matrix of X is denoted by S
-, /
where S =.;.'1. = (X« -'K) (X x =X
- N .
X = N = XD(.
& =9

—

ch is the column vector of random sample of N (>p)

observations of X, o= 1,2, savese N, n = Nav

‘The distribution of S is Wishart with n d.f£. le, ns~¥ (< n)
| Here E (S8) = Z |

The logarithm of the 1ikelihood function for the sample,

omltting a function of the observations, is given by
N -1y
log, L = - énEloge ISI +tr (S=71)] (200

This 1s regarded as a function of A and 2., Considering
. ) ) owd_
these as methematical. variables we seelk values .o:‘c" A g
i A
denoted eventually by A and 14 that maximlze the value

L
of logef.. It is more convénient to minimize the function,

Fg (A3p) = log |s)+ tr' (5 =) - log IG[-P (21)



For the purpose of minimising the function F the partial
derivatives with respect to the elements of A and the
diagonal elements of p which is gilven by

OF o =1 «g) =]

=5 2 3 (£-8)=""A (22)
P = g =1 -8 -1

= lag [.s_’_ (5-8)= J (23)

are required.

Equating OF and 9F to zero and solving the resulting
2K oy
equations to get the estimates of A and ¥ (Lawley &

Maxwell, 1971). The estimation equations are independent
of the scale of measurement of the X s and consequently
the estimation equations for the a's can be expressed in
terms of the correlations rather than the covariances.

Lawley (1940)

e, R = AL + (24)
and 1 = I-diag AA (25)
A'r"la is diagonal (26)

premultiplylng both sides of (24) by A’ ?-1 vields
'\ -

(A 2y

This equation can be simplified to
1

A+ 1A =4 MR | (27)

! -
JA =A "' A (28)
where

Tk wlA (29)
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whiéﬁ is amenable to an iterative method of'solution
(Lawley, 1942).

*Starting with an arbitrary factor matrix
A = (§1’ @2'......,_§m) (usually loadings obtained from

principal component analysis) and corresponding

!
Wy, =1 --dlag AA (30)

the factor loadings B = (1;1’ By eeeenn, b ) are
derived from the iterative process, where

b= & W) / Cog' w7 (R agay )12

4

: - 1 -1
bp= (R % ay = a; = byby” w7lay) /

(I -1 R I
B2 w ™ (R %Tay = ay - bypyt w112

L] 4 ’uw L] - L J L] L]

-1 1 -,
;bm =(R-L]" am - am * sosses ™ bm-.‘ b m-x' 1]" am) /

1 el = 1
[am' "\.IJ (R '\IJ am - am - cessme "bm_.‘ bt'n_.i "‘1—7 am)\J 1/2

W2 = I - diag BB

The iterative process 1s repeated again and again until
the convergence 1s obtained to the desired degree of

accuracy. In standardised variates, the convergence



criterion has usually be taken 'as 0,005. The. final.
ﬁatrii A contains the ML estimates of factor loadings
for the assumed number of common factors. In this
iterative method it is tacltly aséuméd tﬁat néne of the
uniquenesé?vaﬁiéh;' In some cases the maximisaﬁion oflfhe
likelihood function leads to one or more of the variables
with uniqueness essentially zero. Inlthe literature of
factor analysis this type of improper solutions have

usually been known as Heywood cases. Joreskog has made

a provision for the Heywood case.

It is assumed that a maximum likelihood factor
analysis with a certain value of Lk has been performed
resulting in an improper solution'wifh m( 2k ) of the
unique variances zero. Assuming that this has occurred
for the first m wvariables, the dispersion‘matrix may be
partitioned as - ) . o

where

Matrices 811; 5{2’ S,q and S,, are of orders m X m,

mx (k-n), (p-m) x m and (p=m) x (k=m) réépéctively.



FaN A A - .
Then the estimates A11' Ay, and A,y are defined ‘as

~ | -1/2
and "'A,Iz =0) . (34)

'where - is an oithogonal matrix of order mxm that’
reduces 844 to diagonal form and A is a diagonal matrix
containing latent roots of 541. The matrices Eéz & {;2
are obtained by applying the maximtm likelihood method
to the conditional dispersion matrix

g .
S22,1 = S22 = B Sqq gz ' (35)

In the analysis of Séz.i the number of variables is

‘decreased by m and also the number of factors is decreased

by m. Then
N R F ~ o o
Ay Ao, | 0 )

are the maximum likelihood estimates of A and Y -

3.2.5.6,1 Tegt of significance for the number of factors

One of the main advantages of using the maximum -
likelihood method of estimation is that it enables us to. .
test the hypothesis Hk that, for specified k, there are



an
o

k common factors. After obtaining a proper solutlion the
hypothesis is tested by

A

U, = EM ~ (2 p+5)/6 ~ 21</3J £, ()

where
e ($)= =5 (5., - &, %%y vyl and
kLY L 197/ 1 g

Sij - g;ij represents the residual covarience of x, and

xh after elimineting k common factors. The criterion U
15 actually a measure of how much the residual covariances
differ from zero., Under H  for moderately large n, Uy

1]

is very nearly d;stributed.as”u;z with dk d.t.
2
where d, = % [Fp-k) - (P+ki1

This exactly imposes an upper limit on m for given p.
ie, The number of common factors cannot exceed the largest

integer satisfying

m <% (2 pt1 - (8 pr1) for a fixed number of p

variables.

The non significance of 7c2 means that there

would be no point in fitting further factors to the
data.



The computations were carried out on the VERSA IWS
sys%ém in the statistics department of the KAU. The come
puter programmes used for the analysis are given in

Appendix-VII.
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RESULTS

The results obtained by the application of appro-
priate statistical techniques on the data generated from
experiments conducted in the uplends (data A) and rice

fallows (data B) are given below.

4,1 Results of data A guglands!
4.1.1 PEreliminary statisticel snalysis.

The anslysis of varlance for simple lattice design
was pade for each character under study. The Fevalues
for testing equality of eamch character are given in
Table 44141, All characters except the rumber of fruiting
nodes per 20 cm were found to distinguish the genstypes,
The mean values of the various characters are presented

in Appendix I.

4,1.2 Analysis of dispersion

- Multivariate analysis of variance was done and the
total dispersion matirix was split up into ‘betweent® and
‘within' dispersion matrices. The beitween and within
dispersion matrices are given in Appendices IT and IIT
respeciively, The value obtained for Wilk's lambda stati-

stic was
A= 7.2 x 1078

S0 that V = 2327,33 which is distributed ms a
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Table #.1.] F=values obtained from the analysis of variance
for 15 characters - data A

ﬁg: Character F=values
1. Height of the plant 3.9557f*
2. No. of branches 5.6030:2
3. Height upto first capsule 3.,9170
4, No. of capsules on main stem 3.2020::
5e No. of capsules on branches 2.1530
6. o. of capsules/plant 2.3661**
T No, of fruiting nods per 1.1764
20 cm
8. Length of capsule 1.7876
9. Circumference of capsule 2.8971**
10. No. of seeds/capsule 2,6235
1. No. of days for flowering 6.07&5*ﬁ
12. No. of days to maturity 2.1138%*
13. 1000 seed weight 18.8237**
14, © 011 content 570.7724
15, Yield of seeds/plent 53,8164

¥#* Significant at 1% level
#* Slgniflcant at 5% level
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chi-square with 1485 degrees of freedom and 1s significant

at one percent level of significance.
h.1.3 Estimated correlation matrices

The analysis of covariance was dome for all the
comcinations of 15 characters under'study. The pheno-
typic)environmgnt and genotyplc correlation coefficients
for cgch pair of characters were calculated from the
corresponding variance=-covariance components and are given
respectively in Tables 4.1.2, 4.1.3 and h 1.4, The geno-
typlc correlation coefficients vere found to lie between
the range -0.7675 and 0.9837, The genetic correlation
between the number of capsules on main stem and numberl
of capsules/plant, numfer of seeds per capsule and circum--
ference of capsule, and number of capsules on branches
and.number of capsules per plant were found to be highly
positive whereas the number of days for flowering and

number of capsules on main stem was highly negative.

4,1.4 Pactor analysils

Initially'the elgen values and corresponding
eigen vectors of the'phenotypic; genotypic and environ-
ment correlation matrices were found out by Jacobi's

method. The phenotypic and environment correlation



Table 4,).L Pphenotypic correlazion matrix — data A

iy

X

X, X X, Xg Xg X, Xg Xg X10 Xqq X10 13 Xy Xy
.25 5657 0,5608 0.6055 0.7045 0.2592 0.4082 0.1732 0.0895 -0.2853 ~ 0,0755 -0.1171 0.1509 o©-BL%%
I3u5 -0.3703 0.3422  -0.046% -0.1050 -0.1711  -0.2574 -0.3018 0.3399 -0.0045 -0.0256 -0.0290 -0-0C047

-0.0494 0,3024 0.1522 0.1443 0.1068 -0.0581 -0.1076 0.2664 0,1389 0.0216 0,0421 ©:013%

0.3899 0.8581 0.3461 0.2617 0.1623 0.1529 -0.5071 -0.0523 -0.2313 0.0647 0-L010

0.7970 0.1302 0.2225 0,0077 =-0.0818 «0.1562 -0.0631 -0.194C 0.0657 o-G6O0bLA

7. 0.2985 .0.2982 0,1162 0.0546 ~0.4157 -0.0762 -0.2531 ©.,0849 o i4l

0.03%0 0.0646 0.020% -0.1294  0,06%4 -0.0811 0.1948 0 -1841

0.4146  0.3610  -0.2820 0.1107  -0.0354 0.1617 0- 2676

0.6369 -0.0538 -0.0105 0.0384 0.0020 017108 ()

-0.0729 0.1619 -0.0832 0,0613  a.1177%

0.2920 -0.0101 -0.0550 -©O~31069

-0.1385 0,1147 ~v-0cT0
0.0442 -“G.|BRL
- . c.0003




Table 4,1.3 Environment correlatisn matrix —data A

X, % Xg Yo 10 A4 Xy Vg %, Ris

0,7630  1.3163  0.2u16  3.0514 0,068 -0,3092  0.0237  -2.7I50  -3.083F  0:6300
202775 L0003 NL153 0 09,1487 0.0799 -0.2426  0.0%=T -0 338 -057S 0 000Gy
D.0572 0.2823 0.1541 =2.0339 0.0816 -0,2694 0.00%53 =0.2225 - 10754 0 HokT
0.8793  0.3722  0.1347 02,0239  0.0256  -0.1041 -0,0227  -0.0339  -0.0342 o 72|
0.8482  0.1894  0.1480  0.0625  0.0641  -0,1902 -0,7091  -0,0859  -0,0320 ¢ %LIZ
0.3478  0.1594  0,0629  0.C419  ~0.1737 -0.0740  -0.0715  -0.08L46: ¢ 5BL¥
-0,053%  0,0161 -0,0999  -0,0455 0.0364 0.0839  -0.0505 ¢ 3064

0.4504  ©0,2729  -0.2180 0.7778 0.0457 0.0040  6.1539C:

0.2226  -0,0680 0,0957 0.20885 0.0885 o oqqqhﬂ
-0.0534  0.2106 0.1887  =0.0757  0.09407
0.1082  -0.0299  -0.0085 -—o-1846
0.1981  -0.0723 0. 60HT

‘ 0.1381 ~0-0159

o015




Table 4.1.4 Genotypic

correlatisn matrix

— data n

X, X5 X, Xg Xg, %, Xq Xg X0 X4y Xio Xys Xig -
-0.0756  0,4359g 0.4690  0,6802 0.7168  0,2598  0.6610 0.2804 0.1107 —'6.2767 0.134F  -0.1231 0.2039 64401
0.4424  -0.7030 O.4110  -0.2826  -0.5020 -0.5018 -0.5273 -0.5870 0.5808 -0.0828 -0.0242 -0.0323 -¢. (147
-0.3905 0.2311  -0.1298 -0.1056 0.0584 -0,0789 ~0.2618 0.5532 0.2846 0.0877 0.0586 -0.1H47
0.2423 0.8478  0.4330 0.4603 0.2958 0.2853 =0.7675 -0.0900 -0.3267 0.0049 o0.-4¥3g
0.7277 -0.0418  0.3629 -0.0602 -0.2761 -0.1441 0.0096  -0.2876 0.7063 ¢-4400
0.2429  0.5426 - 0.1774  0.0702  -0.6188 -0.0797 -0.3761 0.1341 0-54c4
o.aséa 0.2370 0.4110 -0,3903% 0.1727 -0.3509 0.6135 o0-6354 o
0.3798 0.5174  -0.3954 -0.0192 -0.0912 0.,2927 ©.4265T\
0.9837 -0.0468 ~0.1510 -0.0184 -0.0025 6.2339
-2.0906 0.0949  -0.2010 0.0957 o.l440
0.4769  -0,0060 -0.0650 -06-3989
-0.3280 0.1935 —o-1944
! 0.0440 —o0-244¢
O il




mafrices were found to be non-negative definite but'géno-'
typlec correlation matrix was in indefinite form. The
latent roots of the phenotyplc andlenwironment correlation
méffices are given in Table 4.1.5. The variables with
high genotyplc correlation coefficients were eliminated

to make it in positive definite forﬁ and the latent roots
of the resulting positive definite genotypic correlation
matrix ls presented in Table 4.1.6.

The first five latent roots of the phgnotypic and
environment correlation métfiées'wére grea£er than one
and they aitogether contributed 71.03 percent and 6759
percent respeétively to fhe t&tal varlation. The first
four eigen values Sf genotyplc correlation matrix were
found to be greatef then one and explained 74 .66 percent
of the tofal variation.‘

4.,1.,4,1 Principal factor analysis

PFA 5f the phenotypic correlation matrix of order
15 wasg done with the squared multiple correlation coeffi-
clents (SMC) as first estimates of communalities and a
five factor solution was extracted. Twelve iterations
were needed for the convergence df communallties with a

difference of five units in the third decimal place. The



Table 4.5 Latent roots of phenotyplc and environment

correlation matrix - data . ~ A
s1. 'Phenotypégtgz;relation Environmegztggirelation
o Latent roots Percent contri- Latent roots Percent contri-
bution to . bution to
varience | variance
1. 4.2690 28,4600 4.6827 - | 51.2180
2.  2,2925 15,2833 1.9310 12,8733
3. 1.7180 11,4533 1.3102 847347
b, 1.2156 8.1040 1,1716 7.8107
5. - 1.1606 7.7373 1.0361 . 6.9073
6. 0.8903 5.9353 0.8891 5.9273
7. 048070 5.3800 0.8472 5.6480
8. 0.6578 4,3853 0.7928 . 5.2853
Qe 0.5397 345980 0.6963 4,6420
10. 0.4229 2.8193 0.5011 343407
11. 0.,3503 2.3353 ' 0.4334L 2.,8893
12. 0.2938 1.9587 0.4200 2.8000
13. 0.2452 1.6347 0.1663 1.1087
14, 0,1309 0.8727 0.1125 0.7500

15, 0,0063 0.0420 0.0098 00,0653




Table H.1.6 Latent roots of genotypic correlation
matrix of order 10 - data A

Percent contribu-

gg: Latent roots tion to variance_
1. 2.9770 29,7697
2, 1.7989 17.9895
3. 1.5026 15.0259
b, 1.1866 11.8663
5, 0.9985 9.9848
6. 0.6107 " 6.1066
7 0.5087 5.0868
8. 0.2072 2.0721
9. 0.1898 1.8985

10, 0.0199 0.1998




prinéipal factor loadings in the 12th iteration along with
communalities in the 11th and 12th iferations are summa-
rised in Table 4.1.7. The loddings ir the 3rd end 4th
factors in the 12th iteration lead to unsatisfactory
results and hence varimax rotation of loadings vwas applied
dnd the results are given in Table 4.1.8. The initial
and final estimates of compunalities have similarity
except for the 12th and 13th variables. The important
characters contributing toleach‘factor were isolated in

accordance with the procedure given in Harman (1967).

number of capsules per plant

number of capsules on branches

Factor I : number of cabsules on mainstem
yield of seeds per plant
Factor II': " number of branches
Factor III : height of the plant
height upto first capsule
_ circumference of capsule ...
Factor 1V : ' A '
nunber of seeds per capsule
length of the capsule
Factor V :  number of days to flowering

number of days to maturity



Table 4.17 Prinecipal factor salutipn in the 12th iterzation for the phenstypic
correlation matrix - data A

Comaon factor coefficlents Estimated commi=

Variable , - . nality ortgtan
3 4 5 CORTUTIA=
12th ite~ 11th ite- 730V
ration ration (S:C)
1 0.8185  0.2364 0.2514  0.2682 02092 09047 0.9037  0.7879
2 <0144 06979 =0.,2030  0.1333  0.0019 0.6038 0.6053  0.5256
3 0621746  0.5947 0.2552  0.4760  0,1719 07215 0.7200  0.6688
4 0.8286 =0,20453 0,2012 =0.2789 «=0.1660 0.8926 0.8921 0.9762
5 0.7204 04645 =0e3540 =0.0160 «0,0332 0.8614 00,8604 0.9654
6 0.9549  0.1108 «0.0776 =0.1944 «0,1323 1.005 1.004 0.9893
7 0.3086 =0,0038 0.,2595 =0,0045 =0,0853 01639 0.1698  0.199%
8 0.4302 =0.2077 =0.0294  0.3243 01570 0.3771 D.3766  0.3789
9 02368 «0.5141 =0,2468  0.4863  0,0981 0.6372 0.6390 0.5147
10 0.19581 =0.5791 =0.1641 065037 =0.1176 0.6591 0.6683 044804
11 =0.4583  0.3033 .=0,0330 0.3540 =0¢3253 0.5301 0.5855  0.5061
12 ~0.0238  0.0356 0.2347  0.3572 <=0.3768 0.3269 0.3276  0.7609
13 =0.2151 «0,0415 0,0377 0.0192 063729 0.,1888 0.1928  0.8565
14 0.1347 =0.0137 0.1505  0.,0320 0,001 0.0495 0.0406  0.1072
15. 0.7332  0.0343 «0,0793 =0,0995 045632 0.5633 0.5449

«0.1707

L9




Table 4.2 Rotated principal factor loadings for the phenotypic corre-

lation matrix - data A

Common.factor coefficients

Variable
1 2 3 4 5

1 0.5616 0.2364 0.6544 0.2891 0.1469

2 =0,0325 0.6979 -0,2574 0.2168 -0.,0491

3 -0,0321 0.5941 0.4560 0.3904 0.0847

A 0.7413 -0.2453 0.4502 -0.2617  =0.1089

"5 0.7736 0.4645 0.0134 0.2012 -0.0815

6 0.9402 0.1108 0.3003 -0,0558 -0.1228

7 0,1814 -0.0038 03537 -0.0853 ~0,0676

8 0.3028 =0.2477 042632 0.3871 0.0701

9 0.1825 «0.5141 0.0524 0.5793 ~0.0357

10 0.0954 <0.5791 0.1017 0.5066 ~0 o 2401

11 -0.5052 " 0.3433 -0.,1099 0.2318 -0.3888

12 -0.2113 0.0356 0.2937 . 0.1370 -0.4194

13 -0,2103 =-0,0415 =0.,0671 . 0.0619 0.3685

14 0.0394 -0,0138 0.2144 0.0414 -0,0055

15 0.7271 0.0343 0.1502 0.0692 =0.0774
Proportionate . .
variance 0.3560 0.2139 0.1482 N Py 0.06%9

accounted by
each factor

59
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The PFA method was applied to the environment
correlation matrix of order 15 and fifty-five iterations
were taken for the convergence of communalitles with a
difference of five units in the thirg depimal place. This
matrix was singular and hence SMC's were not estimable by
equation (7) so the largest correlation coefficient in
each array was takeq as the_initial_egtimates of corres-
ponding array communality (Harman, 1967). The PF load-
ings in the 55th iteration is given in Table 4.,1.9 along
with communalities in the 54th and 55th iterations. Vari-
max rotatlon of the loadings helped to derive meaningful
interpretation of the factor loadings and the results are
summarised in Table 4,1.,10., The variables with high load=

ings in each factor are given below.

number of cap/plant

yleld of seeds/plant

Factor T : number of capsules on branches
number of capsules on main stem
Factor 1I : height upto first capsule
height of the plant
circumference of capsule
Factor III : length of the capsule

number of seeds per capsule



Table 4.9 Principal factor solution in'the'55th7iﬁératibn_fbr'thé_eﬂvirpnment'
 correlation matrix - data A

‘Common factor coefficients ‘ Estimated communality

Vériaﬁle

- , o Original
1- 2 3 4 5 55th ite~ 54th ite= communa-
. ration ration 1lity

4 0.8278  0.3395  0.0072 0.0473  0.1512 0.8257 0.8257 0.7424
2 0:3039 0.1497 0.1506 =0.1088 =0.2075 0.1923 0.1923 0.3129
3 0.6362 0.6128 =0.0302 -0.0071 =0,0107 0.7813 0.7813 0.7424
4 0.8210 =0,1808 =0.0979  0.2207 0.2981 - 0.8538 0.8539 0.8793
5 0.8163 =0.2371 =0:0705 =0.2045 =0.3930 0.9238 09240 0.8482
6 0.9656 =0.2469 =0,1022 0.0325 =0,0060 1.,0049 1.0049 0.8868
7 0.3530 0.,0097 =0,0522 0.1974  0.1738 0.1366 0.1966 0.3722
8 0.2364  0.0773 0.548% =0.1982  0.0500 0.4043 0.4044 04504
9 0.1045 =0,1472  0.6541 =0:2709  0.1707 0.5630 0.5627 0.4504
10 0.,0952 =0.0197  0.4623 =0,0054 =0,0068 0.2233 0.2236 0.3226
11 =0,2673 =0.,2097 =0,1074  0.2455 0.0074 0.1873 0.1874 0.1082
12 ~0.0201 0.0820  0.,5188  0,6267 =0.2503 0.7317 0.7267 0.2106
13 -0,0850 =0,2186 0.3070  0,1042 0.1035 0.1708 0.1709 0.2088
14 -0.0817 =0.0930 0.0341 =0.1165 0.0615 0.0339 0.0340 0.1381
15 0.8725 =0.2534 =0,0102  0,0420 =0.0608 0.8310 0.8310 0.8868

CL



Table 4.1.16 Rotated principal factor loadings for the environment cbrre-
lation matrix - data A '

Cém&on faétqucoefficiegts

Variable .
L 2 °3. 4 5:

1 0.57G4 - '0.6559 0.0362 '0.1252 0.2154

2 0.1999 - 0.2790 041357 '0.0890 0.,2195°

3 0.2799 - 0.8796 =0,0140 '0.1642 0,0630

4 0.8113 0.1739 -0.0859 0.0880 0.3876

5 0.8333 - 0.2127 =0,0891 =0 0035 -0,4199

6 0.9707 0.2229 ~0,1021 0.0487 0.0358

7 0.308%4 0.0289 -0.0609 0.1202 0.3584

8 0.1737 0.1768 0.5821 0.0040  =0,0628

9 0.1608 -0,0685 0.7479 -0.1296 =0.0154

10 0.0935' -0.0053 0.4422 0.1318 -0.0410

11 -0,1398 =0+ 3467 =0,1645 0.1106 0.0907

12 =0.0559 =0.1103  0.3019 0.7907 0.0062

13 0,0259 «0.2714 0.2833 0.0858 0.0942

14 =0,0293 ~0.0945 0.0693 -0.1386 =0.0067

15 0.8906 - 0.1666 =0.0277 0.0942 =0 ,0206
Proportionate . , L

variance 0.4923 00,1095 017124 0.1036 0,076k

accounted- by
each factor

TZ



Factor IV number of days to maturitv’

Factor V

number of branches

number of fruiting;nodeq per 20 cm

A three factor-model was fitted to the genotypic
correlation matrix of order 10 by the PFA method. The
largest correlation coefficient in each array was taken
as the first estimate of the corresponding array: commu=
nality. 7Twenty-nine iterations were taken for the' con-
vergence of communalities with a 5 unit difference in the
third decimal place.. The‘?F‘loadings in the 29th itera-
- tion along with communalities in the 28th and 29th itera-
tions are given in Table 4.1.11 and-the rotated loadings
in 4.1.12, -The variables influencing substantially each

factor are shown below.

number of fruiting nodes/20 cm

Factor I : length of capsule
circumference.qf capsule
height of the plant

Factor II : he;ght upto first capsule

number of branches



Table ~#.1.1 Principal factor solution in the 29th iteration for the genotypic
correlation matrix of order 10 - data A

Variable Common faétor coefficients | Estimated 6ommunality
Code Original
1 2 3 29th ite- 28th ite- communality
L o ration ration _

1 0.7076 0.7303 -0.1510 1.0567 - 1.0563 0.6610
2 =0.5702 0.5145 0.2861 0.6717 0.6719 0.4424
3 -0.0178 0.6572 0.2643 0.5021 0.5021 0. 4424
7 0.8683 -0.,3857 0.6120 1.2773 1.2725 0.6135
8 0.7819 0.1335 -0,2452 0.6894 0.6895 0.6610
9 0.4491 -0.1318 -0.3682 0.3547 0.3547 0.3798
12 0.1151 0.1369 0.3787 0.1754 0.1759 0.2846

13 =-0.2137 0.0001 ~-0,6184 0.0740 0.0741 0.0877
14 0.3969 0.0149 0.3588 0.2865 0.2871 0.6135

15 0.3804 0.1485 -0.3196 0.2689 0.2689 0.4601




Table 4-1-12 Rotated principal factor loadings for the genotypic
correlation matrix - data A

Variable . . Common.factor cdefiicients

Code .
1 .2 3

1 0.7076 . 0.6867 =0 ,2907

2 -0.5702 - 0.5605 - 0,1801

3 -0.0179 - 0.6962 " 0.1308

7 0.8683 - -0.2588 0.6756

8 0.7819 ° 0.0831 . =0.2666

9 04491 ° «0.2021 -0.3353

12 0.1151 - 0.2082 0.3447

13" -0.2137 ~0.0328 -0.1652

14 0.3969 0.0847 10,3490

15 0.3804 0.0832 -0.3424.

Proportionate : :
variance 0.590.% 0.3400b 0.2495

explained by
each factor
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numnber of days to maturity

Factor III :

oil content

4,1.4.2 Maximum-Likelihood factor analysis

From the principal factor analysis-of the data
it was hypothesized that a2 minimum of five factors would
suffice to describe: the dependence structure parsimoniousiy
in the case of 15 variable study. The ML solutions were
extracted successively for each factor-model py Lawley's
iterative scheme. The sequence terminates éither when a
proper acceptable solution has been found from the point.
of view of goodness of fit or when the number of factors

becomes equal to a given upper bound.

"The'phenotypib correlation matrix of order 15 was
subjected to ML factor analysis initially with five
factors and then increasing the factors successively to
get the appropriate factor-model. The approximate %:2_

statistics for the solutions are presented below.

No. of factors Chi-square Degrees of No, of itera-

freedom tions
-5 66.24. 40 20
6 50.19 -~ 30 32
7 44 .55 21 209
8 11.84 13 77
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The initial estimates of factor loadings and unique
variances, vere obtained .from the principal component
method of factor analysis (vide Table 4.1.13). Seventy-
six 1terations were required for convergence with a five
unit difference ih.the third decihalhplace. The ML esti-
mates of factor loadings and unique variances in the 76th
and 77th iterations are presented in-Tables 4,.1.1%and’
4,1.495 respectively. The varimax rotation of the factors
aided.to. interpret the factors meaningfully and are summa-
rised in Table 4,1.16.: The variables which were highly

correlated with the factors are given below.
number of cap/plant
number of capsules on main stem

Factor T

number of capsules on branches

yield of seeds/plant

length of capsulé
Factor II : circﬁmference of capsﬁle

" number of seeds/cap

Factor III : height of the plant
height upto first capsule
Factor IV :

number of branchés



Table #-11xInitial estimates of factor loadings and corresponding unique variances

for 8 factors of the phenotypic correlation matrix - data A

bFactor 1oédings

Variable Unique
1 2 3 4 5 6 7 8 variance
1 0.8121  0.2476  0.2290 0.0318  0.1661 0.1258 0.2236 0.0883  0.8754
2 =0.1356  0.,7664  0.,1791 0.2650 -0.0421 =0.1635 =0.2751  0.0373  0.8126
3 0.2177  0.6152  0.5024  0.0593  0.2285 0.3046  0.1606  0,2007  0.8929
A 0.8285 =0.1893 =0.2743 =0.1809 =0,0955 0.1261  0.0930 ' -0.1113  0.8762
5 0.7145  0.4841 =0.0150  0.2190 =0.0866 =0.1592 =0.1264 =0.1289  0.858%4
6 0.9326 0,474 =0,1773  0.0071 =0.0957 =0,0003 =0,0120 =0.1286  0.9489
7 0.3733  0.0198  0.0122 = =0.5873  0.2062 0.4719 =0,3505 0.1084  0,8846
8 0.4986 =0.3133  0.4018  0,2006  0,1627 =0.2486  0.2672  0.2904  0.7924~J
9 0.2866 =0.5741  0.4660  0.3204 =0.0072  0.1666 —0.3047 -0.0384  0.8595
10 0.2248 =0.6341 0.5027  0.1309 <-0.1661  0,0161 =0.1994 =0,0393  0,7916
1 -0.4990  0.3584  0.5047 =0,0563 =0.2275 0.1117 =0.2081 =0.2139  0,7886
12 -0.0302  0.0368  0,5791 «=0.4911 =0.2734 <=0,1092  0.3863 =0.3420  0.9317
13 -0.2560 =0,0839 _-0.,0083 0.,2611  0.,7662  0.,1442  0.1069 -0.4721  0.9830
14 0.1732 =0.0201  0.2007 =0.4741  0.4801 =0.5844 =0.2816  0.0398  0.9484
15 0.7817 «0.1110 0.1093 =0.1121 =0.1203 =0.1475 <=0.2768  0.7666

0.0771




Table 414 Maximum likelihood estimates of factor loadings and unldue variances
in the 76th iteration of phenotypic correlation matirix - data A

Factor lbadings

Uniqgue

Variable
1 2 3 4 5 6 7 . 8 vewlence
1 0.6976 =0.1511 =0,4400 =0.2044  0.0969 =0.0989 =0.0934  0.2465  0.1666
2 -0.1003  0.1841 =0.0628 =0,6675 0.0687  0.0728 =0,0927 =0.,1670  0.4601
3 0.1232  =0,0021 =0.7449 =0.,4696  0.2185 <=0.0676 =0.3355 =0,0170  0.0443
A 0.8989  0.0150  0.0405  0,4263  0,0018 =0.,0426  0.0199 =0.0067  0,0062
5 0.7459° =0,0019  0,0981 =0.6479 =0.0405 =-0.0125  0.0371  0.0014  0.0111
6 0.9931  0.0005  0.0140 =0,0836 =0.0037 =0.0394  0.0029 =0.0048  0.0050
7 0.3131  0.0229 ~0.2247  0.1256 - 0,0876 =0.0186  0.0827 =0.0823  0i8135
8 02996 =0.4550 =0.1629 =0,0102 =0,0567 =0.0586  0.1354  0.3249 045460
9 0.1247 =0.8785 =0.0152  0.,1394 =0.0855 =-0.0848  0.0263 =0.1141 016497
10 0.0772 =0.6612 =0.0855 042220 =0.3644  0.0623  0.1251 =0;0111  0.4536
11 ~0.4349  0,0266 =0.2637 =0.2951 =0.,1505" 0.1623 =0,0565 =0.5192  0.3318
12 -0.0645  0.0662 =0.5456 =0,0038 =0.7134  0.2111  0,2700  0:0179  0.0671
13 ~0.2940  0.0115  0.0006 =0,0170 =0,0567 =0.9448  0.0039 =0,0039  0.0172
14 0.0829  0:0127 =0.2964 =0.0230  0.3515 =0,0808  0.8428 =0.0194  0.0623
15 0.7164 =0,1092  0.0526 =0.0070 =0.0259

0.0548

0.0355

0.4581




Table 4115 Maximum likelihood estimates of factor loadings and unique variancés

in the 77th iteration of phenotypic correlation matrix - data A

Factor ioadings

Variable : Unlque -
R 2 3 | 4 5 _6‘ 7 8 vgriancg
1 046975 =-0:1509  =~0.4405 -0;2051  0.0954 =0,0992 =0,0907  0.2466  0.1667
2 ~0.1008 - 0.1838 =0.0633 =-0.6675  0.0683  0,0725 =0.,0924 -0.1672  0.4602
3 0.1229  -0.0023 =0.7474 =-0.4701  0.2160 =0,0681 =~0.3313 -0.0168  0.0440
4 0.8992  0.0149  -0.0407 . 0.4256  0.0017 =-0.0424 =0,0197 =~0.0067  0.0062
5 0.7454  =0.0019  0.0988 =-0.648% .-0:0403 =0.0128 0.0367 0.0013  0.0110
6 0.9930  0.0005  0.0142 -0.0843 =0.0037 .-0:0394  0.0029 =0.0048  0,0050
7 10,3133 0.0227 -0.2244 . 0:1253  0.0873 -0.0186  0.0839 =0.0824  0.8135
8 042996  -0.4546 =-0.1618 =0.0105 ~0:0571 =0:0587  0:1366  0.3255  0.5460
9 0.1248  -0,8790  -0.0148  0:1393  -0.0860 -0,0848  0:0266 -0:1134  0.1639 Y

10 10,0774  ~0.6608 -0.0845 - 0.2219 .=0.1646  0,0624  0.1260 -0.0102  0.4540
11 ~0.4351  0.0261 -0.2637 -0.2949 ~0.1512  0.1621 =0:0545 =0.5191  0,3319
12 -0.0644  0.0665 =0.5423 .-0.0039 =0.7140  0.2110  0.2749  0.0179  0.0671
13 -0.2950  0.0116  0:0009 =~0.0162 =-0.0568 =0:9448  0.0041 -0,0387  0.0172
14 0.0829  0.0125 =0.2919 ~0.0230 . 0.3527 -0,0898  0.8439 =0,0194  0.0623
15 0.7164. =0.1081 00531 =-0.0962 =0.0068 =-0.0260  0.0546  0.0356  0:4581




Table %4.1.16 Rotated maximum 1ikelihood estimates of factor loadings
of the phenotypic correlation matrix - data A

Factor 1oadings

8

Variable
' 1 2 3 4 5 6 7. 8
1 0.6975  =0,1509 =0.4373 «0,0702. =0,0997. =0.0992 0.0338 02466
2 -0.1008 .  0.1838. =0.2051. =-0.6089. 0.0530  0.0725 =-0,0460 =0.1672 -
3 0.1229 . =0.0023. =0.9368. =0.2140 =-0.0761. =0,0681 =0.0285 . =0.0169
4 0.8992 . 0.0150. 0.0796  0.4203 =-0.0122 =0.0424 -0.0099 =0.0068
5 0.7454 . <=0.0019. =0.0751 =0.6539  0.0020. =0.0128 =0,00002- 0.0014
6 0.9930 0.0005 =0.0098. =-0,0850  0.0027 =0,03%4 =0.0014 -0.0043
7 0.3133 .  0.0227 .-0.1558  0.1765 =-0.0529. =0,0186 0.1499 -0.0824
8 0.2096  =0.4546 -0.0739  0.0108 =0.1598 =-0.0337 0.1308  0.3255
9 0.1248  =0.8790 0.0662  0.1257 =0.0866 =0.0848 =0.0063 =0.7135
10 0.0774 -0,6608. 0,0912 0.2044 =0,2119. 0.0624 0.0659 - -0.0102
11 -0.4351 . 0.0261. =0,2660 ~0.2290. =0.2356  0.1621 =0.0602 - ~0.5191
12 -0.0644 0.0665 =0.1101. 0.028% -0.9281  0.2110 0.0716 - 0.0179
13 -0.2940 0.0116 0.0178 =0,0222 -0,0486 =0.9448 =0,0184 . =0.0039
14 0.0829 = 0.0126 =0,1078  0.0078 =0.0629 =0.,0898 0.9522 -0.0194
15 0.7164  =0.1081 0.0367 -0.1111 0.0043 =0.0260 0,0373  0.0336
Contribution . : . . o S
of each 3.8715 1,490  1.3530  1.1880  1,0230  1,0110 0.9705  0.4860
factor ’
Proportionate N
variance 0.2581 0.0994  0.0902  0.0792  0.0682  0.0674 0.0647  0.0324

accounted by
each factor




Factor. V : number of days to maturity
' Facﬁor VI 1000 seed welght
Factor VII : seed oil content

Factor VIII : nunber of days to flowering

The residual matrix after removal of 8 factors is glven
in Table 4.1.17. The largest element of thg fesidual
matrix was 0.,0398. ‘The‘gpodness of f£it test is accepted
for the 8 factor-mo?el.

© The ML solutions were estimated for the environ-
ment correlatidn matrix of order 15, starting from a five
factor model, The goodness of £it of the models with

5, 6, 7 and 8 factors are given below,

Number of Degrees of Number of
factors Chi—sguare . freedom iterations
5 89.43 40 17
6 62.26 30 18
7. 54 .58 . 21 22
8 31.13 .13 37
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Table 4.147 Residual matrix after removal of eight factarsh.phenotypic correlation matrix - data A

o
-0.0175
0,0007
0.0008
0.0014
-0.0011
-0,0113
-0.0110
0,0058
-0,0200
~0.0009
0.0004
-0.0001
0.0004
0.0105

o]
0.0029
-0,0009
-0.6015
0.0011
-0,0188
Q.0006
“'0.0043
-0.0139

-0.0155

0.0017
-0.0C01
0.0003
0.0399

Q
=0.0001
~-0,0002

0.0001

0.0033

0.0022

" -0.,0013

0.0039
0.0011
-0,0002
0.0000
~0.0001
-0.0016

0
-0.0000
~0.0000
-0.0002
-0.0005
-0,0004
0.0006
0.0011
0.0000
0.0000
0.0000
0.0018

0
~-0.00c0
0.0005
~0.0010
-0.0005
0.0010
0.0017
=-0.0001
0.0000
Q.0000
0.0019

0
0.0001
0.0010
0.0004

-0.0006

-0.0013
0.0001
0.0000
0.0000

-0.0021

e .
~0.0603
0.0191 _
=-0.0315
-0.0378
0.0035
-0.0003
0.0010
-0.0104

0
0.0001
0.0063

=-0,0283
0.0007
0.0000
0.0009

=-0.0095

0]
0.0009
0.0040
=0.0003
0.0000
-0.0004
0.0004

0
=-0,0123
0.0007
-0.0001
0.0007
0:0108

0.0002
-0.0001
0,0008
=-0.0021

0

0.0000
-0,0001
-0.0003

o}
0.0000
0.0001

0.0002

0

g8

L |
€]
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Chi;sdﬁare value revealed that an eightlfactor-model
with a 0.005 convergence criterion can be accepted at the
0.001 probability level. Thirty-seven iterations were
taken for the convergenée. The initial estimates of
factor loadings and unique variances obtained from the
principal component method of factor analysis are shown
in Table 4,1.,18., The ML solutions in thé 36th and 37th
iterations are summarised in Tables 4,1,19 and 4,1.20
respéctively.' The varimex rotated loadings aré présented
in Tablg 4.1.21. The residual correlation matrix after
removal of 8 factors is.given in Table 4.1.22., The varia-

bles influencing the eight factors are

numbef of capsules per plant-
Factor I : number of capsules on main stem

yield of seeds/plant

Factor I

helght of the plant

helght upto first capsule

length of the capsule
Factor III: circunference of capsule

number of seeds per capsule

Factor IV;: nunber of branches



Table 4.1.18Initial estimates of factor loadings and corresponding unique variances for
8 factors of the environment correlation matrix - data A

‘Factor 1oédings

Variable Unique
1 > 3 4 5 6 - 8 'variance

1 0.8452 -0.0310 0.1245 0,0979  0.1322  0.2854  0.0529 =0.1571 0.8668

2 0.3644 0.201% 0.4157 0,0555  0.1737 =0.6696  0.1908  0.2865 0.9463

3 © 0.6609 ~0.0657 0.3688 0.1935  0.3022 - 0,2032  0.1618 =0.1246 0.7889

b 0.8268 -0.1186 =0.2762 0.0389° =0.0875  0.0724 =0,0295  0.0049 0.7892

5 0.8090 =0.0619 =0.0532 «0.1824 =0.2536 ~0.2409  0,0241 =0,0449 0.8194

6 0.9412 -0.1037 =0.,1816 ~0,0666 =0.1689 =0.0922 =0.0085  0.0092 0.9712

7 0.4135 -0,1586 =0,3585 0,1781  0.5337  0.1590 =0.1336  0.4133 0.8552

8 0.2719 0.6610 0.,2238 =0,0653 =0.1244  0.3511  0.0308  0.1428 0.7326
9 0,1193 0.7249 =0.0578 =0.2174 «0.1077 - 0.1334 <0.0121  0.4597 048312y,
10 0.1069 0.6541 -0,0148 0.1848 =0.2439 =0.0191 =0.,1619 =0.3216 0.6631™

1 ~0.3227 -0.1729 =0.5074 0.2903 =0.3855  0:0352  0.,4278  0,2174  0,8559

12 -0.0170 0.4488 =0.2116  0.5896  0.2131 =0.1090  0.3943 ~0.1997 0.8468

13 =0,0993 0.4503 ~0,5527 =0.1369  0,3580 =0,2277 =0.3130 =0.1860 0.8494

14 ~0.1018 0.0791 =0.1766 =0.7107  0.2771 0,0604  0.5397 =0,1869 0.9595

15 0.8830 -0,0272 ~0.2294 -0,0958 =0,1623 -0.1038  0.0103 =0.0754 0.8852




.of the environment correlat;on_matrix —.data A .

Table H.)./9 Maximum likelihood estimates of factbr'loadings in the 36th iteration

- Variable

Factor idadings .

- . Unique
L 2 3 A 5 6 7 8 'variance
1 0.7264  -0.6030  0.0147 -0.0498  0.0153  0.0478 -0.0049 ' =-0.1038  0,0927
2’ 0.2789  0.0694 =0,0476 -0.8768  0,1618  0.0040 =0.0016 0.2498  0.0578
3 0.4712 =0.6530 =0.,1192 =0,2311. 0,0732 -0,0428  0.0340  0,0277  0,2748
4 0.880  0.0330 =0,0029 =0.0226 =0,5041  0,0182 -0.,0078 =0,4396  0,01111
5 0.8448  0.0090 -0,0032  0,0854 . 0.0248  0,0094 =-0.0109  0,5147 00131
6 0.9949  0,0225  0,0008 0,009 =0,0039 =~0,0140 0,015 0.0137  0.0089
7 0.3461 -0.1313 =0.0455 =0,0222 =-0,0039 =0,0721  0.0142 =-0,18253  0.3341
8 0.1679 -0.1765  0.51517 =0,1368 -0,0082  0;1630 ~0.0461  0,0349  0.6267
9 0.0586  0.0051  0.8322 =0,1797 =~0,0842 =0,0597  0,1546  0,0705 0, 23220
10 0.0502 ~0.0514 ~ 0.4199 =0,0748  0,0809 ' 0,1225 =0,2099  0,0445  0.7453
1 -0.1809 ' 0.2683 -0,0402  0.2029 =~0,0128 -0,0649 =-0,7079 -0,1151  0,8232
12 -0,0651 - ~0.0788  0.2197 =0.1484  0,0823- =0.0748 =-0.6235 =-0,0880  0,510%
13 -0.0751  0.1447  0.2795 =0,0009 - ~0.1507 =0,1776 =0,2544 =0,0456  0,7842
14 -0,0896 -0,0115 =0.,0195 =0,0974 =-0,9586  0,0009 =0,0038 . 0,1473  0,0413
15 0.8943 © 0,0029  0,0628 . 0,0567 ' -0,0225 =0.1075 0.1711

10,0863




Table ~.1.20 Maximum likelihood estimates of factor loadings and unique variances
-in the 37th iteration of environment correlation matrix - data A

ngactof 10&@ings

Variable . Unique
1 2 > 4 - 92_5' | :sﬁ g o 8 .variance
1 0.7265 =0,6033  0,0142 '=0,0496 0,0159  0.0474 =O. 0049 -0.1033  0.0923
2 0,2787 ° - 0.0696 =0,0477 =0,8777 0.,1602  0.0041 .0017,, 0.2479  0.0578
3 0.4710  =0.6527 =0.1197 =0.2313 '0.0732 -0.0433  0.0339 = 0.0278  0.2751
N 0.8897 040328 =0,0028 =-0.0213 <0,0483  0.0179 =0.0077 . =0.4397  0.0109
> 0.8447  0,0093 '=0,0032  0.0837 '0.0226  0.0093 ..=0.0107 . 0.5155  0.0129
6 0.9948  0.0225  0.0000  0,0088 <0.0038 =0.0143  0.0153  .0,0140 0,009
7 0.3460 =0,1311 =0,0452 =0,0217 =0,0029 =-0.7014  0.0136 =0.1820  0.3353
8 0.1679 =0.1769  0.5147 20,1369 =0.,0085  0.1634 ~ =0.0466  0.0345  0.6267
2 0.0585  0.0044  0.8326 =0,1800  20.0847 =0.0595  0.1538  0.0696  0.2317
10 0,0503 =0.0515 ~ 0.4196 <0.0750 '0.0807 0.1230 =0.2108  0.0446  0,7450
11 -0.1808  0.2684 ' =0,0399  0.2033  <0.0123 =-0.0648 =0.1074 . =0.1147  0.8233
12 -0.0650 =-0,0788  0,2188 =0,1481 10,0826 =0,0741 =0.6227 . =0.0880  0.5120
13 -0.0730  0.1445  0,2797 =0,0008 =0.1505 . =0.1773 ..=0.2354 . =0.0463  0,7839
14 =0.0895 . =0.0116 =0,0196 =0.0974 =0.95%4  0.0009 =0.,0038 . 0.1425  0.0413
15 0.8943 0.0562 <0.0509 =0.,0227 =0.1074  0.0865  0.1710

0.0031

0.0627




Table 4.1.21

Rotated maximum likelihood estimates of factor loadings for the
environment correlation matrix = data A

Factor loadings '

Varlable
B 1 - 2 3 4 5 6 7 8
1 0.5445 ~0.7716  0.0142 =0.0202 ' 0.0159° 0.,0228 =0.0049 =~0.7202
2 0.2872 -0.0053 =0.0477 =0.,9120  0.1602  0.,0050 =0.0017  0.0038
3 0.2850 =0.7528 =-0,1197, =0.2304  0.,0732 -0.0497  0.0339 =0.0252
4 0.8676 =0.1998 =0.0028  0.0968 ' =-0.0483 -0,0721" =0.0077 =0.4237
5 0.8180 -0.2108 =0,0032 =0.0569  0.0226 0.1175  =0.0107  0.5058
-6 0.9664 =-0.2372  0.,0009  0.0048 ~ =0,0038 =0.0%07 = 0.0153  0.0185
7 0.2999 =0.2166 =0,0452  0.0277 ~ =0,0029 =0,7238  0.0136 =0.0308
8 0.1161 -0.2145  0,5147 =0.1412 ~ -0.0084  0.1591 - =0.0466 =0.0373
9 0.0576 =0.0109  0,8326 =0.1921 ~ =0.0847 =0.0542  0.1538  0.0310
10 0.0351 =0.0628  0,4196 -0.0842 ~ 0.,0807  0.1251 - =0.2109 -0.0032
11 -0.1048  0,3062 =0.0399  0.2266 =0.0125 =0.0751 =0.1074 =0.0415
12 - -0.0833 =0.0592  0.2188 =0.1192  0,0826 =0.098: =0.6227 =0.1061
13 -0.0329  0.1585  0.2797  0.0116  =0.1505 =-0.1827 =-0.2354 =0.0069
14 -0.0834  0.0121 =0.0196 =0.1318  -0.9594  0.0241 -0.0038  0.1087
15  0.8643 =0.2298  0.0627  0.0311 =0.0509 =0.0016 =0,1074  0.1010
Contribution . -
of each 3.6975 “1.5750 1.2855 1.0470 1.0005 0.6390 0.5385 0.4890
factor ' : .
Proportionate
variarice o S S '
%;cggggéd 0.2465  0.,1050 0.0857 0.0698 0.0667  0.0426  0.0359  0.0326

factor
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Table 4.1.21Residual matrix after removal of eight factorsh_environment correlation matrix - data A

0
~C,0001
0,6005
0.0013
0.0014
-0.0015
00,0005
-0.0055
0.0029
-0.,0128
=0.0144
C.0044
0.0051
-0.0001
=0.0057

0
-0.0001
0.G003
0.0003
-0,0003
0.0002
-0.0018
0.0006
-0,0012
-0.0038
0.0006
0.0001
0.0000
-0.0006

o]
-0.0034
-C.0038

0.0042
=0.0023
=-0,0022
=0.0041
0.,0425
0.0381
0.0051

0.0279
0.0006
0.0119

0
-0,0002 0
0.0001 0,0001
0.0006 2,0006
0.0011 0.0013
-0.0009 -0.0010
0.0019 0.0015
0.0015 0.0017
-0.0029 -0.0028
0.0008 0.0008
0.0000 0.0060
- 0,0029 0.0028

o]
-0.0009
-0.0004

0.0009
=0.0020

0.0007

0.0036
=0.0012

0.0000
-0.0036

o
0.00€9.
=-0.0012
-0.0093
-0.0101
-0.0040
0.0107
=0.0002
0.0026

0
0.0019
=0.0017
=-0.0823
0.0287
-0.0428
0.0004
-0,0190

]
0.0005
0.0309

~0.0035

-0.0044
0.0001
0.0053

e
-0.0070
-0.0180

0.0688
=-0,0007

0.0042

0

0.0757
=0.1145

0.0012
-0.0413

o)

-0.0079 .

0.0003

0.0009

0
0.0001 0
=0.0015 -0,0002

BF:




Factor .V : seed 01l content

Factor VI : number of fruiting nodes/20 cm
Factor VII : number of days to maturity
Factor VIII : number of capsules on branches

Three and four factor solutions were extracted

for the genotyplic correlation matrix of order 10, The

goodness of £it of the factor-model for these factors

are summarised below.

Nﬁmber of

; Degrees of  Number of
factors Chi-square freedom iterations
3 226,69 18 Lo
4 215,51 B 53

The tests resoundingly rejected the three and four factor

models and suggested that a higher-dimensional or non-

. linear mechanism had generated the observed correlations.
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There was no scope for the acceptanée of higher-dimen~
si&nal‘fgctof models. The initial estimates of loadings
and unique vapiances for a tpree factor‘modgl are giveﬁ
in Table 4.1.25. ‘The ML solutions in the 45th ané 46th
iterations are given in Tables 4.1.24 an& 4.1.25 res-
pectively. Eortybsix iterationslwere taken for the}con-
vergence with a five unit difference in third decimal
place. The.rotafed loadings are given in Table 4,1.26.
The variables influencing the three factors are

number of fruiting nodes/20 ecm

Factor I : circumference of capsule
length of the capsule
height of the plant

Factor II : height upto first capsule
yleld of seeds per plant

Factor IIT : oil content

nunber of brenches

The residual correlation matrix is given in Table 4.1.27

4.2 Results of data B (rice fallows)

4,21 Preliminary statistical analysis

The analysis of variance for simple lattice design



Table 4..23Initial estimates of factor .loadings and corresponding
unique- variances for three factors of the genotypic
correlation matrix - data A

Variable ' " Factor loadingé.

Code - Unique
1 2 3 variance
1 0.6662 0.4666 - ' 0.4643 0.1228
2. -0.6252 0.5654:  0.2306 '0.2362
3. -0,0452 0.8125- 0.3079 0.2423
7 0.7271 0.0349 - =0.5477 0.1701
8 0.8469 0.0243 - 0.24617" 0.2237
9 0.5652 -0.3841 - . 0.2499 - 0.4706
12 0.1326 " 0.5576 - =0,5038 - 04177
135 -0.2843 ~0.2056 0.3277 0.7695
14 0.4646 0.3092 =0.3774 0.5460

0051 Oll' -0.0501 ! ) 0.4631 - 005225

B N
\n

r




Table 4.+.24 Maximum likelihood estimates of factor loadings and

unique variances in the 45th iteration of genotypic.
correlation matrix - data A

Variable Factor 1oaaings.

Code Unilque
1 2. 3 variance
1 . 0.4605 0,8464 0.1434 0.0510
2 0.6877 0.3816 -0.5714 0.0548
3 -0.1080 0.6065 -0.2387 0.5635
7 0.9187 -0.1391 -0.3216 0.0331
8 0.6653 0.3662 0.3163 0.3232
9 0.4136 0.0302 0.4361 0.6378
12 0.1755 0.0650 -0.0953 0.9559
13 ~0.2685 -0.0495 0.2886 0.8422
14 0.5025 0.0619 -0.4802 0.5130
15 0.1958 0.3888 0.2507 0.74TT

O
02



Table H-- 25 Maximum' 1ikelihood estimates of factor loadings and |

unique variances in' the 46th iteratlion of genotypic
correlation matrix = data A

Variable

Factof“loadingst
Code ' — i Unlque
1 2 3 N variance
1 0.4572 0.8479 0.1470 0.0504
2 =0 .6895 0.3815 =0.5705 0.0537
3 =0.4103 0.6069 ~0.2359 0.5638
7 0.9195 =0,1341 =0.,3225 0.0325
8 0.6637 0.36T4 0.3176 0.3256
9 0.4135 0.0300 0.4359 0.6381
12 0.1754 0.0660 -0.0938 0.9561
13 <0 .2683 -0.0519 0.2890 0.8418
14 0.5021 0.0658 -0 ,4800" 0.513%
15 0.1940 0.3886 0.2519 0.7479

L6



" Pable 4.1.26

Rotated maximum likelihood esfiméfeé of factor

loadings of the genotypic correlation matrix --

data A
 Variable ‘Factor loadings =
Code . e
1 2 3
1 0.1921 0.9201 -0,2572
2 ~0.7323 | -0.1058 -0,6315
3 ~0+2609 0.3918 ~0.4632
7 -0.9383 0.0033 - -0.2951
8 -0:5138 0.6362" .0.0871
9 0.3611 0.3262" 0.3536
12 041553 0.0658 =0.,1243
13 ~0.2603 0.0035 0.3007
14 0.4921 -0,0075 -0,4946
15 0.0619 . 0.4958 0.0498
Contribution of 2.2539 1.7727 1.2519
each factor
Prbportiona'te L .
varlance 0.2254 0.1773 - 0.1252

accounted by
each factor

b6



Table 4.27Residuzl matrix after resoval of three factors - data X

0
0.3000
0.0104%
0.0006
-0.0007

0.0018

0.0126
0.,0010

«0,0109.

0.0049

0
0.0003
-0.0008
-0.0032
00050
-0.0406
=0.0245
0.0150
0.0145

0
0.0012
~0,0165
0.0513
Q.2418
0.1577
-0.0392
=0.2997

~0.0031
0.0014
- =0 .0099

""'0. 01 79
0.0058

o

w0 1500

0.0141
0.0877
0.0749

0

~0.1846
-0,0319

-0.3029
0.0522

0
04,0561

k" -001 8014

¢
043208 -

-0, 2462

0
0.1145

0
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was made for each character undér study. Table 4.2.1
shows the F-values for tesfing equality of varietal °
means. All characters were found to distinguish the
genotypes. The mean values of the types in respecf of

each character are presented in Appendix IV. -

4.2.2 Analysis of dispersion

Using the multlvariate analysis of variance the
total dispersion matrix was split up into 'between' and
'within' dispersion matrices, The between and within
dispersion matrices are given in Appendices V and VI
reSpectively,- The W;lk!s lambda statistic was calculated
as
A= 3.5 x 1078

80 that V '= 2430,62 is a chi-square with 1485
degrees of freedom and is significant at one percent

probability level.
4,2,35 Estimeted correlstion matrices

fnalysils of covariance was done for each pair'of
characters under study. The phenotypic, environment and
gehotypic correlation matrices were calculated and are
presented ianable 4.2.2; 4.2.3 and 4.2.4 respectively.

The estimated genotypic correlation coefficlents lies
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Table 4.2.1 F-values obtained from the analysié of variance
for 15 characters - data B

glﬂ: Character | F-values
0. ) ) ' . ) .
. A
1. Height of the plant - 2.2946
. . ' . ! H
2. No. of branches 1 ‘ 2.67T44
. ' Rt
3 Height upto first capsule 4L.8476
%
4, No, 'of capsules on main stem 2;5646*
. . o , ’ %
5. No. of capsules on branches 2.2520 *
' + .I . . - 1 **
B No. of capsules/plant 2.0308
. ' L
7o No,., of fruiting nods per 3.5034
/ 20 cm ' :
’ t. v ' N N **
8, Length of capsule 7.+.6995
' *
9. Circumference of capsule 5.5623 *
| ' **
10. No, of seeds/capsule '7.6366
o ' ' Ho¥
11, No. of days for flowering 6.2338
’ *¥%
12. . No. of days to maturity 4,9308
%
13. »1000rseed weight | 5.7189
14, 01l content . 5 1794.758**

15, Yield of seeds/plant 1-3797*




Table 4.1-2 Phenostypic correlatisn matrix ~data B

-

N e

X, s X, Xg Xg Xy g Xq “10 X119 X2 %92 hEVA A5
0-387h  0.3822  9.3615  0.4907  0.5302  0.1720  0.0278 -0.0907 -9.0549  0.2736  0.3325 '+ 0.1-21 1.0525 ©0-378%
Q,4028 -2.273%8 70,6390 00,4516 -0.0808 -2.,1451 -0.1619 -2.1512 0.2900 Q.17737 J.2355D ~0.u223 0304
=3.2130 0.%705 -0.0182 0.1177 =3.0130 =0.0150 =2.0786 0.6074 0.4787 0.13G8 0.02%4 -0 618}
0.2873 0, 6R61 0.2195 -0.0139 -0.1393 -0.1242 -0.3274 -0.2058 =0.0350 -0.0625 38
0.8538 0.0760 -0.0026 -0.2015 -0,1822 0.0398 0.1202 0.0561 -0.0083 0.6l
0.1581  -0.0108  -0,2191 -0.1987 - -0.1217  -0.0046 -0.0334  -0.0385 o &40
T 0.1870 0.0678  0.0951  0.1439  0.1167  0.0217  5.0750 o 0409
0.1664  ©0.2780 -0.0900 -0.0563  0.0365  0.1058 ¢ oust
0.7603  0.0646 -0.0513  0.1052  0.,2705 -0.1797(D
0.0284 -0.0634 0.0336 0.3016 -~o-1007
0.5347 0.02565 0.0388 -o0-1107
0.2712 -~ -0.0669 o-oil4
: 0.1808 0- 038/
-5.0330




Table 4.1,3Environmental correlation matrix

- data B

X

X

X

X

X

X

X

L

X

x

2 3 - 5 6 7 8 9 10 A1 12 N 13 T4 i3
0.3091 0.5091 0.5-00 2.546% 0.65667 0.3200 0.3169 0.1924 0.1361 O.OLa_73 0,164 0.1369 0.0869 G- He92%
C. 3031 0.1387 0.5151 D.4370 0.1406 -0.0186 0.0617 -0,0776 0.2017 0.1664 -0.0924 -0.0275 o028 59
0.0957 0.2337 0.2088 0,274 0.0638 0.0207 -0.0865 0.0834 0.1642 0.1234 0.1492  o-1119
0.443%7 ) 0.7550 0.3935 0,3050 0.1840 0.0816 _O'.1 144 ~0.0154 0.0757 -0.0265 0-H&1H
0,6223 0.1882 0.2043 0.2552 0.1059 0.0906 0.2768 -0,0464 -0,0089 D- G107
0.3064 0.2789, 0.2641 0.1123 0.0209 0.1965° -0.0025 =0.0184 0-L509
0.1387 =0,0798 -0,0524 0.1910'2 0.1624 0.,0584 -0.1151 0.1371
0.1872 0.3883 0.0242 0.71010 0.1233 00,0312 0-3020
0.3626 =0.2160 -0.1487 -0.1369 -0.0077 o lo4G g
-C.0427 0.0233 -0,1252 -0,0855 0.13717
0.2219 0.6601 -0.0375 0. 0DEOG
0.2100 0.0624 0. 0LAY
0.0029 0-012L%
o004




Table 4,2.4Genotypiec correlation matrix —.dara @

X, Xg X, 'x5 Xg X Xg Xg %10 xﬂ. X1 » Xy X4 Xig
X4 0.4994  0.6954  -0.0435 0.4048  0,3020  0.0162  -0.1613  ~0.3271 ~0.1879 0.5557;';‘. 0.5223  0.0680 0.7810  6-ib58
X, 0.4990  -0.3272  0.8060  0.4771 -0,2945  -0,2337  -0,3292 -0.2097 0.3708 ©0.1982  0.1969  -0.0039 0. M4L5%
X3 -0.6335 0.1286 -0.2303  0,0254 -0.0413 -0,0367 -0.0731 0.8331 0.6347 0.2476 0.0214 -o.2.488
.92 0.0856 0.5967 0.0601 -0.1946  -0.3671 -0.2500 -0.4881 -2.3585 -0.2622 -3.0%509  0.2907
X5 0.8506 -0.0390  -0.1334  -0.5676 -0,3861 0.0063 -0.0055  0.1643  -0.0126  6-G76!
X5 .- . -.. =0.0039  -0,2129 :0.6509_ -0,4462 -0.2531 -0.1911  -0.0046 .-0,0597- 0-G307
X, ) ) 0.2163 0.1597  0.1646  0.1204 0.0896 . -0.0056 0.1026  ©-0L%3
Xg 0.1603  0.2484 ~0.1267 .-0.1161  =0,0454 0.1189 =o 2.3I% g
X9 0.9198  0.1727 -0.0079  0.2388  0.3204 =—0-&176 (O
X1g- 0.0508 -0.0957  0.1057 0.3406 =& 4440
%11 0.6715 0.0094 0.0462 ~p.-H334
X12 0.3105  -0.0835 -0-00!5
%13 ‘ 0.2388 o150
Xy -6- 0824
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between the range ~0.6776 and 0.9198.. Thelgenotypiq,r‘
correlation betweén the numher of'capsu;es on branches
and number of capsules per plant, circumigrence_of cap-
sule -and number of seeds-per.cépsulg, height upto first .
capsule and number of days to flowering, and qumber-of:
days to flowering and number of days to maturity were
highly positivelwhefeas the height upto f£irst capsule and
mumber of days to maturlty was highly negative. .

4,2,4 Factor analysis

The phenotypib and environment correlation matrices
were positive definite while the genotypic. correlation,
metrix was in indefinite form. The eigen values and
corresponding eigen vectors of the phenotyplc, genotypic
and environment correlation matrices were calculated by
Jacobl's method, The eigen values of the phenctypic and
environment correlation matrices along with contribution
of eacﬁ latent root to the total variation are given in
Table 4,2.5., To make fﬁe genotypic correlation matrix
in positive definlite form, variables with high genotypiec
correlation coefficients were eliminated. The latent
roots of the resuliing genotyplc cérrelation matrix is
glven in Table 4.2.6.

The first five latent rdots of the phenotyplc and



Table 425 Latent roots of phenotypic and environment
correlation matrix -~ date B

a1, Phenotypie correlation fEnvironment correlation
No. matrixz matrix
Latent roots Percent contrl- Ilatent roots  Percent contri-
’ butlon o - bution to
variance © o yvariance
1. 3.7112 24,7813 42618 28,2787
2. 2.6698 17.7987 11,8699 © 12,4660
3. 2.0150 13,4333 1.3498 8.9987
b 1.2189 - 8.1260 1.2395 8.2633
5. 1.0377 - 6.9180 1.1853 T 7.9087
6.  0.8914 ' 5.9427 0.9891 65940
7.  0.8122 © 54147 0.8674 5.7827
8. 0.6860 © 4.5733 0.7623 5.0820
94 0456320 - 3,7533 0.6249 4,1660
10. 0.4682 - 3.1213 0.5195 3,4633
M.  0.3621 © 2,28307 0.4527 3,080
12, 0.2614 1.7427 0.4064  2,7093
13. 0.1972 1,347 ' 0.2797  1.8647
A4, 0.1260 - 0.8400 0.2103 1.4020

15. ~ 0.0001 - 0.0007 0.0003 0,0020




rabple H-2-6 Latent roots or ‘the genotyplc correlation
matrix of order 9 - data B

I
1 [

Percent contributibn |

' iﬁ:  Latent roots to variance .
1. - 2.2696 . 25,2186
2. 1.6579 - 18.4211
3. 1.2040. 13,3778
4, 1.1238 . 12,4867
5. 0.8753 19,9726
6. 0.868 . . 9.4089
Te 0.,5574 : . 6.1933
8. 0.3326: . 36956

90 Oo1324| I . 1In1l"71




environment correlation matrices were found to be greater
than one and these altogether explained 7ﬁ.02 percent and
65.91 percent respectively to the total'vériation,. The
first four eigen values of fhe'génétypic correlation

. matrix explained 69,51 percent of the total variation,

4.2.4.1 Principal factor anelysis.

Using the princlpal factor analysis to the pheno=
typic correlation matrix a five factor model was fifted
with largest correlation coefficient in each row as ﬁhe
estimate of commumality. Eighty-one iterations were taken
for the convergence of communalities with a five unit
difference in the third decimal place. The estimates of
loadings and communalities in the 81st'1tefation are given
in Table 4.2.7. ' Factors in the 81st iteratlon was, subjected
to varimex rotation to have a more ﬁeaningful interpretation
of the factors, “Theifotéted‘loadings were presented in

Table 4.2.8. Thée five factors can be explained as follows.

. number of ecapsules. per plant
Factor 1T : number of capsules on branches

‘y;eld of seeds: per plant'



Table 427 Principal factor solution in the 81st iteration for the vhenotvpic
correlation matrix - data B -

Common faétor coeffiéients

‘ Estimatedlcommunality .

Variable ' e Original
1 2 3 4 5. 81st ite- 80th ite~ communa-=
L N _ ration ratlon -~ lity

1 0.6776 0.3047 0.1734 0.0877 0.2924 -0.6753 0.6753 0.7289
2 0.6018 0.2972 . . =0,£651 0.1111  -0.4193 . 0.6428 0.6429 0.5732.
3 0.3137  0.788:k  -0.0840 0,1063 0.1399° . 0.7579 0.7579 0.7392
4 0.4633  -0.5900 0.2193  =0.0393 0.4385 0.8048  0.8048 0.9991
5 0.8857  =0.0456 0.1428 0.0290 ' =0.3297 0.9165 0.9165 0.9996
6 0.9223  =0.3377 0.2281 0.0011  -0.0225 1.0172 1.0172 0.9998

7 0.1332 . 0.0581 0.2151 0.0485 0.3284 0.1776 0.1776 0.2107k~

8 ~0.0679  =0.0170 0.2884 0.0314 0.0772 0.0950 0.0950 0.1637cn
9 -0.3562  0.1857 0.6685  0.0877  -0.0744  0.6214  0.6214 0.6396
10 =0.3679 0.1591 0.8685 0.1917  =0.1118  0.9642 0.9642 . 0.6702
1. 0,1237  0.7094  ~-0.0809  0.2289  .0.1085  0.5895  0.5804 . 0.5426
12 . 0.2125 0.5725  -0.0862  =0.0480  0.1734 0.4128 0.4129 0.4343
1% 0.0779 0.3701 0.2099  =0.9416  =0.0214 1.0742 1.0692 0.1926
14 ~0.0743 0.1101 0.3286°  =-0.0570  =0.0547  0,1331 0.1332 . 0.1601
15 0.6062  =0.2008 0.4374 0.4477

0.1559

-0 . 0641

0.4374




Table #-2-% Rotated principal factor loadings for the phenotypic
correlation matrix - data B

Common'factor coefficients

Variable
K .2 3 4 5
1 0.4659 0.4970 0.0008 -0.0245 0,4591
2 0.5552 0.4735 -0,2064 0.0049 -0,2602
3 ~-0,0040 0.8480 -0,1007 ~0.0863 0.1453
4 0.4853 -0.4265 0.0278 0.0579 0.6190
5 0.9237 0.2166 -0.1175 . =0.0202 -0.0462
6 0.9621 ~0.,0514 . =0.0715 0,0130 0.2894
7 0.,0590 . 0.1030 0.1729 0.0260 0.3646
8 " 0.0026 ~0,0281 . 0.2932 0.0388 - 0,0820
9 -0,1482 0.0911 0.7553 0.0690 -0.1265
10 -0,0836 0.0864 . 0.9474 0.1768 00,1448
11 -0.1375 0.7477 -0.0510 0.0625 0.0693
12 -0,0455 0.5833 . =0,0929 -0,1837 0.1676
13 0.0348 0,1555 0.2106 -1.002% ~0.0112
14 0,0153 0.0664 0.3445 -0,0840 ~0.0526
15 0.6437 -0.0217 ~0,0395 -0.0296 0.1420
Propoftionate
variance 0.34539 0.2.79% O LTBY- - 0.12:93 0.14519

accounted by
each factor

90T



height upto first capsule
number of days to flowering

Factor II : number of days to maturity.
) helght of the plant
number of branches
numbér of seeds per capsule
Factor T1I : circunference of capsule
length of capsule
Factor 1IV: 1000 seed welght
Factor V: nunber of capsules on main stem

number of fruiting nodes per 20 cm

Factorization of the environment correlation
matrix was done by the PFA method. Thirteen lterations
were taken for the convergence of successive communalities
at the 0,005 level of convergence. The factor loadings
and communalities in the 12th iteration along with commu=
nalitles in the 13th iteration are given in Table 4.2.9,
The loadings obtained after varimax rotation are provided
in Table 4.2.10. The interpretation of five factors is

as follows,



Table*ilq Princlpal factor solution in the 13th iteration for the environment
correlation matrix - data B

Common facfor'qoefficients

‘Estimated communalityi

Variable . Original
1 2 3 4 5 13th ite- 12th ite- .- communa- .
_ ) . ‘ ration -Tation - 1ity
1 0.7872 0.3323 . 00710 . 0.1847  0.0791  0.7755 0.7776 0.6647
2 0.4013 - -0.3046 . 0.29089  0.1189 _ 0.0891  0.3983  0.3995  -0.5151
3 0.3708 0.2970  0.4716 . 0.3785.  0.2953  0.6785  0.6735 '0.5091
4 0.7412 0.3264  =0.2124  =0,0770  -0.4554  0.9144 = 0.9122 '0.7550
5 0.8617  =0.4321 . 0.0578  0.0080  0.0731  0.9379  0.9374 0.9223
6 0.9825 - -0.2044  =0:;0573 . -0.0439  =0.1756  1.0432 1.04L37 0.9223
7 0.3520 ,0:2252  ,0.2291  =0.1684  -0.0808  0.2620  0.2620 0.3935 |,
8 0.3710 .0.2686 =0,2891 ~0.2616 10.2805 0.4405 0.4420 10.3883
9 0.2554 ~0.,0696 . =0.4768  0.2940 0.1708  0.4130 0.4134 ‘043626
10 0.1732 .0.0396  =0.5568 . =0.1350  0.4466  0.5594 0.5569 -0.3883
11 0.0566 «0.1158  ,0.3510  -0,3401  0.1673  0.2835 0.2836 + 0.2219
12 0.2077 ~0.0053 0.3199 . -0.2639 0.2398  0.2726 0.2726 + 0.2768
13 0.0492 . 0.2728  ,0.1893  =0.1735 0.0203  0.1432 0.1433 ' 0,2100
Y 0.0088 0.0777  0.0762  0.1445 - 0.0605  0.0378  0.0379 . 0.1492
15 0645 =0,1250  =0.0778  ~0.0914  -0.0333  0.4466 0.L467 0.6509




Table 4210 Rotated principal factor loadings for the environment
correlation matrix - data B

Common factor coefficiemts

Variable
1 2 3 4 5
1 0.5092 0.6533 -0.2813  =0.0657 0.0759
2 2.,4348 0.1426 10,1699 0.3431 ~0.0676
3 0.1685 0.6929  =0,0259 0.6118  ~0.0137
4 0.4726  0.4231  -0.2557  =0.6627  ~0.0868
5 0.9617 1 0.0873 0.0041 10,0519 0.0522
6 0.9501  0.231C  =0.0959  =0.2788  =0,0116
7 0.0838 0.3919  0.1518 0,294 0.1095
8 - 0.1831 0.1631 ~0.2975 <0.1941  GJ5042
9  0.2554 -0.1139 -0.5754 0.0777 040024
10 ~0.1291 -0.1913  =0.5020.  ~0.0023 05042
1 0.1075 0.0436 O.4284 0.0874 0.2799
12 0.1816 0.1953  0.2945 0.1053  0.3221
13 ~0.0952 0.2782 . 0.1406  =0.1015 0,763
14 _=~0.0319 0.1292  =0.0492 0.1258  <0i0424
15 - 0.6187  0.1272  -0.0833 ~0.1761 0.0984
Proportionate
variance 0.4213 0.2)12 O.1GoL 0. hdnn 0.103%9

accounted by
each factor




number of capsules on main stem
number of capsules per plant
Factor I 3 number of capsules. on branches

Yield of seeds per plant

helght upto first capsule

Factor 1II :

height of the plant

clrcumference of capsule
Factor III : lehgﬁh of the capsule

nunber of seeds per capsule
Factor IV : number of branches

number of fruiting nodes per 20 om
Factor  V ¢ number of days for flowering

number of days to maturity

JFFA method was applied to the genotypic correlation
matrix of order 9. A three—ractor model was fitted ang
103 iterations vere taken for the convergence of communa—

lities at the derived level of five unit difference in the

third decimal place, The 1oadings in the 103rd iteration

are given in Table 4.2.11. The rotated loadings are pre-
sented in ‘Table 4,2,12., The factors were interpreted ag



Tabler-2:! Principal factor solution in the 10379 i1teration for the genotypic
correlation matrix of order 9 - data B

Variable Common facfor coefficients Estimated -communalitslr Original

soae 1 2 3 103Td 1te~ 10204 ite- g‘i’_‘g‘ma"
ration ration
1 0.5014 0.0952 0.1789 0.2924 0.2928 0.4994
2 0.8333 0.8434 -0.1619 1.4318 1.4319 0.4994
4 -0.4610 0.2253 0.8325 0.9564 0.9572 0.2907
7 -0.0872 -0.,2272 0.0609 0.0629 0.0630 0.2163
8 -0,1696 -0,2228 -0.2871 0.1608 0.1608 0.2163
12 1.0427 =0.7311 0.3444 1.7404 1.7354 0.5223
13 0.2954 -0.0358 -0,1069 0.0999 " 0.1000 0.3105
14 0.0079 ~0.0293 -0.1580 0.0259 0.0258 0.2388
15 0.1808 0.3811 0.3282 0.2857 0.2856 0.4258




Table H#2-12-Rotated. principal factor 1oadings-£pf-ﬁhe'génotypic
correlation matrix - data B

Variable | | ‘Cdﬁﬁon factquéééfficieh%s.:

Code - et

' 1 2 -

1 0.4439 0.2764 10,1379

2 0.3524 1.1433 -0.,0235

A -0.3121 -0.1728 0.9106"

7 0.0302 -0.2489 0.0068

8 ~0.1228 ~0.2160 ~0.3148

12 1.2992 ~0.2284 0.0080

13 0.2515 0.1235 -0.1465

14 -0.0166 0.0084 -0.1598

15 0.0769 0.3509 0.3958
Proportionate ' ' : .

variance 0.6809 0.B3I0 0.35873

accounted by
each factor

~

T T

O
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Factor I i number of days to maturity
height -of the plant

Factor IT

number of 5ranches

Factor III ~number of capsules on main stem

yield of seeds per plant

£o2,4,2 Maximum-Iikelihood factor analysis

Through the Lawiey's iterative scheme solutions
embodying five, six, Seven, eight and nine factors were
successively extracted for the phenotypic correlation
matrix of order 15.I Some difficulty was experienced in
achieving a suitable faétor model fbf the given'correla-
tion matrix. The approximate chi-square statistics for

the sgolutions are

Number of Goodnegs of Degree of ' Number of
factors £t x 2 freedon iterations
5 106.96 ' 40 40
6 80.52 30 28
7 76.17 21 81

8 - 61.56 - 13 39
9 *35.05 ' 6 32
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All these statistics lead to the rejection of the adequacy
of the fespecfive fabfor models at the 0,001 probability

level,

The initial estihates of factor loadings and
specific variances obtained.from principal component
method of factor analysis are given in Table 4.2,13.
The filve factoremodel has the estimated loadings and
specific variances as shown in Téhle 4,2,14, The unrotated
and rotated loadings of the matrix are. presented in Tables
4.2,15 and 4.2.16 respectively. The characters dominating

in the factors are

number of capsules on branches

Factor I ‘number of capsules per plant

-

yield of seeds per plant

height of the plant
nunber of branches

Factor 1T

number of days to maturity
height upto first capsule

number of days for flowering

number of seeds per capsule
Factor IIY circuﬁference of capsule

length of capsule



Table 4213 Initial estimates of factor loadings and corresponding
unique variances for five factors of the phenotypic
correlation matrix - data B

Faétor lqadiﬁgs

Veriable ’ : : Unigue -

1 2 .3 4 5 variance

1 0.7329  0.2867 - 0.2085 _ 0,1641  0.0186  0.6900
2 0.6546  0.2775 =0.0908 =-0.4583  0.2269  0.7753
3 0.3588  0.7935 -0.0657 0.0832  0.0585 0.7730
4 0.4507 -0.6156 .0.2311 0.3164 =0.0874  0.7431
5 0.8722 =0.0976 0.1342 =0.2480  0.0772  0.8557
6 0.8733 -0.3625 0.2074 =0.0420  0.0173  0.9392
7 0.1679  0.079% 0.3734 0.6988 =0.0257  0.6628
8 -0.0875 -0.0205 0.4896 0.2697  0.0775  0.3266

9 -0.3809  0.2246 . 0.7157 -0.1958 -0.1556  0.7704
10 -0.3572  0.1720. 0.7766 -0.1633  0.2186  0.8348
11 0.1679  0.7908 =0.0813 0.1333  0.2479  0.739%4
12 0.2723  0.6731 -0.1087 0.2266 =~0.1928  0.6276
13 0.0820-  0.3057 0.1664 =-0.16k2 -0.8488  0.8752
14 ~0.0924  0.1494 0.5143 =0.2843 -0.2643 ... 0.4461
15 0.6812 -0.2831 0.1985 =0,0927 =0.0318  0.5932

[
(v



Table 4244 Maximua 1ikelihood eatimates of factor loadings ond unique
variances in the 39th iteratisn of phenstypic correlatisn

a2trix - data B

Vardable Factor loaéings Unf%ue

1 2 3 4 b varianee

1 D5318 0.5946 00,0042  «0.0087 10,3291 D.2552
2 0.4921  0,1634 =0,0836  0.4833 0.13653 04664
3 0.0156  0.7523 =0.1289  0.4960 0.3748.  0.1030
4 0.6256  0.0017  0,0014 =0.7733  0.0015  0.0003
5 0.9269 ~0.0002  0.0011  0.3752 0.0006  0.0001
5 0.3987 =0.0003 =0,0006 =0.0821  =0,0005 0.0001
7 0.3664% 0.1958 0.1221  =0.9617 01137 08963
8 =3.0091  ~0.004&  0,2855  0.0125  0.0332 0.9172
9 =0.2193 0.0758 0,7815 ° 0.0035 0,042  D.3338
10 -0.1985  0.008%  0,9318  0.0018  0,1080 0,905
11 <0 0050 04400  «5.0370 0.3632 03556 05517
12 0.0176  0.4331  «0,0313  9.2785  0,0553 D.6791
13 0.0971  9.5740  0.1168  0.1320  =0.730D 00,1062
14 “0.0319 0,1096  0.3301.  0.0555  =0.0936 0.G662
15 0.6475 =0.0115  0.0246  0.0204  =0.0433  0.5773

97T



Table H.215 Maximum likelihood estimetes of factor loadings and
unique variances in the 40th iteration of phenotypic
correlation matrix - data B

Variable

Factor loadings

Unique

1 2 3 4 .5 variance
1 0.5318 0.5938 0.0019 -0.0839  0.3304  0.2553
2 0.4918 0.1627 -0.0840 ° 0.4893  0.1374  0.4G64
3 0.0153 0.7514 =0.1321  0.4160  0.3769  0.1026
4 0.6262 0.0017 0.0013 =0,7795  0.0013  0.0003
5 0.9266  -0.0001 0.0011 0.3758  0.0005  0.0001
6 0.9968 -0.0003 =0.0006 =0,0795 =0.0005 00,0001
7 0.1465  0.1962 0.1212 -0,1616  0.1139  0.8863
8 -0.0091 -0.0029 0.2855 0.0124  0.0327  0.9172
9 -0.2194 0.0798 0.7808  0.0034  0.,0388  0.3344
10 -0,1986 0.0130 0.9325 0.0017 0.1063 0.0795
11 =0.0952 0.4389 -0.0386 0.3432 0.3566 0.5518
12 0,017k 0.4824 -0,0835  0.2783  0.0571 0.6792
13 0.0070 0.5764 0.1124  0.,1329 =0.7292  0.1057
14 -0.0319 0.1115  0,3292  0.0554 -0.0940  0.8663
15 0.6475  =0,0113  0.0247  0.0298 -0.0438  0.5773

LTT



Table 4.2.15 Rotated mazimum likelihood estimates of factor loadings fdf'

the phenotypic correlation matrix - data B

Variable

Fécﬁor loadings

+

1 2 3 4 5"
1 0.4885  0,4970 0.0019 . =0.5081 -0.0294
2 0.6411 0,3117 . -0.0840 _  0.1339 0.0219
3 0.1726 0.9151 . =0.1321  -0.0661  =0.0915
4 0.2820 ~0,4532 10,0014 =0.8449 10,0290
5 0.9999 -0.0025 . 0.0012  =0.0049  0.0007
6 0.8914  =0.2155 . =0.0006  =0.3985 0.0134
7 0.0739 .0,1021 . 0.1212 |  -0.2884  =0.0016
8 ~0.0037 .0.0206 . 0.2855 = 0.0069 0.0288
9 -0.2015 .0.1186 0.7808 0.0341 -0.0122
10 -0.1830  .0,0972 0.9325° 0.0381  0.0808
11 0.0427 . 0.6628 ., =0.0386 = 0.0464  0.0581
12 0.1221 .0.5023 . -0.0835 0.0066 -0.2155
13 0.0572  .0.1324 . 0.1124  0.0335  =0,9272
14 -0.0084 . 0.0672 . 0.3292  0,0310  =0.1407
15 0.6100  -0.1333 0.0247 = =0.1779  =0.0245
Contribution 3.0255 1.2750 1.7295 2.1990 0.9480-
of each factor
Proportionate _
variance '
accounted by 0.2017 0.0850 - 0.1153 01466 0.0632

each factor




number of capsules on main stem

L]

Factor IV number of fruiting nodés per 20 cm

Factor v

1000 seed weight

The residual matrix formed by subtracting the correlations
generated by the respective factor models-fromlthe original
sample values are given in Table 4.2,17. The largest of

the residual matrix had the value 0.2055,

The environment correlation matrix was subjected
to ML method of Zactor extraction under the hypothesis
that a five factor-model would suffice to explain the
dependence structure, The initial estimatgs of loadings
and specific varianbes were obtained by the principal
component method of factor analysis. An improper maximum
likelihood solution wag obtained, Specific variances of
variables 3, 4, 5 and 6 tend to zero in the course of
iteration and becomg_pegative when allowed to continue
the iteration., The ML method was apﬁlied to the partial
dispersion matrix after eliminating these variables and
2 proper solution was obtained for one factor-model in
the 24th iteration. 3ﬁt the goodness of fit test resulted
in a Chi-gquare value of 87.00 for 44 degrees of freedom
that leading to the rejection of the null hypothesis,



Table 4-17 Residual matrix after removal of five factors, phenotyplc correlation matrix - dzta B

0
-0.0118
0.0071
0.0005
0.0003
-0.0003
70.0616
0.0232
-0.0356
0.0062
-0.0513
0.0265
-0.0021
0.0342
0.0554

0
0.0067
~0.0007
-0.0005
0.0204
-0.1111
-0.1267
~-0.0084
0.0073
0.0453
-0.0583
0.0024
0.0077
=0,0139

0
0.00003
0.00006
=0.0002
0.0084
0.0096
0.0115
=-0,0029
-0.0032
-0,0324
0.0009
=0.0070
-0.0122

© .

-0.,0000
0.0000
0.0012
0.0011
-0.0006
0.0001
=-0.0015
=0.0006
=-0.0000
0.0002
0.C000

0
0.0000
0.Q008
0.0007
-0.0004
0.0000
-0.0010
-0.0004
0.0000
0.0001
0.0000

-0
-0.0006
-0.0006

0.0003
=0.0000
0.0007
06.0003
0.0000
=0.0001
0.0000

o
0.1526
-0.0142
-0,0032
0.0913
0.0681
-0.0015
0.0376
0.0051

0
-0.05%96
0.0055

-0.0945 -

-0.0368
~-0.0013
0.0142
0.0455

o
0.0035
0.0239
~0.0239
0.0008
0.0011
-0,0545

0
0.0013
0.0051
0.0000
-0.00%2
0.0086

0

0.2055
=-3.0071

0.0141
-0.0378

8]

0.0370
=-0.1027

0.0018

]
0.0233
0.0C73

]
-0,0249

CaT

0
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Therefore ML analysis was. repeated with six fébtors{

After éleven itérations the 3rd, 4th, 5th ana éfh Speciric
variances become negative and the analysis was done for
the partial dispersion matrix after eliminating these
variables. After six iterations a proper solution was
obtained for the two factors. The value of the test
criterion was found to well below expectation and the
hypothesis was accepted. 'The initial estimates of factor
loadings and unique variances for two factors (for.gnviron-
ment correlation matrix of order 11 after eliminating
variables 3, 4, 5 end 6) are given in Table 4.2,18. The
maximua lilkelihood estimates of factor loadings and
corresponding unique_;ariapceg_for the six factorhmodgl
(eombined solution) are given. in Table 4,2,19. The rotated
loadings are presented in Table 4.2,20. The variables
dominating the factors are

number of capsules on main stem

height upto first capsule

Factor I : number of capsules on branches
number of capsules per plant
- yield of seeds per plemt
Factor II : height of the plant



Table x-2-12Initial estimates of factor loadings and unique
variances for the environment correlation matrix

of order 11, two factor case - data B

Variable

Ij‘a'ctof' loadings

Code 1 2 - ggigg?zce
1 0.0107 <0,0192 - 0.9995
2’ ~0.1771 | =0,1619 0.9424
7 -0.3107 " 0.1450 0.8324
8 0.3234 "0.6797 0.4334
9 0.7127 =0.0356 0.4908

10 0.6430 ' 0.5112 0.3252
11 =0.4588 0.3851 0.6412
12 -0,3839 0.4731 0.6288
13 =0,3501 ' 04435 0.6307
14 0.0472 ~0.0428 0.9959

0.9757

15

0.0742

© 0.,1223

-~

55T

LS



Table 4.2-19 Maximum likelihood estimates of factor loadings and unique
variances for the environment correlation matrix, six factor -
model (combined solution) - data B

Factor ioadings

Variable ' Unique
1 2 3 4 5 variance

1 0.3261  0.9220  0,1551 0. 0 0.0004  0.,0195
2 0.7821 =0.2650 . 0.5600 o 0 0.0049  0.0045
3 0.8922  0.0123  =0.4431 0 0 0.0094  0.0074
A 0.9889 «0.1076 =0.0891 0 0 -0,0123  0.0024
5 0.7225  0.2546  0.2268  «0.0k -0.0248 00,0470  0.3573
6 0.4404  0.2151 =0.2657  =0,1247 =0,0170 =0.0503  0.6708
7 03478  0.1232  0.2743  -0.1124  0.1801 <=0.0057  0.7435
8 0.2876 =0.0520  0.1163 0.3939  0.2761 0.0790 0.6634
9 0.2563 =0.0579 =0,0586 0.4619 =0.2930 0.0849  0.6211
10 0.0953 =0.1288 =0.0493 0.7299  0.1302 0.0319  0.4212
11 0.0157 0.1126 =0,1706 =0.1336 0.3762 =0.1804  0.7661
12 10,1926  0.1467 =0.2276 =0.0876  0.3914 0,0437  0.7268
13 0.0223  0.0993  0.1507 =0.1364  0.3080 0.02906  0.8526
1 0.0008 0.1555  0.0256  =0,0279 <=0.0417 =0.0024  0.9773
15 0.6372 =0,0728 =0.1199 0.,0656  0.0492 =0,1133  0.5547




Table 4.2.20 Rotated maximum likelihood solution for the environment
correlation matrix - data B

Variable

Factor'loadings

1 2 3 4 5 6
1 0.3261 0.9241 -0.0401 0.0626 0.1822 0,0004
2 0.7821 -0,1417 0.6035 =0.,0096 =0.0281 . 0.0049
3 0.8922 -0,0789 ~0.4437 -0,0054 -0,0156 0.0094
4 0.9889 =0.1221 «0.0649 =0.0083 =0.0242 =0.0123
5 0.7225 0.2948 0.1692 ~0.0261 0.0473 0.0470
6 0.4404 0.1557 =0.3045 =0.1131 0.0548 =0.0503
7 0.3478 0.1366 0.2429 =0,0375 0.2373 =-0.0057
8 0.2876' =0.0828 0.1245 0.4584 0.1229 0.0790
9 0.2563 =0.,0073 =0.0454 0.3396 =0.4342 0.0849
10 0.0953 =0,1599 =0,0216 0.7228 =0.1422 0.0319
11 0.0157 ~0,0037 -0.1902 -0,0022 0.4062 -0.1804
12 0.1926 0.0143 =0.2530 0.0476 0.4095 0.0437
13 0.0223 0.0625 0.1269 =0,0222 0.3543 0.0296
14 0.0008 0.1626 «~0,0071 =0.0292 0.0009 =0.0024
15 0.6372 =0.1041 =0.1023 0.0713 0.0057 =0.1133
Contribution 3.9300  1.0995 0.8925 0.8760 0.7785 0.6765
of each factor :
Proportionate _ _
variance ‘ S C o ‘
accounted 0.2620 0.0733 0.0595 0.0584 0.0519 0.0451.

by each factor

ra
HA
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Factor IITI : number of branches
‘ number of frulting nodes per 20 cm

number of seeds per capsule

Factor IV : '~ length of capsule
. clreunference of capsule

Factor V : numbér of days to maturity
number of days to flowering

Factor VI 1000 seed welght

The residual‘correlatioﬁ matrix of order 11 after
elimination of two factors is given in Lable h4,2,21,

The elements of the matrix are considerably small,

The positive definite.genotypgc.corpe}ation_
matrix of order nine was analysed using the Lawley's
iterative scheme method and maxtimum likelihood solutions
were successively extracted for three, four and five
factor-models, Details of the goodness-of-fit tests

for the three solutionsra:e sunmarised as

Number of .  Degrees of Number of
Pactors Chi,SQPa?e- . freedon iterations
3 7983 . 12 142

4 68.19 6 25

5 - 26.09 1 40




Table 4 2.24 Residual matrix after removal of six factors, environment correlation matrix - data B

0
=0.0061
-0,0243

0.1178

0.0424
-0.0773

0.0434
-0.0309

0.0576

0.0388

0.0645

0
0.0228
=0.0449
.0029
-2,0099
0.1052
=0.0122
-0,0938
-0.0587
-0.0077

0
0.0082
-0.0404
0.0027
0.1378
-0.0442
-0.0736
-0.1372
=0,0446

0

0.0092
0.0338
0,0094
Q.0025
0.0707
0.0588
0.0999

0
0.0260
-0.0351
-0.0517
0.0225
0.0035
-0.0755

o
0.0165
0.0241

=0.0486

=-0,0384
0.0114

0

0.0141
-0.0535
-0.0392

0.0245

0

0.0915

0.0593
-0.1250

0
-0.0073
0.02119

Q
0.0228

0

)




A1l these statistics lead to the rejection of the adequacy
of the respective facior'models at the 0.001 probability
level; The initial estiﬁh%esiof loadings and specifie
variances are presented in Table 4.2.22. The three-
factor model had;the'esﬁiméted loadings and specific
variances obtained reépecfively in the 1415t and 14ond |
iteré£ions are as shown in Tables 4.2,23 & 4.,2.,24, The
rotated factors are'grveﬁ‘in Table 4.2,25, The variables

1nf1uen§ing'the factors are

Factor T number of branches

Factor 1IT : number of capsules on main stem
yield of geeds per plant

Factor III : number’ of days to maturit& -

height of the plant .

The residual correlations after the extraction of five-

factors are presented in Table 4,2,26.



Table H-222Initlal estimates of factor loadings- and corresponding unique
variances for three factors of .the genotyplc correlation.’
. matrix - data B

Variable . ‘ . o .,Factor.loadings . N
Code — Unique
1T .2 f'{ -3,_ _ variance
1 0.7186 . . =0.0269 ; 0.2375 0.4264-
2 0.7977 . =0.1936 ~0.1870 0.2912 "
4 -0,3821 -0.6842 C.h227 0.2072
7 -0.1983 0.2902 0.7726 0.2796
8 . -0,3568 0.5691 0.0824 - 0.5420
12 . 0.6582 - 0.3442 0.1012 : 0.4380
13 . 0.4691 - 0.3404 01774, 0.6326
14 . 0.0412 © 0.3948 0.3467 0.7222

1 5 o 0 03863‘ =0 05943' : 0 ul-|'1 05 0 03292




Table #.2.22Maximum likelihood estimétes of factor loadings and unique
variances in the 141th iteration of genotypic correlation
matrix of order 9 - data B

Variable . - Factor loadings

Code ’ o . e . Unigue
1 e 2 Co '? variance

1 0.4905 -0.,1242 0.5165 04773
2 0.9372 -0.3280 ~0,0078 0.0140
4 -0.5997 -0.7234 + '0,3040 ~ 0.0246
7 -0.2485 0.1766 " 0.1364 0.8884
8 -0.1512 0.2851 -0.2550 '0.8308
12 0.3892 0.4895 - 0.7540 0.0405
13 0.2778 . 0.1893 0.1378 ..0.8680
14 0.0150 0.0541 -0.1401 0.9772
15 0.2664 -0.5337 0.6032

0.2023




Table s> 2q1Maximum likelihood estimates of. factor loadings and unicue

variances in the 14ond 1teration of genotypic correlation
matrix of order 39 - data B

Variable

Factor loadings
Cade : , — Unigue
~ 1 2 3 - variance
1 . 04906 -0,1236 05165 - 04773
2 0.9373 ~0.3277 -0,0076 © 040139
4 ~0,5994 ~0.7234 043047 0.0245
7 ~0.2485 0.1766 0.1363 0.8885
8 ~041513 0.2848 ~042552 08509
12 043891 " 0.4903 0.7537 0.0402
13 0.2778 0.1895 0:1376 0,8680
14 0.0149 0.0540 =0.1402 0.9772
15

0.2666

~0.5334

0.2028

0.,6033

' y

lgr"
' -
s L S



- Table 4.2.25

Rotated maximum likelihood estimates: of factor
loadings of the genotypic correlation matrix =

data B
Variable 'Factor loadings'
Code -
1 2 3
1 0.3600 -0.1236 0.5632
4 -0.6700 =0.7234 0.0566
12 0.1764 0.5903 0.6447
13 0.2055 0.1894 0.2321
© 14 0.0666 0.0540 -0.1242
Contribution of 1.5256 1.5106 1.0310
each factor .
Proportionate
variance ' .
accounted by 0.1695 0.1678 0.1146

each factor

C.2
|



Table 4-226Residual matrix after removal of three factors =sdbiba @301 2

0
0.0030
0.0038
0.0896
0.0799
0.0028
-0.1159
0.1527
<0.1356

.

0
-0.,0001
-0.0026
~0.0004
-0.0001
=0.0003
=-0.0013

0.0026

0

=0.0015 .
-0,0002
-0.0005
-0.0002
0.0028 -

0
0.1632
=0,0030
0.0112
0.1159

. 0.1617

0 .

| <0.0045
, -0.'0222
0.0700.

0.0128

0

0.0055

=0 01 01

0.0035

0.1491

4]
-0.0292

o
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DISCUSSION

. Hultivariate statistical methods are used
Increasingly in plant breeding pesgarch to investigate
the responses of plants of different genetic origin.
The relevance of these methods is in seeing #he plants
as a whole rather than individua; ones gs‘the plant
breeder wishes. The plants exhibit dependenpe structure
since the performance of a plent depends upon various
morphological -and guality traits. In addition, these
methods have had their chief successlin plant breeding
where the problems clearly lie in the integration of
numerous related traits ie, in defining the dependence
structure of the variables considered. This dependence
structure is resolved into their putative underlying |

causes using factor analytic methods.

One of the final oﬁtcome of factor analysig 1s
the factor loading matrix. The Pactor loadings ere the
component correlations between the response variable and
the factor. Once the factor loadings have been extracted
then the problem:is to make the best interpretation of
the common factors. Varimax rotation helps to make the
best 1nterpretétioh of these common factors. Each factor

In the factor loading matrix isg dominated by the variables



with large loadings in absolute value and these variables

are highly correlated with the respective factor.

Moreover, seed yleld in sesame is a complex
character contributed by a number of intercorrelated ,
traits. Information on the extent of genetic diversity
will bhe of much use to a plantlbreeder_in further breeding
programmes. The strategy of plant breeding relies to a
great extent upon_a proper programme of hybridisation,
which in turn seeks a choice of potential parents. Factor
analytic techniques provide supplimentary information on
the diversity with a lesser number of causative factors.
It is a well known fact.that the heterosis obtained in

a ¢ross between genetically diVerse_parents will be large.

The oausativetsources of common variation within
the specles are analysed, using the principal factor and
maximum—likelihood methods of factor analysis. The analysis
of variance for gach character show significant differences
for all the characters except number of fruiting nodes per |
20 cm studied under the two environments = upland and rice
fallows, indicating the need for further genetic analyais.
Wilk's criterion also reveal highly significant differences

among the varieties for the aggregate of all characters,



indicating that the varieties differ significantly from
each other when all the characters are considered simul~
taneocusly. In the light of information provided by the
eigen structure;of the correlation matrices it is decidec
to represent the data by a five-factor model. The choice
of the number of comeon factors is motivated by the fact
of taking as many factors as there are whose elgen values
are greater than or equal to one (Guttman, 1956; Afifi
and Azen, 1972). Sometimes the experimenter may satis-
fied with a smaller number of factors., It is known that
the number of factors extracted will depend upon the .
material taken for investigation (Cattell, 1965 a). The
number of common fectors taken_ep for interpretation in
factor analysis generally depends upon their aggregative
explanatory power and theoretical approach of a factor -

analyst (Shetty, 1969).

The characters which are highly correlated with
each factor are identified by varimax rotation., Each
variable may reasonabl& be assigneq to that factor with
which it shows the closest linear relationship ie, that
factor in which it has the highest loading. Accordingly,
the variables which are closely related are clustered

together in that factor. Shetty (1969) used the same



method of clustering in each factor, The factors are
named from the ‘nature and magnitude of the variables
which they represent. A.factor is named from the common
"attribute of these variables regardless of bhe specific

content (Harman, 1967).

In addition to the factor weights, the propor—
"tionate variance accounted by each factor in ‘terms of
total original communality is important in the case of
principal-factor solufion. The general characteristic

of the principal-factor solution is that the contribu-
tion of the factors to the total original communality of
the variables decreases with each succeeﬁing facﬁor. The
contributions of the factors and total communality 1s of
lmportance in maximum likelihood solutions, while maxi-

' mising variance of each factor is important in principal-

factor solution (Harman, 1967).

5.1 Phenotynic deﬁendence structure

The five factors identified for Phenotypic corree
lation matrix in uplands by PF method are as follows,
The first factor is highly correlated with number of
capsules per plant, number of capsules on main sten,

number of capsules:on branches and yield of seceds per



plant. These variables are related to the reproduction
of the crop and hence named as reproductive factor. The
nunber of branches forms the second factor which is the
vegetative factor. Third factor is the helght factor
consists of height of the plant and height upto first
capsule., The seed characters like circumference of cap=
sule, length of capsule and number of geeds per capsule
forms the fourth factor which are related to the charac-
teristic of seeds and hence called as the seed factor.
Number of days to maturity and number of days to flower-
ing constitute the fifth factor and this factor is identi-
fied as growth factor as the variables are related to the

growth of the plant.

ML metﬁod leads to an eight factor model from the
point of view of goodness of fit. The first five factors
are same as that of above but with a change in the order
of factors. The sixth and seventh factors are characte-
rised by 1000 seed welght and seed oil content which are
called respectively as welght factor and quality factor
as they are related to the quantity and quality of seed.
The eighth factor is the growth factor which is correlated
with number of days to flowering. The ﬁumber of days to

flowering and number of days to maturity are characters
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related to growth of the crop but in thls case they are
identifled as two different factors.

| The compariecn of the results shows that the first
and third factor extracted by the two methods are same
Viz., reproductive factor and height factor. In the ML
method seed character has more 1mportence than vegetative
character as in PF method. The additional factors ldenti-
filed by ML method are weight factor and quality factor.

Reproductive factor is identified as the first
factor in rice fallows by PF method. The second factor,
is associated with height upto first capsule, number of
days to maturity,-ngmber of days to flowering, height of
the plant and number of branches. All these variables
are releted to the growth of the crop and hence come under

the growth factor. The third; fourth and fifth factors
.ere ldentified respectively as seed factor, weight factor

and densify factor,

The ML method does not give a gccd-fit to. the
factor model even after fixing the upper limit to the
number of factors. So the five factor model ie, the
model with the minimum number of factors is considered

for the comparison purpose, This model identified the
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same factors as given by PF method but with a change in
the magnitude of variation explained by the last two
factors. The fourth factor in the FF method is the fifth

factor in ML method and vice versa.

Principal—ractor solution with SMC's as estimates
of the communalities produced five factors. They contri~
buted 92.44 percent and 109.62 percent to total original -
communality respectively in uplands and rice fallows, -
The total communality produced by the maximum-1likelihood
solution represents 75.96 percent and 61.18 percent of
the total variance of the variables'respectively in
uplands and rice fallows. The first factor amounts to
twice the variability explained by the second'factor
except using PF solution in rice fallows. The'varia-
bility explained by each factor decreases with the
additive inclusion of factors in succession, which is

also a prOperty of the methods adopted.

Yield of seeds per plant, number of capsules per
plant, number of capsules on branches are nignly corre-
lated with the first factor in both the situations under
the two different methods. The number of capsules per
.plant is found to have maximum Jloading with first factor

but the estimate of communality was 1arger in magnitude
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than the respective loading. Seed yield has also got -
high loading with first factor but with a low communality.
Sawanth et al. (1982) has reported that the characters

in a gilven factor with which high factor 1oaoing and

low oommunality is amenable to change very easily due i“.
to selection as compared to one with high factor loading
and high communality. So seed yield may be considered

as the important character in factor one.

The character 'height upto first capsule'! is more
amenable to change in the height factor than height of
the plant. The three seed characteristie¢ variables viz.,
the circumference of capsule, length of capsule end number
seeds per capsule are of equal importance while using
seed  factor. The number of days to maturity has more
importance in growth factor in uplands and number of days
to flowering and number of days to maturitr have equal
Importance in rice fallows. Nomber of frqiting nodes
per 20 cm has importance while selecting depsity feotor

in rice fallovs.

5.2 Environment dependence structure

The environment correlation matrix in uplands is

explained by five factors using PF method. The first,
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second and third factors are respectively as reproductive,
height and seed factors. The fourtli factor is dominated

bﬁ number -of days to maturity which is a growth factor,

The number of fruiting nodes per 20 cm and number of
branches constitute the fifth factor which is termed as
density factor as the characters are related to the density

of the crbp.

Initiating from a five factor model an eight
factor solution is found to fit the matrix by ML method{
The first three factors are-similar to that obtained by
FF method. Growth factor is also identified but its
order is changed. The dénsity factor obtained in the FF.
method is split into two separate Ffactors namely vegeta~ -
tive factor consisting of number of branches and density
factor dominated with number of fruiting nodes per 20 cn
only. The feproddctiﬁe factor in PF method is identified
as two factors in ML method. The number of capsules on
'branches fdrms a separate factor inh the eight factor model,
The only additional factor identified by ML method is the
'quality factor which is concerned with the oil content of
the seed.. 7 |

The fivefactor model fitted to rice fallows by
FF méthod is in agreement with-that of uplands., The last
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two factors are found to interchaﬁge their order of
occurrence. ML method helps to set a satisfactory
solution to six-factor model for the environment corre-
lation matrix in rice fallows., The first five factors
‘are same as that obtained by PF analysis, the magnitude
of variation belng different. The additional factor
identified 1is the welght factor which is dominated by
1000 seed.wgight. The growth factor identified in rice
fallows includes number of days to flowering and number
of days to maturity while in uplands it consists of only

munber of days to maturity,

The PF analysis is found to give'a better compa=-
rison of the factors identifled for the environment
correlation matrix in two situations. It reveals that
five factors viz., repfoductive!‘height, seed, growth
and density factors are the underlying causes of diver-
81ty in sesame piants; But ML method has got -its own
properties. One useful ‘advantage of ML method used in )
the present study as comparéd't6 P analysis 1s that
estimates are scale invariant, Secondly an adequate -
riumber of factors for.hetter explanation of original
data is obtained., ML analysis resulted in the ideptifi;

cation of a quality factor in uplands and weight factor
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iri rice fallows ‘in ‘addition t0 the five factors identi-
fied By PF method for the adequate representation of

dependence structure of origilnal data. '

The five—factor model obtained by the FF analysis
contributed 105,48 percent and 102,08 .percent to total
,original ccmmunality respectively in uplands and rice
‘fallcws. The total communality produced by the ML solu-
tion represents 68.48 percent and 55 percent of total
variance of the variables respectively in uplands and

rice fallows.

The characters nhich are more amenseble to change
dne to selection‘in uplands aré yield of seedslper p;ant
in reproductive factor,lheight upto first capsule in .
height factor, circumference of capsule in seed factor,
number of days tc matnrity in ércwth factor and number
of fruiting nodes per 20 cm in censity‘factor, But in
rice fallowc, the characters ldentified are number of
capsules on branches cndyicld of seeds_per,plcnt in
reproductivc factor, height upto @irst capsule in height
fcctcr, circumference of capsnle and number of seeds per
capsule in seed factor, number of fruiting nodes per ..
20 cm in density factor, number of days to maturity in.

growth factor.



+.-High ‘communality obtalned in almost all cases .,
indicates ‘the high reliability.of the results that are
obtained (Shetty, 1969). -Similar results are obtained -
in the present study also, Environment correlation
matrices have éiven eame fector'ﬁatfern in different
situations under study, while phenotypic and genotypicl
correlation matrices fails to give same factor pattern
in two environments. 30, the environment correlation
matrix is found to be the appropriate estimate of popu-
lation correlation ﬁetrix and can be used for factor
analytic studies. Similar results are reported by Murty
and Arunachalam (1967) and Muralidharan (1986).

5.3 Genotyplic dependence siructure

In the present study, during hoth rabi and summer,
genotypic correlations are found.slightly higher than the
respective phenotyplc correlation coefficients, This
indicates the masking effect of the environment to the
total expression of the genotypes. This may Se~due:to
the high experimenyal error detected in the conduct of
the experiment.. These resulte are in accordance with the
reports of Dabral (1967); Sanjeeviah and Joshi (1974);
Thangavelu and_Rajasekhapaﬁ (1983) and Sverup John (1985).
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A1l correlation matrices with unities in the
principal diagonal are Gramlan matrices - matrix with
Gramian properties (Harman, f§67). Here the genoﬁybib
correlation matrix of order 15 is found to be in inde-
finite form under both the sithations. This may be due
to the fact that they are not estimated by product-moment
methods. Kendall (1983) gave a warning against the
attempts at component or factor analysis of matrices
which are not obtained by product-moment methods. The
correlation matrices estimated by other methods may not
necessarily positive definite, and in certain cases some
of the latent roots may turn out to be negative, Trial
and error method is used to make the genotypic correla-
tion matrix in positive definite form. The variables
with high genotyp;c correlation cocefficients are eliminated
one by one and the resulting matrix is tested for positive
definiteness. The process is repeated till the matrix
reached 1n positive definite form. Genotypic correlation
matrices of order 10 and 9 are thus obtained respectively
in uplands and rice fallows. Similar results were reported
. for the genotypic correlation matrices under different
environments in a stqdy on genetic divergence of groundnut

varieties (Muralidharan, 1986),



Three factors are identified with PF analysis.
The first factor consist of number of frulting nodes. per
20 cm, length of capsule and;circgmference of capsule,,
This 1s a combination of seed and density characters.
The second factor is associated with height and vegeta-
tive character and third factor is concerned with growth

and:qua;ity.

First factor i1s same in both ML and FF methods.
But the second factor in ML is Lblended with height and
yield. The number of branches and oil content form the

third factor.

In the rice fallows, first factor consisted of
number of .days to mgturity and height of the plant.
These characters are assoclated with growth factor.  The
number of branches forms the second factor and third
factor is blgnded with number of capsules on main stem
and yleld of seeds per plant. This is a reproductive
factor. ML analysis also identified the same factors

with a change in the contribution of variance.

In both situations the ML analysis failed to give

a sétisfactory fit to the reduced genotyﬁic correlation -



matrix, JAnother fact to be noted is that the same pattern
oflfagtors-ié obtained even after wvarimax rotation.  Since
thenggnotypic correlation matrices in two cases are of
diffefent order and the pattern of factor solution is

also different, a comparative study is not worth. Geno=-
typle correlation matrices are not suitable for thisg type
of analysis'as they do not possess the properties of
Wishart distribution. In the present study the 100 varie-
ties were selected frﬁm 252 varieties based on the genéral
performance of plants; This may be one reason for getting
genotypilc correlationé highly gkewed. Murty and Arunachalam
(1967) has reported that directional selection by man
resulted in highly skéwed genetic correlations. He also
pointed out that genotyple variance-covariance matrix need
not necessarily be an estimate of the parameter of a multi-

variate normal distribution.



SUMMARY



SUMMARY

Multivariate statistical techniques are widely
used in plant breeding research to estimate the degree
of divergence in morphologlcal and quality traits as
they are intercorrelated to varylng degrees. Factor
analysls is considered as the queen of analytic methods
due to its power and elegance in studies of this type.
Principal factor method and maximum likelihood method
are two ways to extracting the factors of divergence,
of which maximum likelihood method is considered as the
best one as it satisfles certaln properties of a best
estimator. Also it allows for the determination of an
adequate number of stable factors from the point of view

of goodness of fit of the factor-model.

The available data on various morphological
characters and oll content 1n sesame with respect to
hundred varietles grown in upland and rice fallow in
1981=182 were utilized for the study. The MANOVA revealed
significant differences among the varleties for aggregate
effect of all the above characters indicating considerable
variabllity among the experimental material., The various
factor-models were tried for the phenotypic, environment

and genotypic correlation matrices as factor analysis aims
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to explain the intercorrelations among the numerous varia-

bles In terms of simpler relations.

Principal factor analysis allows for the deter-
"mination of a m-factor psttern where m refers to the
number of principal components whose.eigen values are
greater than or equal to one (Harmen, 1967). 'As sﬁch a
five-factor model was fitted to the phenotypic and environ-
ment correlation matrices under both situations. The five
factors identified for phenotypic correlationlmatrix in
uplands were reproductive, vegetative, helght, seed and
growth factors. 1In rice fallows they are reproductive,
growth, seed, welight and density factors. The maximum
likelihood method resulted in the fitting of an eight-
factor model in nplands and fails to give an adequate
factor-model in the rice fallows, The additional factors
identified in uplands were weight and quality factors.

In both situations the first factor identified was repro-
ductive factor. ' The factor pattern identified in the

two environments differ slightly.

The analysis of environment correlation matrix by
principal factor method 1dent1f1ed five factors viz.,
reproductive, helght, seed, density and growth factors

for the parsimonious summarisation of the data under the



150

two environments. The masimum Iikelihood analysls revealed
that an additional quality factor was working in uplands
and a welght factor in rice fallows. It shows_an adequate
f£it of an eiéhtffactor model in uplands and a six-factor

nodel in rice fallows.

The characters which were more amenable to change’
due to selection in uplands were yield of seeds per piant
in reproductive factor, height upto first' capsule ig
helght factor, circumference of capsule in seed factor,
number of days to maturity in growth factor and nﬁmbér of
fruiting nodes per 20 cm in density factor. In rice fallows
the same characters were identified in height, growth and
density factors. The characters number of capsules on
branches and yield of seeds per plant were identified
in reproductive factor, circumference of'capsule and

number of seeds per capsule in seed factor.

The génotypic correlation matrices under the two
environments were found not suitable for factor analytic
studies as it lacks prOpért;es of this type of anélysis.
The environment correlation matrix was found to be appro=-
priate for factor analytic studies as it gives stable

factor pattern under two environments.
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APPENDIX



Appendix I Mean values of various characters (Environment 1)

Characters

Variety
X Xao X3 X X5 6. g
1 B2.62 2.85 40,08 7.84 6,65 14,50 9,55
2 72,40 | 2,70 - 37.68. 9.07 - 3.25- 12,30  9.25
3 71,39 2,15 41,71 5.3 170 0 700 9,45
4 64.69 1.7% 37.17 8.65 2.60 11.25 9.15
5 80.88 3,45  43.35 7.76 - 12,10  20.35 9,30
6 85420 . 2,80 . 43,49 7.15 . 5.5 - 12.65 10.30
7 T7.75 2,45 43,61 7.85 5,05 12,90 9.75
8 77,01  2.45 38,62 T.47 4,05 11,50 9.30
9 68,45 1.85  34.85 15.53 3,40  18.90 10.25
10 59.87 © 2.25 36491 8,16 ° 4,96 ° 13,05 B8.65
11 59.41 2,30 36.28 8,95 2,65 11.60 9.85
12 76.53 2.20  39.38 10.66  4.85 15.50 9.60
13 75.22 - 2,30, 43,01 . 8.35 ' 4,45 12.80 10,45
14 7377 - 2,50 ° 38.27 "11.59 hoto ° 16.20 10,25
15 74,31 1,25 34,05 13.41 1.85 ° 15.25 10,50
16 87.78 1.55  40.99 16,15 4,20 20,35 10.80
17 68.48 1.95  36.61 7.4h 1,75 9.20  9.75
18 96,05 * 1,20 15,06 6,10 21,15

- 35,02

9.45




Characters

Variety . -

Xg Xg %40 X34 X2 %43 X1 %45

1 2,25 2,58 .60 43,43 82,5 2.76 . 46,22 2,18
2 2,10 2.50 58 40,81 82.0 2.86 44,15 1.24
3 2.35 2,45 60 49,07 80.5 3.04 44,02 1,01
4 2.45 2,40 60 41,55 80.5 2.57 44.19 1434
5 2.25 2,50 54 45,86 810 2.89 44,30 2.53
6 2,55 2,65 56 45,28 86.5 2.74 46,68 1.74
7 2.30 2.25 62 42,28 83.5 2,90 47.14 1.92
8 2.40 2,45 67 44,96 82,5 3.05 51,49 1,72
) 1.95 1.80 40 42,72 79.5 2.98 48,15 2.14
10 2.30 2,60 66 48,67 84,5 3.22 49,11 1.79
11 2,55 2,40 72  38.76 84,5 3.03 42,57 1,98
12 2.35 2,50 50 43,10 81.0 2,55 44,30 2.35
13 2.40 2.95 84 47,56 83.5 2.76° 48,91 3.17
14 2,25 2,10 46 40,58 78.0 2,80 44,13 1.84
15 2,70 2,60 60 36.45 79.5 2.43 43,60 1.7
16 2.05 2,40 54 35.42 770 3.82 45.83 2,69
17 2,40 2,10 50 37.07 82.0 2,98 44,29 1.12
18 2,65 2.75 64  38.94 82.0 2,63 47.13 3.61




11

Characters

Variety — ‘ =
3o X X X %5 Xs X7
19 - 83.83 1.60 44,45 17,13  3.10,  20.20 . 10.95
20 59.15 2,20 - 35.31. 7.15 1.20 835, 9.30
21 71.36 2,05 33.86 .16.83. 3.05 19.40 10.35
22 93.69 2.05 41.72 16.31 1,26 28.3c. 10.35
23 72,57 2,56 29.85 11.90 3.60 15.50  8.50
24 83.67 2,70 41,05 11,54 5,45 17.00  10.05
25 73.22°  1.85 33.03 - 10,65 6.85 17.50  8.10
26 101.26 0 1,70 42,52 1719 5.90 23.10  10.35
27 62,13  1.85 35.70 10,26 2,15 12,40 9,35
28 7465 . 2,65 31,56 13,16 10.70 18.85, 10.30
29 50.04 3,10 32,68 8,02 5.70 13.76  9.35
30 79.56°  2.95 39.49 11.00 9.75 20,75 9,95
31 71.33 2,50 34,12 10.99 5.85 . 16.85  9.25
32 71.56 3,30 35.53 10,67 6-:00 16,65 10,20
33 76,50  0.80 37.97 12,36 2,30 14,90 10.60
34 71.00 1,45 29,86 11.05 4,60 15.65  8.50
35 101,59  1.90  L0.74 . 15.51 10.30  25.80  14.95
36 59,61 0,25 29,38 9,20 0.70 9.90  9.55




Characters

Variety _

Xg Xg X K X Xz Kqy Xy

19 2435 2.35 62 38,91 - 83.0 - 2,58 45,70  .2.93

. 20 2,25 2,20 48 b7.46 86.0 - 2.66 45,51 ..1.14
21 2.05 2.70 56 43,74 - 82.5 - 2,73 45,98 |.2,22
22 2,50 3,40 70 . 43,27 - 82,5 - 271 .46.86 ,3.88
23 2.25 3.10 91 41.63 8lc . 2.85 43,38 .2,53
24 2.10 2.45 48 40,55 - 79,5 - 2.29 46,24 |, 2,23
25 2,40 2,30 52 34,07 - 750 - 3.04..41,76 .1.85
26 2,45 2.50 60 36.89 810 2.82 . 45,74 1, 1,54
27 '2.00 2.25 60 43,79 88.0 2.80 45,8 . 1.66
28 2.15 2440 54 44,37 86.0 2.42 . 43,99 ', 2,92
29 2.00 2.0 50 45,93 81.0 2.43 44,31 1, 2,04
30 '2.25  '2.25 52 46,08 84.5 2.33 - 45,17 . 3.4
3 1.95 2,35 50 49,55 82.0 . 234 - 44,12 | 3,66
32 '2.25 2,25 67 44y, 28 8o . 2,31 . 48,40, 2,62

. 33 2,45  3.05 8h 38,64 - T9.5 . 2,79 - 46.67 . 2.15
34 ‘2,65  "2.40 50 - '38.97 850 + 3.18 . 47,19 . 1.52
35 ‘2,60 '2.75 70 '37.84  83.5 - 2,94 . 50,20i..2,91
36 ‘2,40 2,40 66  bb4.45 87.5 - 2.56 49.24 . 1.38




Characters

Variety _ .
X X2 3 X X3 X6 X7
37 73,51 2.6  40.56 10,90  5.75 . 16.60 . 9.70
38 80.62  1.85 41.57 12,92  1.70 1h.60  9.80
39 93.76  3.75 48,49 12,03  7.10 , 19.% 10,10
40 88.95  1.70 42,20 15.75 2,85 18.60 . 9.80
I 72.19 0.7 34,45 10,14 0.26 . 10,35  9.60
42 77,16  1.70  43.45 11,42 5,50 16,90  9.50
43 79,0 1,85 43.98 13.21 2,35 15,55 9.3
4 109,30 1.9 45,19 1545 10,85 26460 . 9.80
45 69.75 1.9 37.22 12,36 1.40  13.75 . 9.35
46 81,06  0.35 32.51 17,10 0,05 17.15 10.3
47 66,16  3.25 45,68 3,00 2,60 . 5.60  7.65
48 76.88 2,20 38.99 11,12 6.75 17.85 - 9.80
49 79.46 1,75 34,52 12,63 3.60 . 16,20 . 8.95
50 80.13  3.05 45.73  7.81  7.50 15,30  8.90
51 75,12 2.20 41,78 9.97  6.25 16,25 - 9.1
52 69305 2,50 46,78 . 6.60 2.80 9,40 830
53 75.69 3,15 45,46 7,79 5.60 13,40 9.95

54 Thobl | 2,65 39.27 7.83 435 12,20 9.10




Vi

Characters

Variety

Xg s *10 X Kp o K3 Xy X5
37 2.00 2,25 50 46,11 - 84,5 2.81 42,49 . 2,02
38 2,30 3.00 68  47.03 80.5 2,46 . 43,14 . 2,98
39 1.95  2.20 46 . 47.99 920 2,40 . 42,70 . 1.80
40 2,50  3.05 92 44,95 84.5 2,52 . 46,46 . 2.80
41 2.45 © 3.50 108 444 8lo  3.49 . 44,09 . 1.18.
42 2.50 2.35  49.5 42.73 830 3,92 . 45,37 . 2.88
43 2.00 2,40 48 38,39 80,5 2.68 44,38 . 1.65.
1y 2,50  2.45  7h  37.41  87.0 2,70 |, £8.25 . 3.25.
45 2.30 250 48 4143 78,5  3.04 . Lh.87 . 1.88.
46 2,75 2,50 76 39.40 85,5 3,16 . 47.30 . 2.22.
U7 2:00 2,35 42 50,50  79.5 42 45,21 . 0.75.
48 2.5 2,50 52 37.27  79.5  3.75 . 43.55 . 2.63.
49 2.95 2.80 72 41,09 8h.o  3.00 | 47.42 .. 2.42.
50 2,10 2,20 50 47.74 810 2,81 45,13 . 1,39 .
51 2,45 2,50 64 MIAT  T79.5 2,81 . M.6. . 3.79
52 2,70 2,20 50 45,85 82,5 3.30 . 42.48 .. 1,04
53 2,30 2.75 52 45,56 20.5  3.23 44,95 . 3.05 .
54 2,30 56 40,24 85.0 2.7 44,06 . 1.58

2.35




Vil

.Characters

-Variety
X Xa X3 . % %5 Xq
55 71,43 3,55 42,50 9,80  8.25 . 18.05: 9.15.
56 81.35  2.20 44.89 1049  3.25 13,95  9.25
57 68.95 2,85 35.537 7.38  2.90 10.30 9,95
58 90.61 2,30 53.67 6.35 4,75 11,100 G40
59 88.35 0.75 34.70 14.86 2.45 17.30  11.05
60 75.97 2.0 4741 7.09 5,15 12,25 9.90
61 88,00  3.45 57.000 5.75 5.80 11.25 8.7
62 81,03  2.9v 52,00 4,18 345 ' 7.65  g.20
63 78.82  2.85 42.43  7.87  6.25 14,45 10.55
64 82,77  '3.05 44,85  6.31 7.5 13.80°  8.70
65 89.16  3.00 52,82 10.88  5.95 16.85 10.45
- 66 g91.88  2.15 35.36 12.66 5.05 17.75  9.05
67 122.58  2.3» 47.93 19.01 12.85 31.96  9.15
68 75.10  3-e0  4T.44 9.33  8.25  17.60  9.90
69 98.53  2.85 58.17 10.99 4.8 15,75 10.16
70 73.75  2.30 48.08 8,27  3.05 ‘11.35  9.50
71 89,76  2.15 56.81 8,17  5.35 13,55 10.15

72 L 64,08 3,30 40,12 4,25  1.65  5.90 10.25




Vil

Characters

’

Variety
Xg X3 Ko X Ky X3 Xy X5
55 2.0 2,10 546 46,30 79,5  2.55 - 4048 3.4
56 2.85 2.6° 70 44,27 87.5 2,78 46.11 1.86
57 1.90 2,15 46 42,93 79.0 2,92 47.22  0.78
58 2.45 2,60 58  55.95 86.5 2,69 44,82 1,06
59 2.15 2.55 64  39.61 81.5 2,76 44,43  2.36
60 2,50 2,50 52  45.96 82.0 5,11 40,84 0,81
61 1.85 2,10 50 47.42  85.0 2,99 45.83 1.6
62 2.00 2,295 52 48,35 86.0 3,13 46,56 1.13
63 3,40 20 50 46,56 8l 2.75  46.88 2,29
64 2.45 245 56 43,33 820 3.23 46.80 2,25
.65 2,95 2,35 60 51.05 86.0 3,22 42,51 2,64
66 2.00 2.5 56 39432 85.5 2,74 42,05  1.85
. 67 2,85 2,40 62 36442 840 2,54 4G.70 5.7k
68 2,20 2.50 54 41,30 820 277 46,25 .42
69 2,55 2,35 66 42,21 83.0 2,51 4771 2.29
70 1.95 2.45 42 . 49,26 83.0 3.07 46,07 0491
71 2,35  2.55 60 49.67 86.0  2.78 45.66 1,67
72 2,25 52 49.00 81.5 3422 49.59

2,25

1.21




Characters

Variety

X, 'xé X X, X5 X Xy
73 78,07 3.35 53.80 4,00 3.15  7.25 < 9.45
74 73.17  3.15 L4400 7.35 LA 11,75 8,30
75 87.67  3.36 38.48- 7.34 5,95 12,80  9.55
76 ThohB 2,85 39.82  7.33 406 11,35 9.75
77 = 81.38 2,50  50.95 9.28 3.5¢ 12,80 10-00
78 78.75 2,85 43.75 12,05 7.15 19.20  10.60
79 84.68  0.60 30.78 14,51 3,46 16,66 9,30
80 81.85 2.50 48,49 9,59  8.85 18.45  9.85
81 410.39 2,25 46,03 17,60 13.60 31,35 9,10
82  85.02 3.25 54.23 8,75 8,95 1800 9,50
83 80.21  2.20 47.76 9.72 406 13.70 9,35
84 73 .41 3.75 38.32 7.2 5.65 12.85 9.25
85 101,35  2.30  57.45 9,68  3.99 13.60 10,05
86 74.87  2.46 41.64 8,31 5.20 13450  9.20
87 77.97  1.85 47,22 4,61 1,25 5,85 9,60
88  76.33  2.10 44,07 8,73  1.65 10,35 9.9
89 o402 2,46 55.40  T.h4 6,80 14.20  9.95

90 9565 3,10 44,51 . 9,02  9.10 148,10  40.%0




Chéfécfers

Varlety . ‘

Xy X5 X Xy 2. Rz Ry X5

73 2,50 2,40 52 52,06 84,5 2.65 48.06  0.89
74 1.95 2.25 46 43,94 79.5  2.59 46,78  2.49
75 2.3 2,55 54 b4.46 796 B 46k 1,74
76 2,16 2.2b 52 Ly 42 800 3.30 46,527 1.28
77 2.25 2,50 50 47,13  '82.p 3.0 44,83 1,44
78 2,45 2,35 58 49.25 86,5 2,41 45,25  1.94
79 2,50 2,50 62 . 36,96 840  2.93 44,24 2,57
80 2.40 2,80 58 45,62  81.5 3.1 44,35 2,35
81 2,25 245 62 40,10  79.c 2,40  46.85 4,45
82 2,35 2,55 58 53.50  85.0 2,66 44,08 2,09
83 2,35 2.35 54 47.89  87.0 2,92 45.15  0.96
84 2.00 2,35 56 43,87 8h4.o 2,82 46,32 2,05
85 2,65 2.55 54 42,34  85.0 2.98 46,68 1.94
86 2.5 2.35 62 46,01  82.5 2,68 46.81  1.75
87 2,45 2,95 102 49,46 84.5 2,43 44,37 1,44
88 2.30 300 82 44,93  79.0 2,74 43,72 1,09
89 2,55 2.55 63 48.80  85.5 3.36 45,23 2.07
90 2.8 . 2,60 70 40.65  84.o 2,44 45,74 2,59




X!

Variety Gharacﬁers o
. Xy A S X5, Kg X
91 118.98 2,40 49,06 18,58 18,20 36,80 9.20
. 92 58,17 2,16 32,02 9.46 1,05 10.50 '8.65
93 85.20 2,80 46,34 10,15 9,15 19.36 10.30
oh 121,70  1.65 54,95 20.04 7.95 23:90 10,55
95 60,75 2.00 37,23 8,26 2.30c 10.55 '9.70
96 92.87 '1.95 42,92 12.24 7,45 19.70  9.35
97 78,71  2.85 A6,00 5,00 3.05 8.5 '9.45
98 74,63 2,70 39.30 866 7.35 . 16.00 9,35
99 87.47 2.3v 49.68 20.82 T7.15 27.95 10,55
100 105,69  2.65 39,60 15.C0 8,70  25.7

'8.55




X1

Characters

Variety _

g 3 X %49 Y12 XKz Xy ¥y
91 3.00 .27 62  37.96 79,5 234 45,79 1,43
92 1,90 . 2.75 83  U6.,69 85,5 - 2,47 - 43.22 1,35
93 2.50 .2.66 54  37.85 78,5  2.66 47,25 4.17
94 2.80 .2,65 62 38.03 85.0 3.05 A7.40 4,52
95 1.85 .2.50 62 49,05 81.5 247  40.77 1.4
96 2,25 .2.60 50 43,617 83.0 2,60 44.20 3.61
97 2,25 .2,56 50 47,97 83.5  2.92 44,26  0.79
o8 2,05 .2.50 43 45,04 80.5 311 45.60  3.47
99 2,30 2,40 62 43,481  81.5  2.35 46,72 1.56

100 3,30 2,85 72 40,46 80,5 44,08

2.98

416




Appendix 11 Between dispersion matrix of data A

127.186  -0.543 29.353 16.665 18.348 35.868 1.055 1.378 0.676 12.174  -12,473 3,143  -0,452 4.716 4.322

0.405  1.666 1,410 0,626 =-0.798 <0.115 -0.059 =-0.072 =3.643 1,478 =-0.109 =0.005 =-0.042 =0.061
35.010  ~7.28 3,271  -3.406 -0.225 0,064 =-0.100 15,103 13,081 3.478  0.169  0.711  -0,713

9.927  1.826 11.767 0.491  0.268  0.193  B8.764  -9.664 =-0.586 -0.335  0.613  1.27

5.721  7.723 -0.036  0.160 -0.031 -6.439  -1,378 0.0b8 -0.224  0.522  0.876

19,685 0,388  0.445 0.168  3.035 =10.972 =0,730 -0.544 1,22 2.182

0.130 0.030 ¢.018 1,443 -0.562 0,128 =0,041 0.453 0.011

0.034 0,015 0.932 —0.29% -0.007 -0,005 0.111 0.066

0.046 2,048 =0.04 -0.067 -0.001 -0.001 0.042

95,050 -3.530 1.9 -0.638 1,914 1.169
15.971  3.957 -0.008 -0.533 -1.328

4,267 -0.221 0,82  -0.248

0.106  0.029 -0,067

4,206 0,199




Appendix 1I! Within dispersion matrix of data A

94,286

0.722
0,169

35,347 19,639
0.632 0.189
25,044 5.628

8.992

15.714
0.355
5.514
4.584
8,566

34.316

0.565
11.238
13.219
12.445
25,130

3.248
0.026
1,462
1.179
0.585
1.841
1.115

0.554
0,016
0,211
0.113
0.121
0.223
-0.016
0.078

0,108
0.012
-0.036
0.016
0.039
0.068
0.004
0.027
0.047

7.001
0.349
3.201
0.813
1.988
2,228
-1.118
0.806
0.739
112.258

-7.665
-0.255
=3.373
-0,797
-1.422
-2.223
-0.123
=-0.155
-0.038
-1.445

6.517

0.652
0.097
0.126
-0.,182
-0.853
-0.991
0.103
0.132
0.056
3.958
0.737
7.127

=0.149
-0.003
-0.132

-0.011,

-0.029
-0.040
o.M
0.001
0.005
_0;225
-0.,008
0.059
0.013

-0.101
-0.003
-0.046
~0,035
=2,012
-0.053
-0.007
0.001
0.002
-0.0%9
-0,
-0.024
0,002
0.016

4,036

- 0.057

1.316
1.508
1.559
2.933
0.214
0.029
0.014
0.634
-0.319
0.008
-0.001
~0,002
0.435




Xv

BppendixIV Mean values of various characters (Environment 2)

Characters

Variety'. X, X, x3' X, X Xg Xo
1 92.22  2.57 53.3  13.6 13.7  27.3 0.8
2 86.82 3.40 33,9 17.9 21 38.9 8.2
3 85.24 3,06 48.6 11,7 12,4 24,1 8.6
4 83,30 3.62 50.1 12,1 14.6 26.7 8.4
5 84.93 3,40 48.2 9.5 13.8  23.3 7.8
6 80.37 2.6 47,3 8.3 8.7 17 9.1
7 85.85 2,63 52.3 12.8 16.4 29.2 9.8
8 90.10 3.26 55,5 9.7 9.9 19,6 9.3
9 71.41 2,19 26,7 22,5 8 30.5 8.6

10 78.78 2,79 33 12.4 13,7  26.1 8
11 60.42 1.78 30.7 9.9 4,5 1.4 9.9
12 66.81 1.81 42,6 7.5 5.9  13.4 8.8
13 77.03 3.47 49 749 6.5 1.4 8.9
14 74.8  1.93 30,7 16.2 6.9  23.1 8.5
15 85.52 1.21 34,5 21 2.2  23.2 9.7
16 76,486 1,91 27.9  13.3 84  20.4 7.8
17 70.04  3.24 30,9 16 15.5 31.5 9.7
18 80.00 1.37 30.5 15,2 8.1 22,8  10.6




¥V

Characters

Varietj ; Xg Xg X10 L op X415 X413 X %
1 2.45 2,46  67.2 41,1 8h.k 3.16 47,31 339

2 2.37 2,28 43.8 40,1 80.8 2,98 44,41 H-22
3. 2,20 2,46 46.9 39,5 80,3 3.92 44,00 317

4 2.52 2.47 56.4 41,8 8t.5 3.01 44,51 307

5 2,49 2,42 560 40,4 77.9 3,33 44,81 297

6 2,55  2.60 5h4.4 43,8 84,7 3.50 47,61 233

7 2,44 2.41 54,6 40,1 82.7 3.36 48,26 136
8 2.46 2,47 53,2 38.3 84.5 3.42 51,61 204

9 2,46 2,48 50.6 38,1  77.2 2.95 48,61 3HS
10 . 2,49 2,39 58.8 40,5 81,3 + 3,40 49,86 =47
11 2426 2.45 49,8 34,6 78.6 3.21 43,25 248
12 2,79 2.46  59.8  40.9  77.5 3.33 45,55 2.0
13 2,30 . 3.39 .93.2 45,3 88,5 . 3,59 52.0 263
14 2,37 . 2.16  51.2 38.2 84,3 - 3,10 44,45 158
.15 2.55 2.55 49..8 38.4 82,6 - 2.99 43,85 268
16 2.4 2,55 52.6 36,7 750 3.2 46.05 310
17 2.79 2.40 6.2'0 3745 76.2 3,03 45,00 352
18 3.00 2,60 83.6 38.3 79.8 <329 47,30 39F




Kuii

Characters

Variety.: X1 X2 }{ZJ X4 X5 {6 X7
19 70.40 2,00 31.7  13.4 6.8 20,2 8.7
20 85,37 0.60 25.8 28,1 1.6 29.7 8.6
21 78,37 242 445 15,5 7.2 22,7 8.7
22 82,07 0.85 36.9 15,9 4,2  20.1 9.5
25 72,06 2.7 29.5 1.4 3.6  15.0 70

24 69.65 2,37 28.8 4.3 5.4 19,7 8.6
25  81.98  2.44  27.2  17.7  25.2  40.9  10.6
26 85.51  2.05 32.4 20,3 20.1 404  10.7
27  68.60 2.08 29.9 150 8.5 23,5 8.4
28 74,05  3.31  38.4 10,6 11.2  21.8 7.4
29 80.56  3.24 40.2 14,2 14,5 28,7 9.0
30 82.43 4,03 36.75 13.7 22.8 365 8.2
31 6B.48 2,03 36,7 11.5 7.0 18.5 8.8
32 75.88  3.46 35.1  10.8 1.0 21.8 8.0
33 76,05 1,72 28,7 12.8 3.7 15.8 9.9
34 84.16 1,98 46.9 17.2 8.8 260 9.8
35 82,49 2,15 37.1  13.6  18.6  32.2  10.7
36 32,1 2.2 1.6  10.4

65,62

1.45

9.4




Xuiii

Characters

Varieil:g;; Xy X LSV S Xi3  Xq  Kis
19 2,34 2,28 "49.2  36.  78.0  2.85 46,15 294
20 2,4 2.5  55.8  37.4  81.8  3.32  46.60 3
21 2.37 2.36 47“.7 4‘0.8 80.4 3.25 46,05 3738
22 2,66 2,55 5h.2 36,8  86.4 3.7 47.65 289
23 2,02 3.22 1083 38,5 76,7  3.37 47.60 1
24 2,26 2,24 46,2 . 39.5 78.2 2,96 471.1'0 240
25 2.57 2.49 60.2  37.9  87.8 3.0 42,85 sy
26 252 2,54 57.6 38,2  78.5  3.55 46.31 3o
27 2,16 2,28 47.2  37.4  75.5  3.05 46,11 3t
28 2,18 2,16 49.4 40 79.3 3,06 4h.51 266
29 2.6 2.4 56.8 k0.0 82.5 3,06 44,60 w2i
30 2.36 2,32 52.4 41,2 81.9  3.05 48,26 557
31 2,04 2,29 47.6 415 83.9  3.05 4h.60 H03
32 2.35 2.1 53.4 M 85,9 2.8h 4885 S
33 2,59 3.29 105.4 37.1 '}9.0 3,10 4§.65 2.-30
34 2,05 2,42 4h 39,6 82.2 3,30 ha.o 16
35 2.59 2.75 66.0 414 80.6  3.60 52.80 20l
36 2.55 3.03 7.8 W8 TIT 27 "

50.50.




XX

Characters
Varietj. X, X, X5 Xy, X5 Xg X,
37 80.61 5.58 32.2 13,8 44,5 28,3 ‘8.0
38 62.36 1.32 34,1 9-5 | 2..7 11.7 9.7
39 gh.27 3.35 53,9 12-; 8.8 20.8 10.2
40 69.94 0,94 31.3  10.7 1.5 12.2 1.3
44 C69.7h 2,24 26,3 12,3 6.4 18,7 8.1
42 Tha14 1,27 344 12,2 2.1 14,3 10.5
43 70.66 2,23 30.7  15.1 7.0 22.1 ‘842
44y 79.32 1.79 4.8  11.3 6.0 17.3 12.2
45 69.95 2.67 28.6 15.0 17.1 32,1 8.5
46 86,68 0,97 37.2 18.8 10.7 29.5 10.2
47 92.27 3.70 61.9  10.6  1ha  24.7 9.1
48 72,92  3.33 39.9  10.1 15,1 25,2 9.0
49 70.83 1.86 32.§ 9.3 4,2 13,5 Y
50 76.20 4.36 39,7 15.6 22,8 38,4 1.2
51 83.86 2,66 40-6 15.5 13.3 28.5 11.2
52 79.46 2,39 47.1  12.0 ‘8.5 20.5 9.4
53 75.88 2.66 43.4 10,5 4,9 15,4 9.1

54 81,55 2.92 47.8 12.4 15.4 27.8 9.1




AA

Characters

X

Varlety - Xg X9 X0 11 o X, 3 X, Y5
37 2,46 2,37 544 39,4 79,7 2,85 42,81 370
38 2.52 2,73 58.2  40.7  76.6 2,64 43,85 228
39 1,92 245 46,2 47,9 92,1 2,38 43,5 1%
40 2,35 2,93 69.4 42,3 81,5 2,65 47.1 165
41 2,53  3.35 92,8 37.8  82.9 4e21 49,65 202
42 2,64 2,49 620 41,9  82.7 3.59 46,15 3HS
b3 2,40 2,27 42)9  39.5  75.9  3.41 48,75 23
bk 2,83 2,50 68.2 40,9  89.0 3.09 48,5  x&%
45 2,40 2,35 47,5 38,3  79.2  3.36 48,6  H18
46 3,01 2.88 78.2 38.8  82.5 3.82 48,7 404
L7 2.47 2,44 50,6 41.9 91,5 4,56 43,4 32
48 2,77 2.72 55.4 38,7 s8l.2 4,26 44,05 317
49 2,63 2,55 55.2  37.9  79.6 3.12 48,05 203
50 2,27 2.45 53.0 43,8 82,1 3.21 45,75 362
51 2.55 2,56 58.4  39.6° 79.8 2.59 42,54 GHL
52 2.63 2.47 55.6 42,7 88.2 3.40 43,04 232
53 2,36 2,63 52,2  39.9' 81.3° 3,39 46.39 2.0
54 2.45 2,46  57.8  43.0  8hh 2,77  khioh  aom




X1

Characters

Variety-: X, X, X3 Xy X5 Xe X7
55 74.67 . 2.79. 40.4  10.6 7.2 17.8 841
56 81.01 2.09 46,6 9.6 4.2 . 13.8 9.0
57 74,03  3.02  35.7 12.6 9.8  22.4 8ot
58 89.35. 2.96 48.7 12,1 8.4  20.5 9.75
59 76.85. 1.08 32.8 14,7 3.5 18,2 9.0
60 64,82 1,78 48,2 6.8 3.9  10.7 9.1
61 83.58, 2.8t% 55.5 121 11,5 @ 23.6 845
62  108.98, 5.34 74.6 12,5 22,5 350  11.6
63 68.90  2.50 42,1 9.1 5.5  14.6 9.3
64 90.96  3.06 45.6 1.4 14.8 26,2 7.7
65 . 79.79. 2.43 420 13,2 9.9 23,1 8.1;
66 89.62  1.94 40.1  18.4 3.7 . 221 T4
67 90.01  3.27 41,8  17.1 9.4 26.5 9.2
68 76.76. 3.7 39.8 11,6  15.7  27.3 9.1
69 76,17, 2,23 50.4 8.3 5.2 13.5 8.3
70 75.24 1.62 45,1 11,3 L3 15.6 9.9‘
71 78.09 2,98 43,7 11,4 8.1 19,5 8.7
72 80.58  2.81 40.9 141 15.0 290 9.4
73 89.21 3,37 53.1  11.4 12,5  23.9 8.9




XXt

Characters

Variety: Xg Xq X1 %44 Xq5 X3 Xqy s
55 2,70  2.51 55.8  40.8  86.1 2.80 40,24 30
56 2,78 2.58  56.3  39.5 855 3.25 47,3 27
57 2,52  2.65 ° 70.8  37.2  70.8  2.33 48.75 16§

. 58 2,40 2,42 52,8  47.2  89.5 2,92 45,1 208
59 2.62 2,65 59.2  37.6  8l.4 2,75 hh.79 248
60 2,55 2,55 56,8  40.9 7.1 3.40 40,75 1.9
61 2.30 2,38 58.8  4h.6 904 3 46.79 2%
62 2,43 PR 58.2 49,8  88.0 3.52 46,64 5.0F
63 2,50 -2.79 .49.3 42,3 91.1 3.70  48.09 232
6l 2.8 2,31 520 1,8 86,7  3.00 47.59 3%
65 2.2 2.33  40.8  h5.7  84.6  3.06  46.2h  ves
66 2,10 2,50 54,3  40.6  79.6  2.69 42,75 a
67 2.9  2.50 7.6 41.3  80.6 2.77 47.25 nw
68 2,47  2.56  57.6 4.2 T7.0 2,78 47.80 2738
69 3.1 3,03 65.2  43.1 77.8 2,93  48.45 195
70 2.49 2.4 53.4  46.6  90.2 3,08 46,60 127

71 2,35 :2.42 51:8 46.5  91.6 3.40 45,79 130
72 2,57 2,43 59.h  40.5 842  3.56  50.8h 375
73 2,59 2,47 61.6 46.8  86.8 2.89 48,69 272




Xxif]

Characters

Vari e‘ty 3 X1 X2 X'j X 4 XS X 6 ' X7

T4 77.97  2.43 43.9 9.8 ‘8.5 18.3 7.6
75 83.59  2.80 448 100 134 234 7.5
76 76,53  2.91 42,5 9.7 .10.9 20,6 7.7

77 85.31 2,64 48.1 12,5 8.6  20.9 8.9
78 80.37 2.07 450 130 9.0 22.0 8.8
79 79.68 2,10 33,1 22,8 14,1  36.9 9.0
g0 91.84 2,49 50.6 11.6 12.5  24.1 7.2
81 75,63  1.81 40.7 1.7 5.1 16.8  10.1

82 8322  2.34 444 11,5 9.9 21.4 849
83 4435 2,60 45.6 11,6 5.6  17.2 9.2
8k 7741 3.66 43,5 8.8 11.2  20.0 ‘9.1
85 84.23 2.84 51,6 11.5 3.2 14,7 1.0
86 80.87 3.4 47,7 10,8 12,3 22,6 8.6
87 74,76 117 49.0 6.7 1.6 8.3 '8.5
88 90.01 3,40 32.8 18.0  29.6. 47.6 8.4
89 87.42  3.93 58,3 9.4 13,8  23.2 '8.8
90 90.19 313 46,8 10,3 14,2 24;5 8.3




XXy

Characters
Varietly :  Xg Xg X410 X44 X, é X3 Xie  Yup
7h 2,27 2.4 49,6 44,1 86.6 3,35 46,59 35%
75 2.44 2,47 60,0  43.8  90.6  3.42  47.29 2e0
76 2,3 2,37 58.6  40.2  87.9  3.08  47.85 247
77 2.5 2,45 58.9 42,3 87.4 3.08 45.65 3%
78 2.54  2.37 51.6 44y 0. 88.2 3,00 46,60 21%®
79 2.75 2,51 60.6 37.8 81.0 3.00 43,10 3¢y
80 2.35 2,46 52.6 42.4 84,2 3.4 456 e
81 2.75 2.44 65.8 hbz2,2 80.9 2.79 47.80 a.2g
82 2.2 2,38 55.4 44,2  80.0 3.2 45,20 254
83 2.34 3,59 96.6 460, 82.7 3.45 45.70 2.0
84 2,40 2,46 53.4 43.0 88,1 3.67 46,60 3.9
85 2,77 2.51 67.1 47.3 88.1 3.31 47.50 200
86 2.54 2,52 61.0 40,7  78.7 2.83  48.40 33
a7 2.41 3,59 96.2  46.6  89.1 2.99 45,30 1,97
88 2,44 2,43 52 .0 38.7 84,6 2.93 Ly ,60 H.&4
89 2.36 2,46 59.4 44.0 88.8 3.25 45.60 329
90 ' 2,65 2.47 58.8 39.1 90.0 5.35 46,10 237




XXy

Characteré

Varietip. X, X, Xg Xy, Xg Xg X,
91 71.21 2,19  30.5 1.2 1M,k . 22,60 8.3
92 70,60 0,72 32,4 14,8 3.2  18.00 10,7
93 76.43 2,88 35,1 11,4 12,9 24,36 8.1
94 85.89  1.84 37,7 14,8 11.9  26.26 11.5
95 74.52 3,21 31,2 15,5 16,2 31,70 9.2
96 74,95 2,02 37,1 11-0 6,1 17.10 8.2
97 87.74  2.55 59.1 1.5 . 8.3 19430 843
98 73.29 0.01 27.8 12,95 2.0 13,15 8.7
99 85.20 2,81 35,7  17.6 13.4 37.10 9.1

100 70.27 1.20  35.7 7.8 2,1 9.%0 Ta2




Xxvi

Characters

Variety-: Xg X, Xy, ST S A Xo %
91 2,83 2,24 59.4 37,5 78.6 2.85 43,6 3R%
92 2,34 2,42 55,2 39.6 T8.4 2,70 40,45 233
93 2.42 2,37 52.6 400  86.7 3.25  43.79 &.A2
94 2,78  2.43  57.8 40,4 85.35 3.12  47.85 3-Hq
95 2,39 2,32 50.8  40.7 87.5 3.05 41.35 3%
96 2.32 2.45 49,6 .7 844 2,95 44,25 305
97 2.45 2.35 54 .4 4h,5 83.4 3.39 44,55  2-e%
98 2.47 238 58.4 36,9  79.3 3,39 44,65 M9
99 2,75  2.70. 595 39.9 77.9 2.77 47.20 397

100 3423 2,65 69.9  41.5 83.4 3.17 44,60 170




Appendix V Between dispersion matrix of data B

35.025

2,164
0.536

33.708 =0.737
2.993 -~0.686
67.092 «14,849
8,188

10.435
2,57

9,685
1.893
4.589 -10.219
1.067  9.251
18.972 20.074
29.354

0.088
=-0.197
0.190
0.157
-0.155
-C.02
0.837

-0.212
-0,038
~C.075
-0,124
-0.729
-0.257

0.044

0.049

=C.480
-0.060
-0.074
-0.260
-0.613
-0.873
0.034
0.009
0.061

-13,184
-1.820
-7.101
-8,482

=-19.937

-28.655

1.785
0.655
2,702
140,524

8.878
0.736
18.487
=3.784

0.075.

-3.715
0.298
0,076
0,116
1.63
7.339

12.489
0.586
21.002
=L.144
-0.097
=4.184
0.331
=0,104
-0.008
=-4.581
7.35

16,322

0.119
0.043
0.599

-0.222
0.211

-0.007

-0.002

-0.003
0.017
0.368
0.008

0.37M
0.087

1.168
-0.007
0.428
-0.633
-0.134
=0.787
0,228
0.064
0.193
9.832
0.205
-0.821
0,172
5.93

0.492
0.156
-1.021
0.417
1.475
1.875
0.013
-0.026
=-0.084
~2.637
-0.588
-0,003
0.022
=0.100
0.251




Appendix VI ¥ithin dispersion matrix of date B

56,188

1.882
0.659

21,908 14,441
1,413 0.347
32,961 1.691

9.472

21.499
2,196

7.044

7.170
27.569

35.779
2.541
8.584

16.636

34.673

51.260

1.899
0.091
1.233
0.959
0.782
1.736
0.627

0.279
=0.002
0.043
0.109
0.125
0.232
0.013
0.014

0.226
0.008
0.019
0.089
0.209
0.296
-0.009
0,003

0.025 .

6.199
-0.383
=3.367

1.526

3.379

4,887
-0.252

0.275

0,345
36.937

-0.586
0.271
0.791

-0.582
0.786
0.248
0.254
0.005

-0.056

-0.428 -

2,730

3.316
0.386
2.695
-0.135
4,155
3.981
0.367
0.034
-0.067
0,404
1.048
8,172

0.261
=-0.019
0.181
0.059
-0.062
-2.005
0.012
0.004
-0,006
-0.194
0.025
6.153
0.065

0.053
-0.002
0.069
=0.007
-0,C04
=-0.011
-0.007
0:0003
=-0,001
=0,042
-0.005
0.015
0.001
0.007

4 001
0,264
0.797
1.579
3.708
5.302
0.124
0.04
0.019
0.952
0.152
0.073
=-0.004
0.001
1,294




APPENDIX-VII

COMPUTER PROGRAMMES(BASIC) VUSED FOR THE ANALYSIS

5 REM PROGRAM FOR COMPUTATION OF PRIMCIPAL FACTOR SOLUTIONM

10
20
235
27
30
32
34
36
37
40
45
70
a0
g2
100
110
120
124
125
126
127
128
130
140
150
160
161
¥62
164
166
170
172
174
176
177

DIM D{20,20),A(20,20),V(20) JATC(20) ,FMT( 20

DIM W{(20,20),U(20),B(20,20),ER(20,2G) +EVI20,20) ,EERCZ0.20) SEEVOZ0, 20 ,EP{20) ,EMM{ 20

DIM DIAG(20) ,
DIM VA(20,20),VC(20)

INPUT "N,NF,EPS,NO";N,NF,EPS,NO
INPUT “FILE NAME";FL$:OPEN "I",#1,FLs
INPUT "EIGEN VAL. LIMIT";VCONST
INPUT "1st trial (Y¥/ 1";FTs

IF FT&<>MY" THEN Z=1:INPUT “NO OF FACTORS";M:FOR I=1 TO
IR=0
RESTORE
FOR 1=1 TO N
FOR J=1 TO N

INPUT #1,DCI,JT)

D(JT,1)=D(I,J)

NEXT J

NEXT 1

TRES=0

IF 2Z=0 THEN 130

FOR I=1 TO N

D(I1,I)>=DIAG(I)

NEXT I

FOR I=1 TO N

FOR J=1 TO N

EACI,F»=D(I1,J)

NEXT J ’:LPRINT

NEXT I

FOR I=1 TO N

TRES=TRES+D{1I,1)

NEXT I

GOSUR 1530

FOR I=1 TO N

V(I)=EACI,I)

FOR J=1 TO N

W(I,T)=EV(I,J)

N:INPUT

"DIAG ELTS",DIAG(I) :NEXT I



A%

178 NEXT J:NEXT I .
180 LPRINT " ESTIMATES OF PRINCIFAL FACTOR LOADINGS"

184{ IF Z=1 THEN 190
182 M=N
183 RN=0

184 FOR I=1 TO N

185 IF V(I){VCONST THEN RN=RN+1

186 NEXT 1

187 M=M-REN

190 FOR I=1 TO M

200 85=0

210 XP=SQR(V{I))

220 FOR J=1 TO N

230 SS=5S+W(JI,I)%W(T, 1)

240 NEXT J

250 S58=XP/SQR(SS)

260 FOR J=1 TO N

270 A{I,J)=SS*W{J, 1)

280 NEXT J:NEXT I

290 FOR J=1 TO N

200 LPRINT J;" ",

305 DIAG:{J)=0

210 FOR I=1 TO M

315 DIAG(J)=DIAG(JI)+A{I,Jr*%ALI ,T)

"320 LPRINT ACI,J);

330 NEXT I:LPRINT:NEXT J

331 LPRINT:LPRINT "DIAG ELTS":FOR I=1 TO N:LPRINT DIAG(I); :NEXT I:LPRINT
332 Z=1 .
333 FOR I=1 TO N

334 IF ABS(DIAG{(I)>-D(I,1))>EPS THEN GOTO 122

335 NEXT 1

340 NFF=M _
345 LPRINT:LPRINT “VARIMAX ROTATION WITH ESTIMATES OF PRINCIPAL FACTOR LOADINGS"
347 FOR I=1 TO NFF:FOR J=1 TO N:VA(J,I)=A(l,J):NEXT J.,1
348 GOSUBR 3020

1525 END

1527 REM SURR.BRANCHING FROM 170

1530 NN=1

1540 IF NN=0 THEN 1620

1550 FOR EI=1 TO N

1560 FOR EJ=1 TO N

1570 IF EI(>EJ THEN 1600

1580 EV(EI,EJ)=1




XAXI

1590 GOTO 1610
1600 EV{EI,EJ)>=0

1610 NEXT EJ.EI

1620 ENR=0

16%0 EMI=N-1

1640 FOR EI=1 TO EMI

1650 EP(EI)=0

1660 EMJI=EI+1

1670 FOR EJ=EMJI TO N

1680 IF EP(EI)>ABS(EA(EI ,EJ)> THEN 1710

1690 EP(EI)=ABS(EA(EI ,EJ})

1700 EMM{(EI)=EJ

1710 NEXT EJ:NEXT EI

1720 FOR El=1 TO EMI

1730 IF EI¢(=1 THEN 1750

1740 IF EPMAX>EP(EI) THEN 1780

1750 EPMAX=EP(EI) ,

1760 EIP=EI

1770 EJP=EMM(EI)

1780 NEXT EI

1790 IF ENR=0 THEN EEFLN=ABS{EPMAX)*0 . 000O000E-10

1800 IF EPMAX({=EEPLN THEN 2541

1810 ENR=ENR+1

1820 IF EA(EIP,EIP))>=EA(EJP,EJP) THEM (860

1830 ETA=-2*EA(EIP,EJP)/{ABS{EA(EIP,EIP)-EA{EJP,EJP))+SQR((ER(EIP,EIP)-EA(EJP ,EJP))~2+4%EA(EIP,EJP)~2).
1840 GOTO 1870 -

1850 GOTO 1870

1860 ETA=2*EA(EIP,EJP)>/(ABS(EAR(EIP,EIP)~EA(EJP,EJP))+SQR{{EA{EIP,EIP)-EA(EJP,EJP))*2+4%¥EA(EIP,EJP)~2))
1870 ECO=1/SQR((1+ETA*ETA)) :
1880 ESI=ETANECO

1890 EAI=EA(EIP,EIP)

1900 EA(EIF,EIP)=ECOXECOX(EAI+ETAX (2%XEA(EIP,EJP)+ETAX(EA{EJP,EJF))))

1910 EACEJP,EJP)=ECO*ECO*(EA{EJP,EJP)-ETAX(2XEA(EIF,EJP)-ETAXEAI})



XARI |

1920 EA(EIP,EJP)=0"

1930 IF EAR(EIP,EIP)>=EAR(EJP,EJP) THEN 2030
1940 ETT=EA{EIPF,EIP)

1950 EACEIP,EIP)=EA(EJF,EJR)
1960 EA(EJP.,.EJP)=ETT

1970 IF ESI»=0 THEN 2000

1980 ETT=ECO

1990 GOTO 2010

2000 ETT=-ECO )

2010 ECO=ABS{ESI) R -
2020 ESI=ETT

2030 FOR EI=1 TO EMI

2040 IF EI-EIP>0 THEN 2070
2050 IF EI-EIP(0 THEN 2080
2060 IF EI-EIP=0 THEN 2210
2070 IF EI=EJP THEN 2210

2080 IF EMM{EI>»=EIP THEN 2100
2080 IF EMM(EI)Y<(>EJP THEN 22:0
2100 EX=EMM{EI?>

2110 ETT=EA(EI ,EK?

2120 EA(EI,EX)>)=0

2130 EMJ=<EI+t

2140 EP(EI)=0

2150 FOR EJ=EMJ TO N

2160 1F EP(EI)>ABS(ER{EIl,EJ)) THEN 2160
2170 EP(EI)=ABS(ER(EI ,EJ)}
2180 EMM{EI)=EJ

2190 NEXT EJ

2200 EA(EI,EK)=ETT

2210 NEXT EI

2230 EP(EIP) =0

2240 EP(EJP)=0



XRXIH

2250 FOR EI=1 TO N

2260 IF EIYEIP THEN 22820

2270 IF EI=EIP THEN 2570

2280 ETT=EA(EI ,EIP)

2290 EA(EI,EIP)=ECOXETT+ESI*EA(EI,
2300 IF ERP(EI)>=ABS(EACEI ,EIP)) TH
EP(EI)=ABS(EA(EI ,EIEFE))
EMM{EI)=EIP
EA(EI,EJP)=-ESI*XETT+ECO*EA(EI ,EJP)

IF EP(EI)>)>=ABS(EA(EI,EJP)) THEN 257
EP(EI)=ABS(EA(E! ,EJP))

EMM(EI)=EJP

GOTO 2570

IF EIYEJP THEN 2480

1F EI=EJP THEN 2570

ETT=EA(EIP,EI)
EA(EIP,EI)=ECO*ETT+ESI«EA:EI ,EFF)

IF EP(EIP)>=ABS(EA(EIF,EI)> THEN 2435
EP(EIP)=ABS(EA(EIP,EI )

EMM(EIP)=EI

2450 EA(EI,EJP)=—-ETTANESI+ECO*ER(E] ,ETP"
2460 IF EP(EI)}=ABS(EA(EI ,EJP)) THEN 2570
2470 GOTO 2350

2480 ETT=ER(EIP,EI)

2400 EA(EIP,EI)=ETTXECO+ESIX¥EA(EIP,EI)
2500 IF EP(EIP)>=ABS(EA(EIP,EIY} THEN 253z
2510 EP(EIP)=RES(EA(EIP,EI})

2520 EMM(EIP)=EI

25%0 EA(EJP,EI)=-ETTXESI+ECO*EA(EJF,EIJ
2540 IF EP(EJP)»=ABS(EA(EJP,EI)) THEN 2570
2550 EP(EJP)=ABS(EA(EJP,EI)) :
2560 EMM(EJP)=EI

2570 NEXT EI

2580 IF NN=0 THEN 1720

2560, FOR EI=1 TO N

2600 ETT=EV(EI,EIP)
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2610
2620
2630
2640
2641
2642
2646
2648
2649
2650
2652
2654
2656
2658
2659
2660
2670
2672
2680
2690
27060
2710
2720
2730
2740
3010
3020
3022
2030
2032
3040
3050
2060
2062
3070

EV(E1,E1P
EV{(EI_ EJP
NEXT EI

GOTO 1720

XA RV

})=ETT*E{LQ+ESIYEV(EI ,EJPF)
J=-ETTXESI+ECOXEV{(EI ,EJP)

FOR EI=1 TO N

EP(EI)=1:

SUM1=0

FOR EJ=1 TO N:8UM1=8UMI+EV{(EJ ,EI)*XEA(ET,EJ}

NEXT ET
IF SUM1<0
NEXT EI

THEN EP(EI)=-1

FOR EI=1 TO N

FOR EJ=1 TO N
EV(EJ,EI)=EV{EJ,EI)*EFP(EI)}
NEXT EJ:NEXT EI

LPRINT "NO OF ROTATIONS";ENR

LPRINT "EIGEN VALUES & CORR.

REM LPRINT "EIGEN VALUES",EA(EI,EI)

LPRINT EA

(EI,EI) ;" "

REM LPRINT "“CORRESPONDING EIGEN VECTORS™

FOR EJ=1
LFRINT USs
NEXT EJ
LPRINT
NEXT EI
RETURN

TO N
ING “#% . #4%#4" ,EV(ET, . EI1);

REM SUBROQUTINE BRANCHING FROM 1524

REM INPUT "NO OF FACTORS; NO OF VARIABLES"

VN=NFF: VM=N

EP=.00116
GOTO 23080
FOR VJ=1

TO VN

FOR VK=1 TO VM

VA(VK,VJ)?
REM INPUT
NEXT vX

=A(VK,VI)
PVACK, X" VAIVK, VT
NEXT VJ

EIGEN VECTORS":FOR EI=1

; VN, VM

TO N



30830 FOR VJ=1 TO VM
3090 VC(VJ)=0

3100 FOR VK=1 TO VN
8110 VCI{VI)»=VC(VJI) +VA(VI,VK)~2

3120 NEXT VX

31%0 LPRINT "VARIABLE” ;VJ,"COMMUNALITY"
3140 VC(VJI)=SQR(VC(VT))

3150 FOR VK=1 TO VN

3160 VA(VI,VK)=VA(VI,VK)/VC(VTI)

2170 MEXT VXK: NEXT VJ

3180 VN1=VN-1

3190 VNR=0

3200 FOR VI=1 TO VNI

3210 VI1=VI+]

3220 FOR VJI=VI1 TO VM

32%0 VAl=0

23240 VB1=0

3250 VC1=0

3260 VD1=0

3270 FOR VK=1 TO VM

3280 VU=VA(VK,VI)A2 —VA{VK,VI)A2

3200 Vu=VA(VK,VI)*VA(VX,VI)¥z

3300 VA1=VAl+VU

3310 VB1=VB]4+VV

3320 VCI1=VC1+VUA2-VVA2

3330 VD1=VD1+VUXVVx2

3340 NEXT VK

3350 VON =VD1-Z2%VAL*VB1/VM

3360 VQD=VC1-(VA1AZ-VB142)/VM

3370 IF ABS{VQN)-ABS(VQD) (0 THEN 3710
3380 IF ABS(VQN)-ABS(VQD))>C THEN 23490
3390 IF ABS({VQN)-ABRS(VOD)>=0 THEM 2570
3400 VEM=ABS(VQN/VQD)

3410 IF VEM-EP (0 THEN 2450



ARANV

VC(VT)



3420
3430
34840
23450
3460
3470
%480
3490
3500
3510
23520
3530
3540
3550
3560
3570
. 3580
3590
2600
3610
3620
3630
2640
3650
3660
3670
3680
23690
3700
3710
3720
3730

VCS=COS {ATAN(VEM))
VSN=SIN(ATAN(VEM) )
GOTO 3590

IF VQD»=0 THEN 3710
VGP=.70710678¢
VCP=VSP

GOTO 3740

VEM=ABS (VQD/VGN)>

IF VEM{VEP THENMN 3540
VSN=11/SQR(1+VEMAZ)
VCS=VSN*VEM

GOTO 3590

VCS=0

VCN=1

GOTO 3590
VCS=.70710678%
VSN=VCS
VEM=SQR({1+VCS)*x . 5)
VCS1=SQR{(1+VEM)¥.5)
VSN1=VSN/(4%VCS1*VEM)
IF VQD>=0 THEN 3660
VCP=.70710678#%(VCS1+VSN1)
VSP=.70710678#*{(VCS{-~VSN1)
GOTO 3680

VCP=VCS1

VSP=VSN1

IF VQN>=0 THEN 3720
VSP=-VSP

GOTO 3730

VNR=VNR+ 1

GOTO 3780

FOR VK=1 TO VM



XXAVE



3740
3750
X780
*3770
3780
3790
3800
3810
3820
3830
3840
3850
3860
3870
3880
3890
3900
3910
3920
3930
3840
3050
3960
3970
3680

3985

39990
4000
4010
4015
4020

XAK VI

VEM=VA{VK,VI)*VCP+VA(VK ,VJ)XVSP

VA(VK,V
VA(VK,V
NEXT VK
NEXT VJ
NEXT VI
IF VNRHK
FOR VK=
FOR VL=
VA(VK .,V
NEXT VL
LPRINT

FOR VJ=
LPRINT

FOR VK=

JY=VA(VK,VII)XVCP-VA(VK , VI)*XVSPF
IY=VEM

OVNYVYNL ) /2 THEN 3160
1 TO VM

1 TO VN
LY=VA{VK VL)Y *XVC{VK)
:NEXT VK

"*"NEW FACTOR PATTERN"
1 7D VM

VJ

1 TO VN

LPRINT USING "$#4# ##484" ;VAI(VI, VK);

NEXT VK
FOR VJ=
VC( JT) =
FOR VK=

:NEXT VJ
! TO VN
0

1 TO VM

VC{VTI)=VC(VII+VA{VK VIr~2

NEXT VK
FOR VJ=
VC(VT) =
NEXT VJ
LPRINT
LPRINT
FOR VJ=
LPRINT
NEXT VJ
RETURN

:NEXT VJ -
1 TO VN
VC(VI) IVM

"PROP. VAR ACCOUNTED BY EACH FACTOR'
i TC VN
VI, VCIiVJ)






S REM PROGRAM FOR COMPUPATION OF MAXIMUM LIXELIHOOD SOLUTIONM

10
20

25

27

30

32

70

80

92

100
110
120
130
140
150
16
170
180
260
370
380
290
400
410
420
430
440
450
460
470
480
510
520
522
530
535
540
550
560
570
580
585
590
600
610

DIM D{(20,20) ,AC20,20),V{(20),AJ¢20),FMT(20)
DIM W{(20,20),U(20),B(20,20),EA(20,20) ,EV{(20,2
DIM DIAG(20)
DIM VA{20,20),VC(20)

INPUT "N,NF,EPS,NO" ;N ,NF,EPFS,NO
INPUT "FILE NAME" ;FL$:OPEN “I" ,#1,FL3
FOR I=1 TO N
FOR J=1 TO N

INPUT #1,D(I,J)

DiT.,1)=D(1,T)

NEXT J

NEXT I

NFF=NF

FOR =1 TO N

FOR I=1 TO NFF

PRINT "A";I1,J

INPUT AC(I T

NEXT I:NEXT J

FOR I=1 TO N

Vili=1

FOR J=1 TO NFF

ViI)=sV(IID-A(T, I)XA(T, I

NEXT J:LPRINT V{I);: NEXT I:LPRINT
FOR I=1 TO NFF

FOR J=1 TO N

WOI,T)=A(I J)Y/V(T)

NEXT J.NEXT 1

FOR I=1 TO NFF

FOR I=1 TO N

BeI,T)=AC(I,T)

NEXT J:NEXT 1

FOQR I=1 TO N

UCI)=0

FOR J=1 TO N
UCTId)=U{I)+W({L1,T)*DCI,J)
NEXT T

UCI)=UC(IY-AC1,IY

NEXT I

H=0

FOR I=1 TO N
H=H+UCI)*W(1, 1)
NEXT I

H=ABS(H)
H=1/SQRiH)

FOR 1=1 TO N

0Y,EER(Z20,20),EEV(

&

L Oy

i
£

0> ,EP(20) ,EMM(20)



520
630
640
650
660
670

6580

690
700
710
720
730
740
750
760
770
780
790
800@
810
820
830
8490
850
86¢
870
880
89¢0
900
910
920
230
240
950
960
970
98¢

A{1,1)=Hr*U:il)
NEXT 1

FOR 1=2 TO NFF
II=1-1

FOR J=1 TO II
AJ(J)=0

FOR K=1 TO M
AT(I)=RAT{(T>+A(T , K)*W(I, K>
NEXT K:MNEXT J
FOR KK=1 TO N
UCKK?Y =0

FOR J=1 TO N

ULKKY=U{KK>+W(I , JX*D{KK, )

NEXT J

FOR J=1 TO 11
UCKK)Y=UCKK)-AJ{J)*XAL{JT KK
NEXT J
U{KK)=U(KK>-A(TI,KK)

'"NEXT KK
H=0
FOR J=1 TO N

H=H+U({(JT)*W(I,J)
NEXT J

H=ABS(H>
H=1/8QR{H)

FOR J=1 TO N

A{I,J)=H"U{T)
NEXT J

NEXT I

FOR I=1 TO NFF

FOR J=1 TO N
DIF=ABS(A(I ,J)~-B{I ,J))
IF DIF>EFS THEN 0670
NEXT J:NEXT 1

GOTO 1010

FOR I=1 TO NFF

FOR J=! TC N

WR% IR



985
990

991

992

99X

994

995

1000
1010
1020
10%0
1040
1050
1060
1062
1070
1080
1082
1090
1100
1110
1120
11%0
1140
1150
1160
1170
1180
1160
1200
1210
1220
12%0
1240
1250
1260

HXXK

B{I,J)=AC(C(I,I)
NEXT J:NEXT 1

FOR d=1 TO N

LPRINT J
FOR 1=1 TO NFF
LPRINT AC(I . J); )
NEXT I1:LPRINT:NEXT T
GOTO 360 .
LPRINT "MAX. LIKELY ESTIMATES OF FACTOR LOADINGS™
FOR J=t TO N

LPRINT J

FOR I=1 TO NFF

LPRINT A(I ., J};

NEXT [:LPRINT:NEXT J§

LPRINT: LPRINT "Coefft. of Uni&ueness“

FOR I=1 TQO N

TVCIN=DICI T

V(I)=t1

FOR J=1 TO NFF

V(I)=V(I)-A(T,I)*AL{T, I

NEXT J:LPFRINT V{I);:NEXT I:LPRINT

LPRINT "FACTOR VALUE","P.C. VARIATION EXFLAINED"
FOR I=1 TO NFF

XX=0

FOR J=1 TO N

¥X=XX+AC(I ,J>»*A(I ,J)

NEXT J

H=XX/TRES*10Q

LPRINT I . XX.H

NEXT I

FOR I=1 TO N

B(I,I¥=V{I)

MNEXT 1

FOR I=1 TO NFF

FOR J=1 TO N

WCT,I)=A(I,J)



1270
1280
1282
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1422
1430
1440
1450
1460
1470
1480
1485
1490
1500
1510
1520
1530
1540

YXA K]

NEXT J:NEXT I

FCOR I=1 TO N

B(I,1)=0

FOR J=1+1 TO N

IF I=J THEN 1370

B(1,J3=0

FOR K=1 TO MNFF
BCI,J)=B(I,J)+A{K,IY*W{J, 6 K}

NEXT X

B(I,J)=D(I,J)-B{I,J}

NEXT J:NEXT 1

LPRINT "RESIDUAL MATRIX AFTER REMOVAL OF";
FOR I=1 TO N

LPRINT 1I

FOR J=1 TO I

LPRINT B(J,I);

NEXT J:LPRINT:NEXT I

LPRINT

XX=0

NCC=N-1

FOR I=1 TO NCC

II=I+1 )

FOR J=II TO N
XX=XX4+B(C(I ,J)%*B{I , )/ (V{I)*XV{I))

NEXT J:NEXT I

OON=NO- . 1656566878 {2¥N+5)- 6666667 ¥MNEF
DF=, 5% ({(N-NFF)~2-N-NFF>

XX=XX*OON

LPRINT "APP. CHI-SQ";XX;'" WITH":DF;"D.E"

‘STOP

END



NFF; "
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ABSTRACT

Sesame {8 an important amnuel oll saed crop grown
in Indis. It i3 grown in & very linited area o2 1453
hectares 1ln Kerala., The lack of high vielding verietics
sultable to thn.seasans in different regions wvas the main
factor limiting the productivity of sezame in our State.
The genetically diverzent parents will produca better
aegéégnnts in the hybridisation progreame, The present
gtudy was undertaken to delineate the underivinz causes
of divergence in the sesamo plants using the factor analytie

eathods,

Frincipal factor and maximua ldkelihood factor
analysis were carrled out an a pultivariate deta on fifteen
characters of hundred selected sesewme varieties which are
grown in upland during rabs, 1981 and rice fallows during
summer, 1982, The snalysis were dane an phenstypic, environe
ment and genotypic correlation matrices urgler both environ-
ments. The phenotyplie correlation matrices did not give =
stable factor potteran during bhaoth rabi and susmer seasons,
Alsd the genstypic correlstion matrices under the two
environgeats vere found not sultable for £nchor analytic
studies. The environment carrelotion matrices gave stable

factor pattern under both the envirsnuenis end this matrix



wes fournd t2 be aporopriate for facitor annlytic studles,

The reprsductive, height, seed, density end growth
factors were identified as the underlying causzes of divere
gence in seszme under the two environments when the Principal
Factor Analysis was perforued. The Maxliaun Likelihood
Factor Analyaii revealed the additisnal faciors viz.,
quallity factor in uplamnds and e welght foctor in rice
fellows apart from the above factors. Haximua likelihood
method is superior to principal factor analysis method as
it gave a better f£it of the factor-mosdel, The characters
which vere most amenable to changes due %o geclection in
these factors were identified in uplends as yield of sceds
per plant es reproductive factor, circumference of capsule
es sced factar, nuanber of days to maturiiy as growth factor
and nunber of fruiting nodes per 20 cm as donsity factor,
The sameé characters were identified as height, growth and
density factors in rice fallows. The munbasr of capsules
on branches and yield of seocds per plant were ldentified
as reproductive factor, circumference 2f£ anpsule and musber
of sceds per capsule &3 zeed factor in rice fallows, The
factors relating to grawth, productivity and quality were

identified &3 the factors of divergence in sesame,



