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CHAPTER 1
INTRODUCTION

The world is worried about global warming and the impact it will have on the
people and the ecosystems on which they depend. Climate change became one of the
major challenges of our time and it adds enormous stress to our societies and to the
environment. Prominent changes are reflected in the temperature and apparently these
changes are a result of the increased levels of the greenhouse gases. According to IPCC
ARS synthesis report, in the Northern Hemisphere the period from 1983 to 2012 was
likely the warmest 30 year period of the last 1400 years. Over the period 1880 to 2012,
the globally averaged combined land and ocean surface temperature showed a warming
of 0.85°C (0.65 °C to 1.06 °C) (Allen er al., 2014). Scientist assumes that there could
be a further heat increase of at least 1.8 degrees during the 21* century, even if we take
decisions for mitigation now. Also there would be changes in the precipitation patterns.
The effects of these changes are vast challenges for mankind. The human activities and
the related anthropogenic activities like fossil fuel combustion and the greenhouse gas
emissions are the primary causes for climate change. Climate change intensifies other
problems like loss of biodiversity and ecosystem services. water scarcity, floods and
droughts, desertification and land degradation and intensified biogeochemical cycles.
Adaptive mechanisms have to be practiced to combat the climatic changes experienced
over the globe. The knowledge regarding these changes have to be updated and
constantly reviewed. People have to be aware about the climate change and its

penalties.

The effects of climate change on biodiversity are poorly understood compared
to the physical dimensions of these changes. Climate change effects a number and
variety of plant and animal species in a particular location. A sudden change in the
climate requires larger and faster scales of adaptation than in the past. The species

which fails to adapt are at a risk of extinction. A single loss of species will lead to



cascading effects since each organisms are connected by food webs and other

biological interactions.

The migration of animals are linked to climate factors such as temperature,
moisture availability and amount of daylight. The natural patterns of various species
are disrupted due to the changes in the climate. These in turn will affect the behavior
and interactions of various species. Some may adjust their life cycle patterns to the

changing weather conditions, but some may fail.

There are evidences which shows that the recent climatic changes have affected
numerous organisms with diverse geographical distributions. Climatic regimes
influences species distributions through species-specific physiological thresholds of
temperature and precipitation tolerance. These climatic envelops are shifted due to the
warming trends. Some animal and bird species will change their locations in search of
a better place where the environmental conditions are favorable for their growth and
reproduction. The stress condition imparted by the combined effect of temperature and
humidity causes metabolic changes in the living species. For avoiding the stress they
can alter the metabolic and physiological activity. The migration will lower the stress
by maintaining their bodily functions same as before by finding ambient conditions
outside. These migrations can be considered as a biological indicator of climate change
which tells the society about the change happening in the environment. The species are

expected to track the shifting climate.

In Kerala there is a change in the climate during recent years, which led to the
species distributional change, especially causing migration changes in the avian
species. The birds are best regarded as a good bio indicator of climate change. Also
they can be easily understood by the public and policy makers, since birds are very
popular and it have a recognizable and iconic status throughout the world. A slight

change in the environment will be tracked by the bird and will rush to a safe place
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where the environment is quite favorable for their growth and reproduction. The biotic
interactions are not static in spatial and temporal resolution and it can be linked with

the impacts of the climatic changes.

There has been a considerable change in the distributional range of Peafowl
(Pavo cristatus) in Kerala. One of the earliest bird survey in Kerala. (erstwhile
Travancore-Cochin). was conducted by Salim Ali and Hugh Whistler (1935-36).
However, Ali (1969) reports that he found the Indian Peafowl’s from the deciduous
forests of Peechi-Vazhani. Subsequent to that there are quite a few records of the Indian

Peafowl from Kerala (eBird, 2016).

For the understanding of the distributional change with respective to the
environment, species distribution models can be used. They are empirical models
which relates the field observations to the environmental predictor variables using the
statistical methods. These models are used to predict the changes in the distributions

that would happen in the future by incorporating the climate model data.

In this project we are trying to model the distribution change happened to the
Indian Peafowl in Kerala using appropriate model techniques. We are putting a
hypothesis that, changes in the distribution of the Indian Peafow] was due to the recent
changes in the climate of Kerala. This species can be used as a bio-indicator of climate
change if the results obtained are good. So far by observational and traditional
experiences we came to such a conclusion, but there is no scientific explanation to all

these.

The primary objective of this study is to find out the reasons for the expansion
of the distribution of the Indian Peafowl (Pavo cristatus) in Kerala and to find out the
possible reasons for the change in the distribution pattern of the Indian Peafowl. Using
modelling techniques we can develop an ecological niche model based on the current

climate data and to project the regional shifts in the distribution pattern of the Indian



Peafow!] based on the results of the model in the changing future climatic conditions

under different scenarios.

The methodology followed can be used for further studies of various other
species which are being changing its distributions. The study can reveal better about
the physical changes happening in the environment whereas the statistical data analysis
can just give the quantified changes which may not be ecologically significant. The
models will be beneficial to predict the future distributional changes in the Indian
Peafowl and in a similar way other significant species can also be studied. This study
can provide a better idea about the impact of climate change on the geographical

distribution of the Indian Peafowl.
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CHAPTER 2

REVIEW OF LITERATURE

2.1 SPECIES DISTRIBUTION: FACTORS

The strong relationship of the distributions of individual species and species
richness with the climate of that region had been noted by bio geographers centuries
back itself. Combinations of predictor’s especially environmental factors had a
significant correlation with the species distribution, but the effect was uncertain
(Freedman, 1983; Graham, 2003: Whittingham et al., 2006: Platts ¢f al., 2008; Murray
and Conner. 2009). Factors affecting the species distribution was an unresolved issue
in ecology (Araujo and Guisan, 2006). It was concluded that the decline in the
population of Turdus torquatus (Ring Ouzel) in Northern Britain was due to the
increase in summer temperature and decrease in summer rainfall (Beale et al., 2006).
Bird species distribution was affected by other factors like summer weather (Robinson
et al.. 2007), food availability (Conrad ef al.. 2006) and habitat distribution and quality
(Fuller et al., 2007). The bird population was also affected by trends in uniform crop
land associated with the crop loss, margin and hedge foraging habitat and nest sites
(Gregory et al.. 2007: Thaxter ef al., 2010). Climatic variables such as number of cold
and wet days, length of winter frosts and snow periods. summer drought and spring
temperatures affected the bird species demography leading to varying population
trends over time (Robinson er al., 2007). Due to increased winter temperature
population of Ardea cinerea (Grey Heron) in Northern Italy has increased (Fasola ef

al., 2010).
2.2 CLIMATE CHANGE IN KERALA

There were evidences which showed the decline of annual rainfall in the

southern part of Kerala, whereas northern part doesn’t showed similar trends (Soman



et al.. 1988). An increase in the mean surface temperature (1.5°C) during monsoon
season was predicted in the decade 2040-2049 with respect to 1980s (Saseendran et al.,
2000). Studies showed that southwest monsoon rainfall and annual rainfall was
decreasing, but post monsoon rainfall as increasing (Krishnakumar et a/., 2008: 2009).
Annual rainfall received in the Palakkad Gap in Western Ghats region varied with
altitude and compared to the entire state annual rainfall was comparatively lower over

these regions (Raj and Azeez, 2009; 2010).

The following results were released by India Meteorological Department in
their monograph published on 2013. Increasing annual mean maximum (+0.01°C/year)
and minimum temperature (+0.01°C/year) trend was significant (95%) over Kerala.
Significant increase in annual mean diurnal temperature range DTR trends
(+0.01°C/year) had been observed in Kerala. However annual average rainfall had
decreased (-1.43mm/year) over Kerala. Winter mean maximum temperature trend was
increasing (+0.01°C/year). In winter rainfall there observed a decreasing trend in
Kerala (-0.4 mm/year). There showed an increasing trend in summer mean maximum
temperature (+0.01°C/year) whereas no trend was observed in summer mean minimum
temperature trends. But summer mean temperatures had significantly increased over
Kerala (+0.01°C/year). State averaged summer mean DTR trend was increasing at the
rate of +0.01°C/year. Maximum decline in summer mean rainfall trends had taken place
over Kerala (-1.15 mm/year). The monsoon mean maximum (+0.02°C/year) and mean
temperature (+0.01°C/year) was increasing. Monsoon season mean DTR trend also
showed an increasing trend (+0.02°C/year). The monsoon rainfall trend showed a
decreasing trend (-2.42 mm/year). The post monsoon mean maximum (+0.01°C/year),
mean minimum (+0.01°C/year) and mean temperature (+0.01°C/year) was increasing.

The post monsoon rainfall showed an increase of +1.68 mm/year (Rathore ef al.. 2013).



2.3 IMPACTS OF CLIMATE CHANGE ON BIRDS
2.3.1 Birds as bio-indicators

The avian species had the capacity to be considered as important bio-indicators
which was easily understood by the public and policy makers. since birds were very
popular and it have a recognizable and iconic status throughout the world (Crick, 2004).
Climate change was considered as one of the most dangerous and widespread threat to
biological diversity (IPCC, 2007). According to Willis and Bhagwat (2009)
anthropogenic activities were transforming ecological systems globally, changing the
world’s climate and reducing and fragmenting habitats. Birds were well known
indicators of climate change having advantages of best known class of organisms in
climate research (Wormworth and Sekercioglu, 2011) and birdwatchers across the

globe make up an extensive datasets (www.ebird.org: www.worldbirds.org).
2.3.2 Effect of climate change on physiology of birds

The weather affects the metabolic rate of birds directly and indirectly, which
influenced the bird behaviour. Important activities like feeding and breeding would be
reduced when birds avoid places with unfavourable climates (Walsberg, 1993). Crick
(2004) reported that the success of breeding depends upon the production of various
hormones which would be fluctuated under various weather conditions. Indirect effect
on bird activity and behaviour was induced by the temperature changes and humidity.
Results by Gregory er al. (2009) showed that due to climate change a detectable
continent-wide effect had already took place with negative and positive effects at the
level of large species assemblage. Nevertheless, there were studies which hinted at the
important role of physiological responses of birds to the climatic changes (McKechnie,

2008: McNab, 2009).



2.3.3 Responses of birds towards climate change

The responses done by the species to climate change was generally by three
methods such as movement (if the species are mobile they will track the suitable
environment niches). adaptation (if the species are able to adjust to the changing
conditions and have high physiological tolerances) and extirpation (when both
movement and adaptation fails) (Holt, 1990: Melillo er al., 1995). Apart from climatic
factors, land-use and habitat change, biotic interactions and evolutionary adaptation
also played a role in the species distribution (Huntley ef al.. 2006; La Sorte and
Thompson, 2007 Beale er al., 2008). Thomas (2010) stated that climate can be
considered as one of the major determinants of range boundaries. Endothermic birds
were affected indirectly by climate change due to its impacts on vegetation in their
communities rather than direct effects on physiology (Aragon er al., 2010a). Chen et
al. (2011) argued that the majority of the shifts in distribution was due to climate
warming and he showed evidences for range shifting towards the pole and upwards by

many species (Chen et al., 2011).
2.3.4 Climate change and avian distributional range

Gibbons and Wotton (1996) showed that the distributional range expansion of
Dartford Warbler (Sylvia undata) in the UK since the 1960s was due to the lack of
severe winters. The studies that documented earlier revealed that, the shift in the
distributional range in many regions was appeared to track changing temperatures and
the interaction between temperature and precipitation also played a significant role in
the range distributions (Hawkins er al., 2003). Temporal distributional study could be
done to investigate how much change have happened for this interactions over the
century (Hawkins ef al.. 2003). A different approach study by studying the community
index rather than species range margins revealed that, in France northward shift in

breeding bird assemblage was substantial but it was not a fast response to track the



climate warming experienced there (Devictor e al., 2008). The shifting distribution of
birds had been linked to climate change already (Gregory et al.. 2009: Niven ef al.,
2009; Chen et al.. 2011). A significant relation was found between predicted changes
in the range extent and variations in population trend, of those bird species whose
ranges were expanding showed an increase in population size and vice-versa (Gregory
et al., 2009). A non-significant upward shift was detected in the breeding bird’s
distribution over Western Italian Alps (Popy ef al., 2010). Considering the whole bird
community, not much significant distributional change was observed. and scientists
predicted using the models. based on current distribution and climatic variables that,
the distribution would be substantially rearranged for a single bird species according
to the predicted climate warming (Virkkala et al.. 2010). Reif er al. (2010) found that,
at higher latitude and altitude, range reduction was observed in some species due to the
lack of habitat. Tropical bird species was increasingly recognized as most vulnerable
species to climate change (La Sorte and Jetz. 2010; Harris ¢/ al., 2011; Sodhi ef al.,
2011; Wormworth and Sekercioglu, 2011). The findings of Bradbury er al. (2011)
showed that, between 1974 and 2006, Sylvia undata expanded its range upward and
northward in UK. The impacts of climate change on species distribution was important

since it also affected the demographic rates of birds (Pautasso. 2012).
2.3.5 Importance of range distribution studies

A wide knowledge regarding the species ecological and geographic distribution
was needed for the better understanding of ecological and evolutionary determinants
of various spatial patterns of biodiversity (Rosenzweg. 1995; Ricklefs. 2004: Graham
et al., 2006) and for the conservation planning and forecasting (Ferrier, 2002b; Funk
and Richardson, 2002; Rushton et al., 2004). Indicators of the impact of climate change
was in the developing stage and scientists and policy makers were looking forward for
the further development to study the biological consequences of climatic warming and

implementing adaptive and mitigative measures (Mace and Baillie. 2007; EEA. 2007).



2.4 MODELLING OF SPECIES DISTRIBUTION
2.4.1 Importance of species distribution modelling

Root (1988a, 1988b) and Root and Schneider (1993) found strong statistical
correlation between the distribution and abundance of 148 wintering land birds and six
environmental factors which mainly included the climatic variables. Gates et al. (1994)
used multivariate regression equations for modelling the species distribution in UK,
with reference to the land use and climatic variables and the results showed that the
climate had strong relationship with bird distribution and redistributions were
happening with the predicted climate warming. By using climate envelops they
described the spatial distribution and such predictions had to be tested against current
distribution pattern for the change in the measurements of distribution. Additional
factors like biotic interactions. geographic barriers and history were not included.
which meant that species would be present rarely in the suitable environments

(Anderson ef al., 2002: Svenning and Skov, 2004; Araujo and Pearson. 2005).

Species distribution models were used to study the spatial configuration and
characteristics of habitats that permitted the continuity of species in landscapes (Araujo
and Williams. 2000; Ferrier et al., 2002b; Scotts and Drielsma; 2003), past species
distribution (Hugall er al.. 2002: Peterson et al., 2004), species distribution in future
climatic conditions (Bakkenes er al.. 2002; Skov and Svenning, 2004; Araujo ef al.,
2004: Thomas et al., 2004; Thuiller er al., 2005) and relationships between

environmental parameters and species richness (Mac Nally and Fleishman. 2004).

Conservation practitioners depended upon distribution models for the
estimation of most suitable areas for a species and could predict the probability of
presence in areas where systematic surveys have not done (Elith. 2002). For the study

of changing distributions the use of predictive modelling was used. The environmental

10



variables, including climate could be possibly correlated with the absence or presence

of a species if their distribution was accurately mapped (Crick, 2004).

Using the known distributional information of species. the environmental
conditions were defined and thus identifying the geographical regions having similar
environment and modelling the species distribution (Pearson and Dawson, 2003). The
distribution of species abiotic niches in relation with the environmental data at the
observed localities had been studied widely using bio-geographical analysing
techniques (Guisan and Thuiller, 2005). The only way to test the hypothesis or scenarios
foretelling the future was by watching the real future to unfold and to overcome this
difficulty we could use past changes in the environment to test whether species and its
ecosystems have responded in a similar way that the models predicted (Araujo et al.,
2005). Species distribution models are trying to give the predictions of the species
distribution using the presence or abundance of species in relation to a particular
environment predictors. These models were widely used as a tool to explore the various

arguments in ecology. evolution and conservation (Elith er al., 2006).

These models could also estimate the future species distribution under various
climate change scenarios (Jeschke and Strayer, 2008: Sinclair et «l.. 2010), potential
expansion in newly colonized areas by the introduced species (Jimenez-Valverde et al.,
2011: Jeschke and Strayer, 2008) and could be used in reserve planning (Thorn ef al.,
2009). The study of these shifts in the distribution of bird species were essential for the
management of protected area networks and conservation of endangered bird species
(Aragon ef al., 2010b: Aratjo ef al., 2011). Due to the shifts in distribution the current
protected areas would become outdated, leading to the management of whole landscape

for biodiversity conservation (Pautasso ef al.. 2011).
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2.4.2. Process of species distribution modelling
2.4.2.1 Steps in species distribution modelling

The modelling of species distribution was done by several steps: (1) present day
data of species in the form of point of occurrence (Peterson er al., 1998: Peterson and
Stockwell, 2001b): (2) ecological niche models are developed which is tested using the
distributional data (Guisan and Zimmerman, 2000; Kobler and Adamic, 2000); (3)
based on the general circulation models of climate change, the shift in the distribution
is projected onto the landscape of interest; (4) onto the transformed landscapes
distributional shifts are being modelled by projecting ecological niche models of
particular species. In the environmental space models can estimate the suitable
ecological niche by analysing the response of species to abiotic environmental factors
(Soberon and Peterson, 2005) and using these, the model could derive the probability
of presence of species for any given area or trace the specific environmental conditions

which suits the particular species (Elith ef a/., 2011).
2.4.2.2 Methods for testing accuracy

There were several methods used for the modelling of species distribution
which varied in the steps of modelling; selecting the most suitable predictor variables,
defined functions for each of the variable, weight variable contributions, the
interactions of predictors and species and in predicting the geographic patterns of
occurrence (Guisan and Zimmerman, 2000; Burgman e/ al., 2005; Wintle and Bardos,
2006). The various rules in the models were made up of individual algorithms and
based on it, the landscapes would be identified within and outside the ecological niche
(Peterson. 2001a). Hierarchical portioning could be adopted in order to compare
alternative models and to study the weight of evidence of different factors that were
included in the model (Mac Nally, 2002). Concerns of the accuracy of prediction of
future species distribution under varying climatic conditions were addressed by testing

the climatic envelope models (Akcakava ef al.. 2006: Pearson ef al.. 2006; Araujo and
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Rahbek, 2006; Zimmer. 2007). The accuracy of model description about the range of
conditions suitable for a species depended upon the degree of environmental
dimensions that defined the species distributional limits (Pearson et al., 2007). Models
were built mainly on correlations between the variables and distribution patterns and
this did not identified the causal relationship due to autocorrelation among the variables
(Bahn and McGill, 2007: Currie, 2007; Beale ef al., 2008), but this method was limited
due to the same data source used for all the different models. To reduce the
misinterpretation of the responses of the species distribution. large geographical areas
were examined and thus the correlation of environmental variables with climatic
variables was reduced (Maclean er al.. 2008). It was used to resolve ambiguities due to
correlated predictors, but it failed to find out the spurious correlations among the
environmental factors which was used to define the spatial distribution (Ashcroft ef al..
2011). To improve the credibility of predictions of species distribution range

generalized linear mixed models were applied (Swanson ef al., 2013).
2.4.3. Advancements in species distribution modelling

Over the terrestrial distribution of species, climate got a primary influence and
it was the core idea of niche modelling. Even though predictive power of models have
increased. the understanding of mechanisms lying behind was challenging (Shipley,
1999). Studies related to the modelling of future distribution over past distribution
shifts were fewer, but the usage of climate envelope approach were used commonly to
resolve this (Berry ef al.. 2002: Thomas et al., 2004; Harrison et al., 2006). For the
prediction of species distribution from environmental data, usage of ecological niche
modelling was appreciated (Pearson and Dawson, 2003). Advancements in science and
technology led to the development of complex mathematical general circulation
models (GCMs), which stimulated the global climate and associating with different
greenhouse gas emission scenarios. future climate was also predicted (Raper and
Giorgi. 2005). The correlation between climatic and non-climatic factors and shortage

of data regarding the species-specific physiological parameters and processes still
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became an encounter (Kearney, 2006). The models were used to predict the current
bird species distribution using the present climate data and likewise they could also be
used to predict the future distribution based on predicted future climatic conditions
(Huntley et al., 2006). Predictive models had been developed using the association

between climate and vertebrate distribution focusing on birds (Jetz et al., 2007).
2.4.4. Species distribution studies

Species richness and distribution patterns of the animals could be explained
according to environmental variables including climatic conditions (Kerr, 2001:
Ricklefs, 2004; Ceballos and Ehrlich, 2006; Mittelbach, 2010). Numerous studies
succeeded at predicting the species distribution using climate data (Pearson er al., 2002;
Bakkenes ef al.. 2002; Burns ef al., 2003; Thuiller er al.. 2005; Calef e al.. 2005:
Rehfeldt er al.. 2006: Hamann and Wang. 2006; McKenney ef al.. 2007: Peterson ef
al.. 2008; Stankowski and Parker, 2010; Joyner ef al., 2010: Beever ef al.. 2010). It was
assumed in the studies of future distribution predictions that, the changes in the species
ranges occurring at warmer conditions was mirrored by the changes in the colder
extremities since both used the same climate-space (Berry ef al.. 2002; Thomas ef al.,
2004; Harrison et al.. 2006). There were studies which predicted the mass extinction
of species over the next century (Peterson ef al., 2002; Bakkenes et al., 2002; Thomas
et al., 2004; Thuiller er al., 2005: Malcom et al., 2006), and redistribution of species
range (Iverson and Prasad. 1998: Pearson et al., 2002; Burns et al., 2003; Calef er al.,
2005: Rehfeldt er al., 2006; Hamann and wang, 2006; McKenney ef al.. 2007; Peterson
et al., 2008). As a result of devastating impacts on biodiversity due to climate change,
numerous analytical techniques had developed to correlate quantifiable climatic
variables with the known location of species (Heikkinen et /., 2006: Elith et al.. 2006
Guisan ef al., 2007: Loiselle et al.. 2008: Graham er al., 2008; Feeley and Silman, 2010
Beever ¢t al., 2010). The changes in distribution could be of range shifts or range
expansion and the role of the temperature dependence had been studied (Maclean er

al., 2008). At various levels prediction of species richness had been explained by
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environmental variables (Coops et al.. 2009; Hinsley ef al.. 2009; Hansen er al.. 2011
BarMassada er al., 2012; Fitterer er al., 2012). It was observed that for forest bird
richness temperature variables were strongly correlated and for open woodland bird

richness it was precipitation variables (Goetz et al., 2014).
2.5 DATA USED FOR MODELLING
2.5.1 Type of data and performance of the model

Due to the biases in the geographic and environmental space, the presence only
models failed to get a general test of model accuracy when used withheld data for
predicting species distribution (Bojorquez et al., 1995, Hijmans ef al., 2000; Soberon
el al., 2000: Kadmon et al., 2004). Possibilities to check the performance of the model
were done by including artificial data and checking the accuracy predicted responses
or using both presence and presence-absence data for modelling and fitted functions
were compared (Austin ef al., 1995). More predictive success was there when the
independent data was not used to build the model, which were called as “test”™ data and
the “training” data were those which were used for building the model (Fielding and
Bell, 1997). Numerous test statistics or discrimination indexes was being used for the
testing of model performance (Fielding and Bell, 1997; Pearce and Ferrier, 2000). The
predictive performance of the models were more focused in the evaluation step and
some known occurrences which are withheld (only presence data) from the
development of model by splitting the data set, k-fold partitioning. or bootstrapping

(Fielding and Bell, 1997: Hastie e ai., 2001: Araujo et al.. 2003).

The assessment of accuracy was based upon the wellness of prediction using
the withheld data (Boyce er al., 2002; Hirzel and Guisan, 2002b). Kappa and the area
under receiver operating characteristic curve (AUC) which were the commonly used
indices. were not suitable for the evaluation of poorly sampled regions (Boyce ef al..
2002 Phillips ef al.. 2006). Predicting higher proportion of test localities (low omission

rate) and not predicting a large proportion of study area would provide informative
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predictions as the model was statistically identical from a random prediction. Chi-
square test or upper-tailed binomial probability was used for assessing the statistical
significance of model when data portioning was done for testing (Anderson er al.,
2002). Performance of the predicted model was dependent on the observed absence
data available (Loiselle er al., 2003). A 2-2 confusion matrix could be used for
describing the frequency of predicting correctly and incorrectly about the absences and
presences and test were limited that do not require absence data in presence only

models (Anderson ef al.. 2003).

According to theoretical grounds, it was suggested not to include absence data
(which may occurred due to non-inclusion of data in the model). since it would judge
false-positive predictions as failures when potential suitable habitat was modelled
(Anderson et al., 2003; Pearson and Dawson, 2003; Sobero'n and Peterson. 2005).
Using a random or spatially stratified partition (Peterson and Shaw, 2003), was most
common and simple, but the problems with these small records were, the data was too
small while partitioning into test and training data sets and negative data was
problematic (Anderson and Martinez-Meyer, 2004). Predictive performance was
decreased when some studies had done using small samples (Stockwell and Peterson.
2002; Reese ef al., 2005). Since distribution models were widely used and advancement
in data availability and modelling methods were increasing, it was the need of the hour
for broad synthetic analyses of high predictive ability and accuracy of species
distribution modelling methods for presence only data (Elith et al.. 2006). Using
independent, well-structured presence-absence dataset for validation improved the

evaluation of the model performance (Elith et al., 2006).

By the development in the machine learning and statistical disciplines many
methods had been produced which were capable to capture complex responses, even
the data was very noisy. But it doesn’t received any exposure in distribution modelling
even though the work was promising (Phillips er al.. 2006, Leathwick er al.. 2000).

Biases in the geographic and environmental space were also seen in resampling designs
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too (Elith ef al.. 2006). When only few observed locality records were available, jack-
knife approach could be used which enabled the assessment of predictive ability. Jack-
knife (‘leave-one-out’) procedure was good in assessing the model having a small
number of occurrences. The model excluded each observed locality (n) once and
continued to build the model using the remaining n-1 localities. For testing the model,
‘n” different models were built and the predictability was assessed by the model ability
to predict the single locality from the training data (Pearson et al., 2007). The modelling
techniques and validation used presence data only because its absence data were rarely
available and difficult to detect in surveys (Pearson ef al., 2007). Studies done by Algar
et al., (2009) showed that temporal prediction was quite accurate. but in order to reduce

the biases spatial autocorrelation could be done by using regression models.
2.5.2 Presence and absence records

The research on the development of distribution modelling had focused on the
creation of models using presence/absence or abundance data, where systematic
sampling methods were done in the regions of interest (Austin and Cunningham. 1981 ;
Hirzel and Guisan, 2002b: Cawsey ef al.. 2002). In the past, the presence only data
were analysed using the calculations of envelopes or distance-based measures which
were developed specifically for that purpose (Silverman, 1986: Busby. 1991:; Walker
and Cocks, 1991: Carpenter et al., 1993). In most presence/absence models, it was
assumed that breeding habitats were saturated (Capen ef al.. 1986). Only presence data
were assessed as some methods suggested in the species distribution modelling (Nix,

1986; Carpenter ef al.. 1993).

There was a chance for two types of errors such as false positives and false
negatives while using presence/absence models (Fielding and Bell. 1997). Later on
adaptation to model presence-only data from presence-absence methods (which used a
binomial response for modelling) using the background environment samples (data

developed by selecting random points over the study area) or using ‘non-use’ or
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‘pseudo absence” area (Stockwell and Peters, 1999; Boyce e al., 2002; Ferrier ef al.,
2002b; Zaniewski er al.. 2002; Keating and Cherry, 2004; Pearce and Boyce. 2006).
Since absence data were rarely available due to poor sampling or missing species
occurrences during surveys. methods which required both the data set uses *pseudo-
absences’ instead of real absence data (Ferrier ef al., 2002a; Engler ef al., 2004) or

some methods used background data for the entire study area (Hirzel ef al., 2002b).

Species occurrence data were widely available and more accessible, as they
were available as environment data layers of high spatial resolution created using
satellite imageries (Turner ef al., 2003) and through highly sophisticated climate data
(Thornton ef al.. 1997; Hiymans ef al., 2005). It was challenging to validate the absence
data since wildlife-habitat connection was absent even though there existed a potential

for a species to be seen at a site (MacKenzie ef al., 2004; Gu and Swihart, 2004).

Alternative methods of several kind were used for modelling ecological niches
and most of them used both the presence and absence records (Bourg er al., 2005).
Predictions from each methods differed greatly, which in turn showed the importance
of selection of methods and verification of results from different methods (Thuiller er
al.. 2004; Pearson er al., 2006). Most of the species occurrence data had been recorded
without any specific sampling methods, and a high portion of these data were obtained
from presence only records from museum or herbarium collections which were
accessible electronically (Graham et al.. 2004: Huettmann 2005; Soberon and Peterson.
2005). Currently there were methods which used the presence information of others
members of community, which supplemented the data regarding the modelled species
and for rare species this method was promising since the wider community information
helped in revealing the modelled relationships (Elith ef @l.. 2006). The problem with
these type of presence data was that, the intent and methods employed for collecting
the data were rarely known and the with certainty we could not infer the absence data

(Elith er al.. 2006). Novel tactics had been introduced over the last decade which
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exploited only presence data. thus removing the necessity of absence locations

(Baldwin, 2009).
2.6 ASSESSMENT OF CLIMATIC CHANGES

For the assessment of climate change on biodiversity, several tools were used
which included global climate models, regional climate models. dynamic and
equilibrium vegetation models. species bioclimatic envelope models and site-specific
sensitivity analysis (Sulzman er al..1995). Equilibrium simulations which used a step
increase in CO2 showed the increasing temperatures in both hemispheres. but transient
simulations showed both the ups and downs in the temperature distribution (Sulzman
et al., 1995). Regional models could be used along with the Global Circulation Models
(GCMs) which gave more resolution. MM3 (Mesoscale Model version 5) and RAMS
(Regional Atmospheric Modelling System) were the two major regional models that
were widely used (Sulzman ef al., 1995). The climate dynamics of southern hemisphere
and northern hemisphere were different, so models developed with primary focus for a
particular hemisphere would not yield good results in the other hemisphere (Grassl.

2000).

For determining the local climate change, regional models was more useful than
that of global models which depended on global forcings (Pitman er al., 2000). These
models could represent the land-use changes and its effect on cloud formation
mechanisms. But the results of these models were not easily available for all regions.
GCM and regional climate models were used by dynamic vegetation models, forest
gap models, biome envelope models and species envelope models in order to give light
into different aspects of the biogeography of future climate change (Cramer er al.,

2000).

General Circulation Models (GCMs). modelled the global climate provide
projections at various resolutions and there were differences between the various

models in projected climate change values for each grid cell and they were regarded as
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the entry points for the conservation assessments of climate change since only these
models provides estimates of future climate change due to the greenhouse gas forcings
(Hannah ef al.. 2002). The assessments were improved by opting results from transient
(not equilibrium) simulations of CO2 increase and models which was completely

coupled with ocean and atmosphere to the regions of interest (Hannah er al.. 2002).
2.7 SPECIES DISTRIBUTION MODELLING TYPES AND TECHNIQUES
2.7.1 Modelling in relation to land scape and vegetation

Forest ‘gap’ models were used to simulate species-specific succession
dynamics in an area less than 1 ha. but there were limitations for representing the
landscape-level changes (Shugart, 1990). Global biome models projected the future
distribution of current vegetation using the limiting climatic conditions. In these
models vegetation was in equilibrium with climate and therefore it cannot model the
transition dynamics of species. But dynamic global vegetation model incorporated
dynamics but they cannot be used to obtain species-specific results (Woodward and
Beerling, 1997). In a competitive and dynamic environment, prediction of species
composition at a landscape scale cannot be done by models. Dynamic vegetation was
lacking the character of species-specificity, dynamic and competitive elements were
lacked by envelope models and gap models lacked the spatial resolution (Woodward
and Beerling, 1997). Land use projection models showed the pattern of the habitat
fragmentation and based on the projections of the parameters like population and

consumption levels it modelled the future (Sala ef al., 2000).

The projected land use model reduced the potential range shift of a species done
by bioclimatic models. For example, when potential climate envelope of a species
shifted into an area having agriculture or to an urban settlement, the species may be
faced with extinction. Integrative and sensitivity analysis on the basis of the site

ecology and individual species characteristics could be used as an essential supplement
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to the modelling purposes, even though it lacked the spatial specificity of models

(Hannah er al., 2002).

The species-specific interaction had to be studied in conservation planning
measures and the best tool available for this were species bioclimatic envelope models.
They shared the same principle of biome envelope models, in which the current
distribution of species was used to ‘train® a model for the future incorporating the
predicted climatic conditions (Hannah er al., 2002). Envelopes were constructed using
the Geographic Information System (GIS) software’s or by genetic algorithms or
general additive modelling (Peterson et al., 2001a; Berry er al., 2002; Midgley et al..
2002). But these models could not model dynamic transitions, interspecific
competition, herbivory, dispersal or other factors. By coupling with land-use projection
models. dpplication of the results of the bioclimatic envelope models could be used in

real world conservation (Hannah et a/., 2002).
2.7.2 Generalized Dissimilarity Models (GDM)

For the modelling of spatial turnover in a community composition among a
pairs of sites as functions of environmental differences between these sites,
Generalized Dissimilarity Models (GDM) were used. For the estimation of probability
of occurrence of species distributions of a given species, kernel regression algorithm
was used within the transformed environmental space produced by GDM (Lowe,
1995). Elements of matrix regression and generalized linear modelling were combined
which allowed the user to model non-linear responses of the environment which
captured the ecologically realistic relationships between dissimilarity and ecological

distance (Ferrier, 2002, Ferrier ef al. 2002¢).
2.7.3 GLM and GAM models

Non-parametric and non-linear functions were used by Generalised Linear
Models (GLM) whereas Generalised Additive Models (GAM) used parametric and

combinations of linear. quadratic or cubic terms. GAMS can model complex ecological
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response shapes than GLM because of greater flexibility (Yee and Mitchell. 1991).
GLM and GAM were widely used in species distribution modelling because ecological
relationships were modelled realistically and they have strong statistical foundations

(Austin, 2002).
2.7.4 Multivariate Adaptive Regression Splines (MARS)

For fitting non-linear responses. an alternative regression based method called
Multivariate Adaptive Regression Splines (MARS) were used. It used piece wise linear
fits rather than smooth functions. It was very easy to use in GIS applications for making
prediction maps, faster to implement compared to GAMs and had the ability to analyse
community data (MARS-COMM) which helped in relating the variation in occurrence
of species to the environmental predictors in one analysis. and later estimating the

individual model coefficients for each species simultaneously (Leathwick er a/., 2005).
2.7.5 Genetic Algorithm for Rule-set Prediction (GARP)

For the approximation of species fundamental ecological niches several
approaches had been used such as BIOCLIM (Nix, 1986). logistic multiple regression
(Austin ef al.. 1990) and Genetic Algorithm for Rule-set Prediction (GARP). GARP
was defined by heterogeneous rules that defined the polyhedrons in the ecological
niche spaces that were assumed to be liveable by a particular species. The model quality
was assessed by dividing the occurrence points into “training data’ used for training
and “test data” used for testing models (Fielding and Bell. 1997). GARP had having
two versions: DK-GARP used widely for the modelling data from natural history
collections and OM-GARP, a new open modeller implementation, where both these
used a genetic algorithm for selecting a set of rules for adaptations of regression and
range specifications. hence predicted the best species distribution (Stockwell and
Peters, 1999). GARP is a machine-learning approach and also linked the occurrence
records to the environment variables using envelope (variables are bounded to lower

and upper bounds). atomic (values are assigned to each variable) and logistic regression
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rules. The algorithm used pseudo-absence localities since the model works on
presence-absence data (Stockwell and Peters, 1999). GARP included the properties of
both BIOCLIM and logistic multiple regression and it was based upon artificial-
intelligence (Stockwell and Noble, 1992; Stockwell and Peters, 1999). The extensive
testing done on GARP model showed that it have high predictive ability for species
geographic distributions (Peterson and Cohoon, 1999: Peterson and Stockwell. 2001b:

Peterson ef al., 2001a).
2.7.6 Maximum Entropy Modelling (MaxEnt)

MaxEnt uses the distribution of maximum entropy which was subjected to the
constraint that the expected value of each environment variable (interactions) in the
estimated distribution matched its empirical average for estimating the species
distribution (Phillips et ai., 2006). Using the background locations and data derived
constraints, it approximated the most uniform distribution (Philips et a/.. 2004: Philips
et al., 2006). In this model the complexity of the fitted functions could be choose, if
presence only species data were used. It was observed that Maximum entropy
modelling (MaxEnt) had done better or as well than other modelling techniques (Elith
et al.. 2006: Hernandez et al.. 2006: Philips et al., 2006). Compared to other algorithms,
MaxEnt achieved higher success rate and it marked the differences even at low sample
sizes (Pearson er al., 2007). MaxEnt models predicted broader area of suitable
conditions and the MaxEnt projection had the ability to predict excluded areas also, but
the model performance felt a negative impact when sample sizes were reduced

artificially (Pearson er al.. 2007).

MaxEnt had used to investigate the distributional patterns of Geckos ( Uroplatus
spp.) for predicting the species distribution (Pearson er /.. 2007), American black bear
(Ursus americanus) for the assessment of denning habitat (Baldwin and Bender. 2008).
Bush dog (Speothos venaticus) to appraise the excellence of protection (DeMatteo and

Loiselle. 2008). Little bustard (7etrax tetrax) for modelling the seasonal distribution
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changes (Suirez-Seoane et al., 2008), predicting and mapping of Sage grouse’s
(Centrocercus urophasianus) nesting habitat, Asian slow lorises (Nycticebus spp.) was
assessed to threats and species distribution analysed to find conservation urgencies
(Thorn et al., 2009). MaxEnt can precisely build the model even there are less number
of location points and it was an advantageous feature since frequently there are
deficiency of dependable locations obtainable for mapping the spreading of species

(Baldwin, 2009).
2.7.7 Boosted Regression Trees (BRT)

Boosting Regression Trees were developed in a forward stage-wise manner,
where small modifications were done in the model at each step for better fitness of data
(Friedman er al.. 2000). BRT used the combination of two algorithms: regression-tree
algorithm also called as the boosting algorithm to construct a combination or
“ensemble” of trees. The use of regression-trees helped in the good selection of relevant
variables and it could model interactions. It was upon the weighted versions of data set
where the observation that were poorly fitted in the preceding model and they were
accounted by adjusting the weights (Elith er al.. 2006). Over fitting of data were
avoided by using cross-validation in BRT, to grow the models progressively during the

predictive accuracy testing on withheld portions of the data (Elith et a/.. 2006).
2.8 FACTS ABOUT THE INDIAN PEAFOWL (Pave cristatus)

The Indian Peafowl were mainly seen in tropical forest of the country
(Mukharjee, 1979). Activity of birds were high during dawn and dark (Sharma. 1979)
mainly during the time interval 6:30 A.M-9:30 A.M and 4:30 P.M-6:30 P.M. For
breeding. roosting and foraging they select scrubs. huge trees and fields respectively
(Johnsingh and Murali, 1980). They usually opt for scrubs and open areas for dust
bathing and lekking. an action to attract the females (Yasmin and Yahva. 1996). They
were preferred to seen in areas like scrub jungles, forest fringes, agricultural fields,

stream sides (Padmanabhan P. 2007) and human habitation in semi-wild conditions
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where the climate was mostly humid. dry and semi-arid conditions (Ramesh and
McGowan, 2009). Abundance of the Indian Peafow] depended upon three main factors:
prey density, biomass (Ramesh and McGowan, 2009) and the habitat diversity resulting
in availability of food (Ranjith and Jose, 2016). In areas where there was a lack of
predators, competing species and awayness from anthropogenic activities increased the
number of Indian Peafowl. Validating their affinity towards crop fields, more number
of the Indian Peafowl are located nearby paddy fields. When the human interaction
augmented by increased logging, clearing of bushes and construction work, the

population dimished in those areas (Ranjith and Jose, 2016).
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CHAPTER 3
MATERIALS AND METHODS
3.1 POINT LOCALITIES OF THE INDIAN PEAFOWL

The Indian Peafow! presence data were obtained from the e-Bird reference data,
an Internet-based checklist program which is freely available (www.eBird.org). These
data are published in compliance with the Avian Knowledge Network (AKN) and it is
run by the National Audubon Society and the Cornell Lab of Omithology and the data
is copyrighted with these organizations. The data consists of Breeding Bird Survey
from 1966 onwards. It have advanced geo-referencing and broad user-base. The
georeferenced data of the Indian Peafowl from the years 1979-2015 were retrieved
from it. Duplicate records were avoided using the tools in Excel and a corresponding

shape file was generated in ArcMap 10.3.

Figure 1. Occurrence points for the Indian Peafowl in Kerala
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3.2 ENVIRONMENTAL VARIABLES

The bioclimatic variables were used for the current and future conditions from
the WorldClim v1.4 database (http://www.worldclim.org/download) (Hijmans e al..
2005) for each georeferenced presence locations. These variables were derived from
the monthly rainfall and temperature values and generated 19 different variables which
are more meaningful. These variables represent annual trends, seasonality and extreme

or limiting environmental factors. They are coded under different names such as:

3.2.1 biol (Annual Mean Temperature): The average temperature of 12 months was
used to acquire the annual mean temperature. This approximated the total energy inputs

for an ecosystem.

3.2.2 bio2 (Mean Diurnal Range): Each month’s diurnal range (difference between
maximum and minimum temperature) was averaged for 12 months of a year. This
provided information regarding the relevance of temperature fluctuation for different

species.

3.2.3 bio3 (Isothermality): Isothermality was used to measure the oscillations of day
to night temperatures relative to the annual oscillations ((bio2/bio7)x100). This could
reveal the influence of larger or smaller variations in temperature of a month relative

to that year.

3.2.4 bio4 (Temperature Seasonality): It is the temperature variation (SDx100) over
a year (or averaged years) relative to the SD (variation) of monthly temperature

averages. Greater variability in temperature is inferred from larger SD.

3.2.5 bio5 (Maximum Temperature of Warmest Month): [t measures the maximum
monthly temperature over a year which was useful in the determination of affects by

warm temperature anomalies in species distribution.
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3.2.6 bio6 (Minimum Temperature of Coldest Month): Measures the minimum

temperature over a time period useful in the analysis of affects from cold temperatures.

3.2.7 bio7 (Temperature Annual Range): Quantifies the temperature variation over
a period (bio3-bio6) and helps in the examination of species distribution and the effects

of extreme temperature conditions on it.

3.2.8 bio8 (Mean Temperature of Wettest Quarter): Approximation of mean
temperatures prevailing during the wettest season and its effect on species distribution

can be studied.

3.2.9 bio9 (Mean Temperature of Driest Quarter): Mean temperature of driest

quarter was measured to know the effects of it on species distribution.

3.2.10 biol0 (Mean Temperature of Warmest Quarter): Quantifies the mean

temperature over warmest quarter and helps in the examination of species distribution.

3.2.11 biol1 (Mean Temperature of Coldest Quarter): Mean temperature of coldest

quarter was measured to know the effects of it on species distribution.

3.2.12 bio12 (Annual Precipitation): It is the sum total of all the monthly precipitation
and it evaluates the total water inputs which was useful in ascertaining the importance

of water availability in determining the species distribution.

3.2.13 biol3 (Precipitation of Wettest Month): Precipitation of wettest month was
measured and studies the species distribution when an extreme precipitation condition

occurs.

3.2.14 biol4 (Precipitation of Driest Month): Total precipitation received during the
driest month was measured to study the extreme conditions and its impacts on species

distribution
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3.2.15 biol5 (Precipitation Seasonality): Variation of monthly precipitation
throughout the year was measured. It is the ratio of SD of monthly total precipitation

to the mean monthly total precipitation.

3.2.16 bio16 (Precipitation of Wettest Quarter): Precipitation of wettest quarter was
measured and studies the species distribution when an extreme precipitation condition

occurs.

3.2.17 biol7 (Precipitation of Driest Quarter): Total precipitation received during
the driest quarter was measured to study the extreme conditions and its impacts on

species distribution

3.2.18 biol8 (Precipitation of Warmest Quarter): Precipitation of warmest quarter
was measured and studies the species distribution when an extreme precipitation

condition occurs.

3.2.19 biol9 (Precipitation of Coldest Quarter): Mean precipitation of coldest

quarter wa s measured to know the effects of it on species distribution.

The unit of temperature is *’Cx10" and that of precipitation is ‘mm’. 30 arc-
seconds (0.86 km? at the equator) data were used for both current and future conditions.
They were in the latitude/longitude coordinate reference system under the datum
WGS84. The bioclimatic variables were calculated from aggregated data such as
monthly precipitation, minimum, mean and maximum temperature. The data layers
were generated by interpolating average monthly data available from weather stations.
This data had got its own advantages and disadvantages. According to World
Meteorological Organization (WMO) climate is defined as the measurement of the
mean and variability of relevant quantities of certain variables (such as temperature,
precipitation or wind) over a period of time, ranging from months to thousands or

millions of years. The classical period is 30 years.
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The WorldClim interpolated climate layers were made by using major climate
databases compiled by the Global Historical Climatology Network (GHCN). the Food
and Agriculture Organization of the United Nations (FAO), World Meteorological
Organization (WMO), the International Center for Tropical Agriculture (CIAT). R-
HYdronet and numerous other databases for Australia, New-Zealand. the Nordic
European Countries, Ecuador, Peru and Bolivia, The Shuttle Radar Topography
Mission (SRTM) elevation database and using ANUSPLIN software which
interpolates noisy multi-variate data using thin plate smoothing splines (Hutchinson
and Xu, 2013). The current bioclimatic layers corresponds to the time period from 1950
to 2000. For ecological niche modelling the future prediction of distribution for the
Indian Peafowl. the same current bioclimatic layers and future bioclimatic layers
corresponding the climatic responses of Representative Concentration Pathways
(RCPs) using the coupled model HadGEM2-AO of 30 seconds resolution were used.
which is available in the WorldClim database. All the four scenarios such as RCP2.6,

RCP 4.5. RCP 6.0 and RCP 8.5 were used.

Table 1. Different RCP’s and its characteristics

Name Model Radiative forcing CO2 Temperature

used equivalent | anomaly (°C)

(ppm)
RCP2.6 | IMAGE 3.1 W/m” at mid-century, 490 1.5
returning to 2.6 W/m? by
2100

RCP4.5 | MiniCAM 4.5 W/m? post 2100 650 2.4
RCP6 AIM 6 W/m* post 2100 850 3.0
RCP8.5 | MESSAGE 8.5 W/m? in 2100 1370 4.9

Besides the bioclimatic layers altitude (alt). inland water bodies (wbint).

perennial water bodies (wbpere). linear water inland (wlint), perennial rivers (wlpere)
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and land cover (landcov) were also used for the ecological niche modelling. The world
water bodies’ datasets uses the source from Delorme publishing company’s
1:2.000,000 world data. The land cover data is sourced from SPOT VEGETATION,
Defence Meteorological Satellite Program (DMSP) data under the name Land Cover
Classification System (LCCS) having 85 percent accuracy with Forest Survey of India
Report at a resolution of 1km. The altitude data was obtained from Shuttle Radar

Topography Mission (SRTM) at a resolution of 3 arc-second or 90 meters.
3.3 MAXIMUM ENTROPY SPECIES DISTRIBUTION MODELLING (MaxEnt)

The species distribution of the Indian Peafowl was studied using MaxEnt
3.3.3k. The MaxEnt software is based upon the maximum-entropy principle and used
for species habitat modelling. This software uses a set of georeferenced occurrence
locations and environmental layers obtained from WorldClim database to create the
species  distribution  model.  MaxEnt is  freely  available  online
(https://www.cs.princeton.edu/~schapire/MaxEnt/). The data should be inputted into
the software in the required format. Species data was made into *.csv’ format and the
bioclimatic layers should be of “.asc’ format. Software was programmed to appropriate
levels according to our requirements for the run under settings options (Philips ef al..

2004; 2006).
3.4 OPTIMIZATION OF REPLICATION RUN TYPE

The replication run in MaxEnt were done mainly using three types: cross-

validate, bootstrap and subsampling.

Cross-validation is a form of replication in which the occurrence data were
randomly split into numerous (k) groups (“folds’) of equal size and leaving out a single
part, it will fit the model to the other k-1 parts (combined). thus obtaining predictions

for the left-out part. This procedure was repeated for each part and the results were
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combined. The advantage of using cross-validation was that it used all the data for the
validation purpose which would be helpful in dealing with small number of data sets.
It used the data efficiently for reporting the range and standard error. It simultaneously
allowed to assess uncertainties in prediction which was useful in model evaluation. But
since only a part of the data was used for model fitting, it was difficult to retrieve test
data which was statistically (spatially) independent of training data (Hijmans, 2012:
Wenger and Olden. 2012). Overestimation of model performance and under estimation
of the standard error of predictions could occur while using spatially correlated folds.
Bootstrap method lose statistical independence of the test and train data and the AUC

values would end up slightly inflated.

The bootstrap method is a flexible and strongest statistical tool which could be
used to quantify the uncertainty associated with a given estimator ‘r’ statistical method.
It could provide the estimation of standard error of a coefficient or a confidence interval
for that coefficient. In this method distinct data sets were prepared by repeated
sampling observations from the original data set with replacement, rather than
repeatedly obtaining independent data sets from the population. This method was most
commonly used if the occurrence data are small. The *bootstrap data sets’ were created
by sampling with replacement having the same size of the original data set. So some
observations could appear more than once and some doesn’t showed up at all in these
data sets. In each bootstrap sample there was a significant overlap with the original
data, about two-thirds of the original data points appears in each sample. This would

lead the bootstrap to seriously underestimate the true prediction error.

In repeated subsampling the presence data sets were repeatedly split into
random training and testing data sets. The number of replicates and the percentage to
be withheld from each replicated run could be fixed. These method could be adopted
if there was moderate to many occurrences of the species. One possible disadvantage

of the subsampling was the selection of the weak effect variables. These variables have
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low inclusion frequencies due to the correlation between other variables (De Bin ef al..

2015).

Based on these three replication run types. 3 different models were done using
similar conditions. Among them the best type was chosen and based on that further

modelling steps have been forwarded.
3.5 VARIABLE CONTRIBUTION TO THE MODEL

Analysis had done to identify the contribution of each variable to the modelling
of distribution for the Indian Peafowl, including all bioclimatic variables. altitude and
water bodies. This was done for current distribution (no future projection), using the
most suited sampling technique identified from previous analysis. 10 subsampling
replicates were used. keeping 25 percent of the data for testing and the remaining data
were used to build the model. The output was made in logistic format to get the
probability of occurrence in the range of 0-1. In the determination of the percentage
contribution, the increased regularized gain is added to the contribution of the
corresponding variable, or subtracted from it if the change to the absolute value of
lambda is negative in each repetition of the training algorithm. For the estimation of
permutation importance. the values of each environmental variable on training

presence and background data were randomly permuted.
3.6 VARIABLE OPTIMIZATION IN THE MODEL

For analysing the accuracy of model prediction, trials were done using a single
sampling technique with 10 replicates and 25 test percentage. Only bioclimatic
variables were used for optimization since they are going to be used for the future
prediction. Other variables like altitude, land cover and water bodies cannot be
predicted for future, so they were dropped in further modelling procedures. MaxEnt

output had features that described the authenticity of the data and how fit was the
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predicted model. Omission curves and AUC curves both described the accuracy of the
model (Fielding and Bell. 1997: Philips er al., 2006; Elith et al., 2011). The analysis of
omission/commission graph revealed the omission rate and predicted area at different
threshold levels. The orange and blue shading surrounding the lines on the graph
represented its variability. The predicted omission rate was a straight line according to
the definition of cumulative output format. The omission rate should be close to the
predicted omission. The sensitivity vs. 1-specificity graph depicted the area under the
Receiver Operating Characteristic (ROC) curve or area under the curve (AUC). This
allowed easy comparison of the performance of one model with another and a most
useful tool to evaluate multiple MaxEnt models. An AUC value of 0.5 indicated that
the model performance was no better than random, while values close to 1.0 indicated
better model performance. Using these features of MaxEnt output, the various models
projected under different settings were analysed and the best fitted model based on the

ROC curve and having high AUC value was selected (Philips et al., 2006).

Variable optimization was a very important part in the model building process.
Some variables may not be related to the outcome and even if all variables were related
to the outcome, it was advised to remove some, having a small effect in order to
increase the interpretability of the final model (epistemic sparsity) or to produce a
model with better predictability (predictive sparsity) by reducing the variance (De Bin
ef al., 2015). For interpreting the contributions of each environmental variable to the
species distribution model. highly correlated variables should be removed to avoid
autocorrelation. Many climatic variables were highly correlated among each other and
including all these would not affect the quality of the MaxEnt model prediction but
seriously limited the contribution of other correlated variables. If there was a highly
correlated variable in the model. then it excluded all other correlated variable from
being incorporated into the model which may have a significant importance in the
prediction of species distribution (Brown. 2014). The response curves made from the

presence could be misleading if the correlation exists. When there are highly correlated
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variables, the percent contributions should be taken with caution. If the test and training
data were spatially auto correlated, the test omission line lied well below the predicted
omission line which was not a good fit for the model. Spatially auto correlated data
would inflate the accuracy measurement for presence only models (Veloz, 2009), so it

was essential to eliminate spatially correlated variables prior to the modelling process.

The bioclimatic variables (biol-bio19) for the current conditions (1950-2000)
were statistically studied using correlation matrix (Pearson) and coefficients of
determination (R?). The variables were categorized based on the correlation values |r|
>0.7 and |r}>0.9 and R*>0.9. From these variables, those were selected having higher
percentage contribution and permutation importance results based on MaxEnt model
output were used for future predictions. The percentage contribution chart showed the
relative contribution of each environment variables to the MaxEnt model. In each
iteration of the training algorithm, the increase in regularized gain was added to the
contribution of the corresponding variable or subtracted from it if the change to the
absolute value of lambda is negative. They depended on the path taken by the MaxEnt
code to get the solution and the contribution values changed when it took another way
to get the same result. When there were highly correlated variables care should be taken
in interpreting these values. The permutation importance depended on the MaxEnt
model rather than the path it used to obtain the value. The importance was measured
by randomly permuting the values of that variable among both the presence and
background (training points) and by calculating the decrease in training AUC. Higher
the decrease showed that the model heavily depended on that variable. The Jack-knife
test of variable importance depicted the environment variable having the highest gain
when used in isolation (having the most useful information) and the environment
variable which decreased the gain the most when it is omitted (having the most
information that isn’t present in the other variables). The selected variables after

removing the correlated ones were used for the further modelling.
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3.7 FUTURE PREDICTIONS OF DISTRIBUTION FOR THE INDIAN PEAFOWL

Prediction of species distribution in the future could be done in MaxEnt by
projecting the trained environment layers to another set of environment layers
containing the future climatic data set. The projection layers should have trained layers
which were mutually compatible but the conditions will be different. The name of the
layers and the map projection should be the same as that of the trained data. A model
was trained on the environmental variables which corresponded to the current climatic
conditions and was projected into a separate layer based on the future environmental
data. Models of different RCPs were done using a single sampling technique with 15
replicates and 25 test percentage. To know the role of different variables in determining
the varying distribution patterns there, model trials were done corresponding to the
number of variables used for the future prediction. In each trials one of the variable is
excluded, to analyse the changes happening in the prediction without that variable.
Through this method. impact of each variable in specific locations could be identified

and concluded.
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CHAPTER 4

RESULTS

4.1 DISTRIBUTION OF THE INDIAN PEAFOWL IN THE PAST

Salim Ali and Hugh Whistler had conducted one of the earliest bird survey of
Kerala (erstwhile Travancore-Cochin). during the period 1935-1936. There were no
reports of spotting of the Indian Peafow! in Kerala. It was on 1969, Ali reports that he
found the Indian Peafowl!’s from the deciduous forests of Peechi-Vazhani. According
to the e-Bird reference data, the first recorded sighting of the Indian Peafowl in Kerala
was on 1979 from the district of Wayanad. This data proves the less abundance of the
Indian Peafow! in Kerala. But during the subsequent periods the presence records of
the Indian Peafowl showed an increasing trend. Also these data depicts the spreading
of the Indian Peafow! to most parts of Kerala especially in the districts of Palakkad and
Thrissur. Table 2 shows the number of presence records and Fig. 2 shows the increasing

spatial distribution of the Indian Peafowl in Kerala over the past 37 years.

Table 2. Number of presence records of the Indian Peafowl in Kerala over the
past 37 years

Time Period No. of presence records
1980-1990 2
1991-2000 8
2001-2010 53
2011-2015 1451
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Figure 2. Spatial distribution of the Indian Peafowl in Kerala over the period
a) 1980-1990 b) 1991-2000 ¢) 2001-2010 d) 2011-2015
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4.2 SELECTION OF REPLICATION RUN TYPE

Replication run types using bootstrap, cross-validate and subsampling
showed different AUC values, omission/commission graphs, distribution patterns of
species. response curves and variable contributions. Even in the same replication type
there was variations in the above features except in cross-validate where every feature

was exactly the same as other models.

In the Fig.2 the response curves of mean temperature of warmest quarter
(bio10) is depicted. When bootstrap (Fig.2a) and cross-validate (Fig.2¢) was used as a
replication type for modelling, the SD was higher whereas the SD was lower for
subsampling (Fig.2b). Higher the SD. higher was the variability leading to lower
reliability on the model. Only one variable (bio10) was shown here and the Figures for

the remaining 18 variables were given in Appendix 1.

Even though the standard deviation (SD) for the AUC curve was very much
lower in bootstrap method (Table.1) compared to others, the SD for the response curves
was higher (Fig.2a) and it was found lower in subsampling (Fig.2b). In cross-validate,

all the model output showed the same result (Table.1).

In bootstrap (Fig. 2a) the omission on training line was too below the predicted
omission line where as in subsampling (Fig. 2b) and cross-validate (Fig. 2¢). both line
were more or less close and pﬁralle] to each other. But the standard deviation in cross-
validate (Fig. 2¢) replication type was higher than that of subsampling (Fig. 2b). Thus
it was concluded that the subsampling replication was more reliable in the modelling

of distribution of the Indian Peafowl.
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Figure 3. Response of the Indian Peafowl to mean temperature of warmest

Quarter (biol0) in a) bootstrap b) subsampling ¢) cross-validate

replication type (blue colour indicates the SD).

Table 3. Output values from models using different replication run type

Replication | Replication Test Average test AUC Standard Deviation
run type number percentage values (SD) for AUC curve
Model No. 11213 1 2 [ 3 ] 2 3 1 2 3
Bootstrap 2122 (2020200920 | 0917 | 0.911 | 0.003 | 0.006 | 0.008
Subsampling [ 2 | 2 | 2 [20] 20 | 20 | 0.798 | 0.820 [ 0.807 | 0.011 | 0.030 | 0.013
Cross- 2| 2 2 0 0 0 | 0.820 | 0.820 | 0.820 | 0.030 | 0.030 | 0.030
validate
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4.3 VARIABLE CONTRIBUTION TO THE MODEL DISTRIBUTION OF THE
INDIAN PEAFOWL
Table 4. Percent contribution and permutation importance of all environmental

variables to the model

Environmental variables Percent contribution Permutation
bio4 28 2.6
biol2 8.1 0.7
wlint 7.9 23.1
wbpere 7.7 6.2
biol7 6.3 5.8
landcover 5.8 1.5
biol8 5.3 3.7
bio3 4.6 1.6
biol4 3.7 244
biol5 3.6 1.8
bio5 3.6 0
biol3 3.6 10.5
wlpere 29 42
biol0 2.1 0.1
bio2 1.7 1.2
whbint 1.2 1.2
biol9 1 2.5
alt 0.8 4
biol6 0.6 0.4
bio7 0.4 0.3
bioll 0.3 1.4
biol 0.3 0.3
bio8 0.2 1.2
bio6 0.1 1.1
bio9 0 0.2
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The MaxEnt output showed the percent contribution. permutation importance
and Jackknife importance of all the environmental variables and it is shown in Table.3.
The variable which showed higher percent contribution was temperature seasonality
(bio4) and mean temperature of driest quarter (bio9) doesn’t showed any contribution
at all. Eight variables out of twenty five showed contribution lesser than 1.0.
Considering the permutation importance. precipitation of driest month (biol4) and
linear water inland (wlint) and shows higher importance with 24.4 and 23.1 percent
respectively. Maximum temperature of warmest month (bio5) showed no importance
at all and other variables like biol2. biol0, biol6, bio7, biol and bio9 showed

importance lesser than 1.0.

The jackknife results shown in Fig.4 explains that. the precipitation of driest
quarter (bio17) and temperature seasonality (bio4) had the highest gain when it was
done using only that variable. Variables like altitude, biol 1. bio6, wbint, wbpere and
wlpere showed a gain lesser than 0.1. While looking into the gain without a variable,
three water related variables (wbpere, wlint and wlpere) showed lesser gain. But this
was not significant as it was much above than 0.8 and closest to the gain achieved with

all variables.

The response curves from the MaxEnt output (Fig.5) showed how each
environmental variable was affecting the distribution of the Indian Peafowl. The curves
shown below are logistic prediction changes as each environmental variable was
varied. keeping all other environmental variables at their average sample value. The
variables which showed positive response in favour of the distribution at a particular
location when the values were increased are bio6, bio8. bioll, biol5, biol8, wbint,
wlint and wlpere. Whereas bio2. bio3, biol2, biol3, biol4, biol6, biol7, biol9,
landcover, wlint and wbpere lowered the chance of survival of species in that area when
the values were increased. Some variables like biol, bio4, bio3. bio3, bio7. bio9, biol0
and altitude showed no significant change to the survival of species. The response

curves created using only the corresponding variable are depicted in Fig.6.
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Peafowl keeping all other variables at their average values
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Figure 6. Response curves of each variable in the distribution of the Indian

Peafowl keeping all other variables at their average values
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Figure 7. Response curves of each variable in determining the distribution of the

Indian Peafowl created using only the corresponding variable
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The analysis of the response curves using only the corresponding variables is

given below. This explains the role of each variable, when they were used alone.
4.3.1 Annual mean temperature (biol)

When the annual mean temperature (biol) was low (<22.5°C) the probability
on the occurrence of the Indian Peafowl was below 50 percent. However, when the
annual mean temperature (biol) was higher 27-28 °C, the probability on the occurrence

of the Indian Peafowl increased.
4.3.2 Mean diurnal range of temperature (bio2)

There showed a 63 percent probability of presence for the Indian Peafow] when
the mean diurnal range of temperature (bio2) was between 5.5 °C and 5.9 °C. An
increasing trend was observed in probability of presence for the Indian Peafow] when
the mean diurnal range of temperature went beyond 6.5 °C and reached 50 percent at
8.2 °C. The probability on the presence of the Indian Peafowl was the highest (83%)

when the mean diurnal range of temperature was 9 °C and above.
4.3.3 Isothermality (bio3)

When the isothermality (bio3) was in the range 5.3 and 6.3, the probability of
presence for the Indian Peafowl was greater than 50 percent. There was lower
probability of presence for the Indian Peatow] (10%) when the isothermality was <4.3

and >6.7.
4.3.4 Temperature seasonality (bio4)

The favourable range of temperature seasonality (bio4) was between 12.5 °C
and 16°C. At <1200 and >2200 the probability of presence for the Indian Peafowl was

lesser than 30 percent.
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4.3.5 Maximum temperature of warmest month (bio3)

The distribution of the Indian Peafow] was found to be greater than 50 percent
when the maximum temperature of warmest month was between 34 °C and 37°C and

beyond 37 °C the distribution of the Indian Peafow] dropped to 25 percent.
4.3.6 Minimum temperature of coldest month (bio6)

When the minimum temperature of coldest month (bio6) was 22 °C, the

probability of presence for the Indian Peafowl was the highest (57%).
4.3.7 Temperature annual range (bio7)

The most suited temperature annual range (bio7) for the distribution of the

Indian Peafowl was between 14°C and 15.1 °C.
4.3.8 Mean temperature of wettest quarter (bio8)

As mean temperature of wettest quarter (bio8) increased from 12 °C, there was
an increase in the probability distribution of the Indian Peafowl] and reached the highest

(60%) at 26 °C.
4.3.9 Mean temperature of driest quarter (bio 9)

Probability of presence for the Indian Peafow] was more than 50 percent when
the mean temperature of driest quarter (bio9) was greater than 27 °C and was highest

(80%) at 29°C.
4.3.10 Mean temperature of warmest quarter (biol0)

As mean temperature of warmest quarter (biol0) increased, the probability of
presence for the Indian Peafowl increased and reached 75 percent at 30 °C. But higher
the mean temperature of warmest quarter (<30 “C) the distribution for the Indian

Peafowl reduced drastically.
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4.3.11 Mean temperature of coldest quarter (bioll)

The probability of presence for the Indian Peafow] was 50 percent when the
mean temperature of coldest quarter (biol 1) was between 21 °C and 26 °C. In all other
mean temperature of coldest quarter (biol1) the probability of presence for the Indian

Peafowl was lower.
4.3.12 Annual precipitation (biol2)

As annual precipitation (biol2) inereased, the probability distribution of the
Indian Peafowl] decreased. The probability of presence for the Indian Peafow] was
higher (0.95) when the annual precipitation (biol12) was below 1000mm. When annual
precipitation increased above 3000mm the probability of presence for the Indian

Peafowl dramatically touched the minimum point (15%).
4.3.13. Precipitation of wettest month (bio13)

The probability of presence for the Indian Peafowl was 97 percent when the
precipitation of wettest month (biol) was below 200mm. As precipitation of wettest
month (biol) increased probability of presence for the Indian Peafowl reduced
considerably. When the precipitation of wettest month was greater than 1200mm, the

probability of presence for the Indian Peafowl] was at its minimum (18%).
4.3.14 Precipitation of driest month (biol4)

According to the model prediction the precipitation of driest month should be
lower for the maximum probability of presence for the Indian Peafowl (68%). When
precipitation of driest month increased the probability of presence for the Indian

Peafow] was reduced.
4.3.15 Precipitation of seasonality (biol5)

When precipitation of seasonality (biol5) was below 50mm. the probability of

presence for the Indian Peafow] was 54 percent which reduced to the minimum when
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precipitation increased. But the probability of presence for the Indian Peafowl
increased when the precipitation of seasonality was greater than 60mm and reached
maximum (74%) at 100mm and when precipitation of seasonality was greater than

100mm the probability of presence for the Indian Peafow] decreased to 28 percent.
4.3.16 Precipitation of wettest quarter (biol6)

When precipitation of wettest quarter (biol6) was below 400mm, the
probability of presence for the Indian Peafowl was 98 percent and as biol6 increased,
the probability distribution of the Indian Peafowl decreased and reached the minimum

value (20%) at 2700mm.
4.3.17 Precipitation of driest quarter (biol7)

When precipitation of driest quarter (biol7) was between 30mm to 40mm, the
probability of presence for the Indian Peafowl was 64 to 70 percent respectively. At
lower (<30mm) and higher (>60mm) precipitation of driest quarter, the distribution of

the Indian Peafowl was found low.
4.3.18 Precipitation of warmest quarter (biol8)

At lower (<180mm) and higher (>300mm) precipitation of warmest quarter

(bio18), the probability of presence for the Indian Peafowl] was lower than 50 percent.
4.3.19 Precipitation of coldest quarter (bio19)

When the precipitation of coldest quarter (biol9) increased from Omm to
2200mm, the probability of presence for the Indian Peafowl decreased from 80 to 20

pcrcem.
4.3.20 Altitude (alt)

At altitudes (alt) between Om and 900m the probability of presence for the
Indian Peafowl was found to be 50 percent. At higher altitudes (alt) the relation was

negative.
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4.3.21. Quantitative variables

Quantitative variables such as inland water bodies (wbint). perennial water
bodies (wbpere). linear water inland (wlint). perennial rivers (wlpere) and land cover

(landcover) also do had a role in the probability of distribution of the Indian Peafowl.

4.4 VARIABLE OPTIMIZATION IN THE MODEL

The six trial models produced by the MaxEnt was analysed for the average test
AUC values and SD and among them the best was selected for further studies. The
output showed varying average test AUC values and SD for each trials, even though
the sampling type. number of replicates and test percentage of data used were same for

every models.

Table 5. Average test AUC values and SD of each trial model of the distribution

of the Indian Peafowl using subsampling replication

Model Trial No. | Average test AUC value SD of AUC curve
1 0.813 0.029
2 0.809 0.022
3 0.807 0.017
4 0.820 0.020
5 0.807 0.026
6 0.810 0.025

The fourth model was selected as a typical one that can be used for further steps
such as variable optimization and future prediction since it had highest AUC value and
SD was lower as compared to the other 4 models. The third model had the lowest SD,

but the AUC value of it was the lowest among them.
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The test omission rate and receiver operating characteristic (ROC) curve (Fig.7)
was found more fit in this model compared to others. The Fig.7a shows that the mean
omission line on the test data was passing though the predicted omission line. In the

Fig.7b the AUC line was passing through the left top of the random prediction.

Average Omission and Predicted Area for Indian_Peatowl Average Sensitivity vs. 1 - Specificity for Indian_Peatowl

} 187

o
n

Sensitvity (1 - omgmmu)
-

o
=

-

o

=
=

° 10 20 30 40 50 6 70 60 80 100 00 04 ©2 @3 o4 B5 08 D7 08 0% 10

Cumulative Pueshold 1= Spaciicly (Fractonal Preditted Ares)
Mean area ® b)
Mean area ++ one stddev ® Mean (AUC=0.820) ®
Mean omission on test data ® Mean +/- one stddev =
Mean omission +- one siddev Random Prediction ®

Predicted omission ®

Figure 8. Test omission rate (a) and ROC curve (b) of variable optimization
model of the Indian Peafowl

To find out the correlation among the environmental variables, they were tested
by using Pearson correlation matrix and coefficients of determination (R?). The results
are depicted in the Table.5 and Table.6. Six variables were chosen in [r|>0.7 and 9
variables under [r[>0.9 prioritized on the basis of percent contribution and permutation
importance. In the same manner twelve variables were selected under the criteria
R%>0.9. Only precipitation of warmest quarter (biol8) was having no correlation in all
* categories. The variable having more number of correlation between other variables
was mean temperature of warmest quarter (biol0) (six correlations under |r| and 5
correlations under R?). In [r[>0.9 criteria variables like bio3, bio4, biol5, bio18 and
bio19 are uncorrelated. Eight variables such as bio3, bio4, bio5 biol4, biol5, biol7,

bio18 and bio19 are uncorrelated under R*>0.9.
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| Ir|>0.9; | Ir] 0.9-0.7

Table 6. Pearson correlation matrix of the environmental variables
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| R2>0.9

Table 7. Coefficient of determination (R?) of environmental variables
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The |r| and R? values in combination with percent contribution and permutation
importance were used for selecting the most suitable variables. which determined the

spatial distribution of the Indian Peafowl.

Table 8. Percent contribution and permutation importance of bioclimatic

variables based on selected model trial

Variable Percent contribution Permutation importance
bio4 31.0 07.4
biol7 14.5 09.6
biol5 09.7 06.2
biol8 07.8 04.7
biol2 07.7 03.7
biol4 05.4 15.5
bio3 04.9 10.1
biol3 04.2 20.4
bio5 03.8 0.3
bio19 03.2 05.6
bio2 02.5 02.9
biol 01.2 01.7
biol6 01.1 01.5
bio6 0.9 07.9
biol0 0.8 0.3
bio7 0.5 0.1
bioll 0.4 01.4
bio8 0.2 0.8
bio9 0.1 0
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4.4.1. Model using variables of high percentage contribution having |r| >0.7

Variables were sorted out having high percentage contribution according to the
correlation coefficient below 0.7 (|r] >0.7). Six variables were selected; bio4, biol7,

biol8. biol3. bio5 and bio2. The average test AUC value was 0.799 with a SD 01 0.028.
4.4.2. Model using variables of high permutation importance having |r| >0.7

Six variables having high permutation importance based on correlation
coefficient below 0.7 (|r| =0.7) such as biol3, biol4, bio3. bio6, bio4 and biol8 were

selected. The average test AUC value was 0.800 having a SD of 0.024.
4.4.3. Model using variables of high percentage contribution having |r| >0.9

The nine variables selected based on the high percentage contribution having |r|
>().9 are bio4. bio 17, biol5, biol8, biol2. bio3, bio5. biol9 and bio2. The average test

AUC value was 0.811 and SD of it is 0.032.
4.4.4. Model using variables of high permutation importance having [r| >0.9

Based on the permutation importance, nine variables having [r| >0.9 were
selected: biol3, biol4, bio3, bio6., biod. biol5. bio19, biol8 and bio2. This model have

got average test AUC value of 0.812 and a SD of 0.020.
4.4.5. Model using variables of high percentage contribution having R*>0.9

The twelve optimized variables having percentage contribution and R* >0.9
were bio4. biol7. biol5. biol8. biol2, biol4. bio3. biol. bio5. biol9. bio2 and biol.

The average test AUC value was found to be 0.797 and SD was 0.033.
4.4.6. Model using variables of high permutation importance having R*>0.9

Twelve variables were selected based on high permutation importance and
having R >0.9. They were biol3. bio4. bio3. biol7. bio6. bio4. biol3. bio19. biol8,
bio12, bio2 and bio5. The average test AUC value of this model was 0.823 and having

aSDof 0.02].
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From these models. the model based on variables having high permutation
importance and |r| >0.7 was selected for the future prediction of the Indian Peafowl,
since the variables were less and have a good AUC value of 0.8 and low SD value of

0.024.
4.5 Current and future predictions of the distribution of the Indian Peafowl

The current distribution pattern of the Indian Peafow] was depicted by MaxEnt
software using the optimized variables. The current distribution of the Indian Peafowl
using the presence records from 1979 to 2015 is given in Fig.7. The current distribution
pattern showed abundance of Peafowl in central part of Kerala, mainly Palakkad.
Thrissur and Malappuram districts. In the eastern slopes of Western Ghats (Chinnar,
Wayanad and Parambikulam), there were presence of Peafowl having a probability

greater than 50 percent.

Table 9. Percent contribution and permutation importance of optimized variables

in the future prediction model for distribution of the Indian Peafowl

Environmental variable Percent contribution Permutation
importance

bio4 41.88 11.43

biol3 19.90 30.18

biol8 13.03 03.68

biol4 11.78 19.29

bio3 09.43 24.63

bio6 04.18 10.83

The most contributing variable (41.9%) for the model construction was
temperature seasonality (bio4) and the least (4.2%) was minimum temperature of
coldest month (bio6). The variable having high permutation importance (30.18) were

precipitation of wettest month (bio13) and isothermality (bio3) by 24.63 percent.
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Figure 9. Current distribution of the Indian Peafowl in Kerala
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The results of the Jackknife test of variable importance showed higher gain for
temperature seasonality (bio4) when used in isolation and the environment variable that
decreased the gain the most when it was omitted was precipitation of wettest month

(bi013).

Jackknife of regularized training gain for Indian_Peafowl
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Figure 10. Jackknife of regularized training gain in the future prediction models
of distribution for the Indian Peafowl, when optimized variables are used

Models prepared using the optimized variables under four different
Representative Concentration Pathways (RCP) such as RCP2.6, RCP4.5, RCP6 and
RCP8.5 gave the prediction for future distribution of the Indian Peafow! in Kerala for
the years 2050 and 2070. The comparison of climate data of different RCPs are shown

in appendix-2.

The predicted distribution of the Indian Peafowl in 2050 under the RCP2.6
model is given in Fig. 10. According to which the probability of the Indian Peafow]
distribution would expand to the midlands of Thiruvananthapuram, Kollam, Kottayam,
the midlands and low lands of Ernakulam, the low lands, midlands and the high lands
in Thrissur, the mid and the high lands of Palakkad, low lands of Malappuram,
Kozhikode, Kannur and Kasargode. The highlands of Wayanad. Idukki, Kottayam,
Pathanamthitta, Kollam and Thiruvananthapuram also showed probability for the

presence of the Indian Peafowl.
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Figure 11. Prediction of the future distribution of the Indian Peafowl for 2050

under RCP2.6 prediction
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The predicted distribution of the Indian Peafowl in 2050 under the RCP4.5
model is given in Fig. 11. According to which the probability of the Indian Peafowl
would become stronger in the mid lands and low lands of Ernakulam, the low lands,
mid lands and the high lands in Thrissur, the mid and the high lands of Palakkad, low
lands of Malappuram. Kozhikode, Kannur and Kasargode. The Indian Peafowl,
distribution would expand to the mid lands and high lands of Thiruvananthapuram,
Kollam, and Kottayam. Also the high lands of Wayanad. 1dukki and Pathanamthitta

showed probability of presence for the Indian Peafowl.

The predicted distribution of the Indian Peafow! in 2050 under the RCP6 model
is given in Fig. 12. A northward expansion of distribution of the Indian Peafowl] was
seen under RCP6 model predictions. Based on this model the probability of the Indian
Peafowl would become stronger in the mid lands and low lands of Ernakulam, the low
lands, mid lands and the high lands in Thrissur, the mid lands and the high lands of
Palakkad, low lands and high lands of Malappuram, low lands of Kozhikode, Kannur
and Kasargode and high lands of Wayanad. The Indian Peafow] distribution would

expand to the high lands of Thiruvananthapuram and Kollam.

The predicted distribution of the Indian Peafowl in 2050 under the RCP8.5
model is given in Fig. 13. Similar to 2050 RCP6 model prediction, a northward
expansion of distribution of the Indian Peafowl would be seen in RCP8.5 prediction.
Based on this model prediction the probability of the Indian Peafowl would become
rich in the low lands and mid lands in Thrissur, the mid lands and the high lands of
Palakkad. low lands and high lands of Malappuram, low lands of Kozhikode and
Kannur and high lands of Wayanad. Certain parts of the high lands of Kollam and

Pathanamthitta shows probability for the distribution of the Indian Peafowl.
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Figure 12. Prediction of the future distribution of the Indian Peafowl for 2050

under RCP4.5 prediction
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Figure 13. Prediction of the future distribution of the Indian Peafowl for 2050

under RCP6 prediction
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Figure 14. Prediction of the future distribution of the Indian Peafowl for 2050

under RCP8.5 prediction
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The predicted distribution of the Indian Peafowl in 2070 under the RCP2.6
model is given in Fig. 14. The Indian Peafowl. distribution would expand to the low
lands. mid lands and high lands of Thiruvananthapuram and Kollam, mid lands and
high lands of Kottayam, low lands of Alappuzha, the mid lands and low lands of
Ernakulam, the low lands, mid lands and the high lands in Thrissur, the mid lands and
the high lands of Palakkad, low lands of Malappuram, Kozhikode and Kannur. The
high lands of Wayanad, Idukki. Kottayam and Pathanamthitta. would also show

probability for the presence of the Indian Peafowl.

The predicted distribution of the Indian Peafowl in 2070 under the RCP4.5
model is given in Fig. 15. Based on this model prediction, the probability of the Indian
Peafowl would confine mainly to the mid lands and high lands of Palakkad and
Malappuram. The low lands of Kozhikode and Kannur, high lands of Wayanad and
Kollam and low lands and mid lands of Thrissur and Ernakulam shows probability for

the distribution of the Indian Peafowl.

The predicted distribution of the Indian Peafowl in 2070 under the RCP6 model
is given in Fig. 16. The Indian Peafowl. distribution would expand to the low lands,
mid lands and highlands of Thiruvananthapuram, mid lands and high lands of Kollam,
Kottayam, the low lands, midlands and the high lands in Ernakulam, Thrissur and
Malappuram. the mid and the high lands of Palakkad, low lands of Kozhikode and

Kannur.

The predicted distribution of the Indian Peafowl in 2070 under the RCP8.5
model is given in Fig. 17. Based on the RCP8.5 model prediction the probability of the
Indian Peafowl would become rich in the low lands. mid lands and high lands in
Thrissur and Malappuram. the mid lands and the high lands of Palakkad, low lands of
Kozhikode and Kannur and high lands of Wayanad. Certain parts of the high lands of
Idukki. Pathanamthitta and Kollam showed probability for the distribution of the Indian

Peafowl.
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Figure 15. Prediction of the future distribution of the Indian Peafowl for 2070

under RCP2.6 prediction
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Figure 16. Prediction of the future distribution of the Indian Peafowl for 2070

under RCP4.5 prediction
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Figure 17. Prediction of the future distribution of the Indian Peafowl for 2070

under RCP6 prediction
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Figure 18. Prediction of the future distribution of the Indian Peafowl for 2070

under RCP8.5 prediction
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CHAPETR 5
DISCUSSION

The effects of climate change are being spread in all sectors. The existence of
life is being questioned and several species have become extinct due to the devastating
incidents happened to nature. Intolerant species have been perished and some gone
extinct when the habitat is changed drastically due to the extreme climatic events.
Several other species changed their habitat to appropriate spaces or showed adaptive
mechanisms. Among avian species, changes in distribution is widely seen since they

are sensitive to small climatic shifts and due to their migration.

The Indian Peafowl was a sparsely distributed species in Kerala. This study was
initiated because of the wide spread occurrence of the Indian Peafowl over the last one
decade or so. For the last 10 years or so there have been widespread records of the

Indian Peafow! from various habitats from across Kerala.

Thus the present study examines the current distribution patterns of the Indian
Peafowl based on climatic variables and other physical variables and also the
distribution of the Indian Peafowl is being projected for the years 2050 and 2070 under

four Representative Concentration Pathways (RCP).

MaxEnt software was used to study the distributional changes of the Indian
Peafowl by relating the presence data points to the climatic conditions prevailing there.
The study used the occurrence data points of the Indian Peafowl from 1979 to 2015
and climate data from 1950-2000 for current conditions and for the years 2050 and
2070, climate was predicted by using the coupled model HadGEM2-AO0 of 30 second
resolution under four different Representative Concentration Pathways (RCPs). In this

chapter the results obtained are discussed and analysed in detail.
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5.1 SELECTION OF REPLICATION RUN TYPE

The objective of replication run type is to assess generality, thereby achieving
sense for the model in the identification of attributes of the species distribution and to
evade noisy sampling procedures. MaxEnt provides three types of replication types for
the evaluation of models such as cross-validation, bootstrapping and subsampling. In
cross-validation, presence locations are alienated to training and test data, to fit the
model and to evaluate the model respectively. It is preferred by some studies since it
handles data efficiently and users can easily find the statistical results such as range
and standard error (Merow et al.. 2013). But while using cross-validation, only one part
of the data is used for model fitting which questions the statistical and spatial
independency of test data from training data. This will lead to spatially correlated folds
which overestimates the model performance and undervalues the standard error of
prediction (Anderson and Raza, 2010). The model is taking test data in a self-manner,
so automatically test percentage becomes to zero even the user decided to use some
portion of data for testing. In all trial models based on cross-validation, the average test
AUC value and SD (Table.2) and the result outputs are the same, telling the lack of
independency of test data. So this method is not well suited for future predictions. The

SD for the AUC curve (Fig.2c) was quite higher compared to other models.

The bootstrap technique produces pseudo samples which is disconcerted forms
of the parent data (Efron, 1979). This is one of the popular resampling technique used
for statistical approaches. Replacement of observations from original data is done
which allows the creation of possible replications of some observation (De Bin er al.,
2016). Our study revealed that it have got high average test AUC value and low SD
(Table.2) which can be regarded as best fit of the model. But the problems related to
bootstrap is the propensity in choosing too many variables (Janitza et al., 2015). High
inclusion frequency for noise variables are prominent in bootstrap approaches

(Rospleszez et al.. 2014). The analysis of omission rate in Fig.3a shows clearly about
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the autocorrelation with test and training data. In both bootstrap and cross-validation

the SD for the response curves were higher (Fig.2 a,c).

Subsampling is regarded as an effective substitute for bootstrap (Hartigan,
1969) and it was observed to produce a stable model (Meinshausen and Buhlmann,
2006: 2010). Even when bootstrap fails, it showed linear consistency (Davison er al.,
2003). Unlike bootstrap there is no replacement of observations. Subsampling does not
encourage the inclusion of noise variables, which permits the acknowledgement of
relevant variables. It uses all possible thresholds to discriminate relevant and noise
variables (De Bin ef al.. 2016). Selection of weak effect variables can be considered as
a disadvantage to this technique. Even though average test AUC value of subsampling
was lower compared to cross-validate and bootstrap (Table.2) and subsampling was
selected as an effective replication type since it have lower correlation among variables

than in cross-validate and does not include noisy variables like in bootstrap.

5.2 VARIABLE CONTRIBUTION TO THE MODEL DISTRIBUTION OF THE
INDIAN PEAFOWL

MaxEnt model output gives the contributions of environmental variables which
are used in the construction of distribution model of the Indian Peafowl. In each step
of the MaxEnt algorithm, coefficient of a single feature is altered and the gain of the
model is increased. At the end of training process these increased gain of each variable
are converted into percentage. thus obtaining the percentage contribution. From the
analysis of Table.3, temperature seasonality (bio4) showed highest percentage
contribution (28%) in the construction of model, whereas mean temperature of driest
quarter (bio9) have no contribution at all. Other than bioclimatic variables linear water
inland (wlint), perennial water bodies (wbpere) and land cover variables have a
significant role as they contribute 7.9. 7.7 and 5.8 percent respectively. Altitude have
lower contribution (0.8%) in the distribution of the Indian Peafowl. But these
percentage contributions are heuristically defined. They will differ when the path used

to get the same solution changes according to different algorithms. Also due to the
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correlations among the variables, handling of percentage contributions should be made

with caution.

The determination of permutation importance (Table.3) is path independent and
it depends only on the final MaxEnt model. The decrease in training AUC in
accordance with the random permuting values of each variable among both background
and presence data is calculated and higher the decrease in AUC resembles the increased
dependency of that particular variable. The resulting values are normalized to
percentages. So it is more advisable for measuring the contribution of each variable.
For the distribution of model precipitation of driest month (biol4) and linear water
inland (wlint) shows higher importance. Among the other bioclimatic variables
precipitation of wettest month (biol3). precipitation of driest quarter (biol7),
precipitation of warmest quarter (biol8) and temperature seasonality (bio4) shows

higher importance.

The Jackknife depicts (Fig.4) the training gain of each variable when the model
was run in isolation and later it compares to the training gain of all variables. This is
helpful in identifying the most contributed variable individually. The variables showing
good fit to the training data are temperature annual range (bio7) and temperature
seasonality (bio4) and appears to have the most useful information by itself. The
environment variable that decreases the gain the most when it is omitted is linear water
inland (wlint), which therefore appears to have the most information that isn’t present
in the other variables. But since it is of no considerable change when compared to
others, it can be concluded that no variable contains substantial amount of useful

information that is not already contained in other variables.

The responses of each variable is depicted in the graphs shown in Fig.5 and
Fig.6. The Fig.5 shows the response of each curves when other variables are at their
average values. The variables which have a positive effect on the distribution of the

Indian Peafowl at a particular location are minimum temperature of coldest month
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(bio6). mean temperature of wettest quarter (bio8). mean temperature of coldest quarter
(biol1). precipitation of seasonality (bio15). precipitation of warmest quarter (biol8),
inland water bodies (wbint), and perennial rivers (wlpere). whereas Mean diurnal
range (bio2). isothermality (bio3), temperature seasonality (biod), Precipitation of
wettest month (bio13), precipitation of driest month (biol4), precipitation of wettest
quarter (bhiol6), precipitation of driest quarter (biol7). precipitation of coldest quarter
(bio19). linear water inland (wlint) and perennial water bodies (wbpere) have a
negative effect for the chance of survival of the Indian Peafowl in that area. Variables
like annual mean temperature (biol), maximum temperature of warmest month (bio5),
temperature annual range (bio7), mean temperature driest quarter (bio9), mean
temperature of warmest quarter (bio10), annual precipitation (biol2) and altitude (alt)
showed no significant change to the survival of species. But these response curves
depends on the values of other variables too. Interpreting these response curves are
difficult, if there are strong correlation existing among variables. These curves show
marginal effect of changing exactly one variable, whereas the model may take

advantage of sets of variables changing together.

In contrast to the above marginal response curves, MaxEnt creates another set
of response curves using only the corresponding variable (Fig.6). The dependence of
predicted suitability both on the selected variable and on dependencies induced by
correlations between the selected variable and other variables is reflected in these plots.
If there is strong correlation between variables. it is easier to interpret using these

Curves.

The ideal annual mean temperature (biol) for the presence of Peafowl is 27-
28°C (Fig.5). During the maximum warmest period (bio3) the optimum range of
temperature is 34 °C to 37°C (Fig.6). But it can’t prolong at this higher temperature for
a longer time. Mean temperature greater than 30 “C during the warmest quarter (bio10)
is negatively affecting the probability of presence (Fig.6). Higher the mean diurnal

range (bio2). higher is the probability of presence and annually it ranges from 14 °C to
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15 °C (Fig.6). When the minimum temperature of coldest month (bio6) and mean
temperature of coldest quarter (bioll) are lower, the probability of presence for the
Indian Peafowl decreased (Fig.6). Precipitation is negatively affecting the probability
of presence. Annual precipitation (biol2) should be low (<1000mm) for higher
probability of the Indian Peafowl (100%) and at regions receiving annual rainfall less
than 3000mm have a probability of <60 percent for the presence of the Indian Peafowl
(Fig.6). During wettest month (bio13), the Indian Peafow] are abundant (97%) in areas
having <200mm rainfall and it can go upto <400mm while considering the whole
wettest quarter (biol6). During the coldest quarter (biol9), lower precipitation is

favouring the probability of presence (Fig.6).
5.3 VARIABLE OPTIMIZATION IN THE MODEL

The trials of model run for selecting the most fitted one showed the results as
shown in Table.3. The average test AUC value is used as a selection criteria for this.
Based on the ranking of locations it measures the predictive accuracy which is
threshold independent. It can be interpreted as the probability of ranking higher a
randomly chosen presence location than a randomly chosen background point (Merow
et al.,, 2013). In the case of presence only data, higher the AUC shows that. the model
is well distinguished between presences and background locations. The model having
higher AUC is more accurate. Table.4 shows the different trials and the average test
AUC values. The fourth trial obtained high AUC value and it is taken as the reference
model for further studies. Also in the Fig.7a it is seen that the omission on test samples
is a very good match to the predicted omission rate. In the ROC curve (Fig.7b). the
mean (red line) is above the random prediction line which shows the model is better in

predicting the presences.

Climatic variables are well known for high correlation among each other
(Brown. 2014). For the interpretation of the contribution of each input variable to the

species distribution model, autocorrelation of the input have to be reduced by removing
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highly correlated variables. Inclusion of these variables will not affect the quality of
the prediction, but can seriously limit the inference of the contribution of any correlated
variable. When a highly correlated variable is included in the model, then all other
highly correlated variables will be excluded from being incorporated. This will result
in the improper representation of the “analysis of variable contributions’ in the model
output. To find out the correlation among the environmental variables, they were tested
by using Pearson correlation matrix [r] and coefficients of determination (R?). The result
is shown in the Table.5 and Table.6. Variables having |r| value >0.9 and >0.7 and R?
value >0.9 are sclected separately to draw out the important variables according to the
percentage contribution and permutation importance (Table.7). Models based on these
conditions are created and the most suitable one is selected based on the outputs
produced my MaxEnt. Only bioclimatic variables are used for further analysis. because

future projections for others is not predictable.

r| and R” value

Model selection is based on the average test AUC value, SD,
and the number of variables used. Lesser the number of variables, more good is the
model. It is considered that. if lesser variables explain the model. the correlation will
be at its minimum. percent contribution can be effectively studied and it is easy to
interpret the model. Model considering the [r[>0.7 will certainly have lesser amount of
variables, since most of the variables have some sort of correlation with one another.
[ri>0.9 will contain greater number of variables than |r[>0.7 since most of them have
correlation lesser than 0.9. So number of variables are considered initially and the
model using variables of high percentage contribution having |r| >0.7 and model using

variables of high permutation importance having |r| =0.7 are selected. The AUC value

of the first (0.799) was lower than the second (0.800). Also the SD was higher for the
first (0.028) than the second (0.024). So it can be concluded that model using variables
of high permutation importance having |r| 0.7 is better. The variables selected are
isothermality (bio3), temperature seasonality (bio4), minimum temperature of coldest

month (bio6). precipitation of wettest month (biol3). precipitation of driest month
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(biol4) and precipitation of warmest quarter (bio18). Based on this, the models are

constructed for the current distribution and future distribution.

5.4 CURRENT AND FUTURE PREDICTIONS OF THE DISTRIBUTION OF THE
INDIAN PEAFOWL

5.4.1 Current distribution

The current distribution of the Indian Peafowl based on the six variables in the
selected model is shown in Fig.8. Most abundant distribution was seen in the central
part of Kerala, especially in Palakkad and Thrissur districts. The high lands of Wayanad
and Idukki also showed probability of distribution greater than 50 percent. In Chinnar
region, Idukki the probability was almost 100 percent. Even the low lands of Thrissur
had the potential for the survival of the Indian Peafowl. In districts such as Alappuzha,
Kottayam, Kollam (except high lands) and Thiruvananthapuram, Kannur (except low
lands) and Kasaragod had no probability of distribution for the Indian Peafowl in the
current conditions. The abundance of the Indian Peafowl in Palakkad, Thrissur,
Wayanad and Chinnar could be explained by temperature profile and amount of
rainfall. The Indian Peafowl was a species which inhabited in dry conditions. They
were commonly seen in North India and Tamil Nadu where low precipitation and
moderate temperatures were experienced. Likewise the eastern slopes of Western
Ghats in Kerala received lower rainfall resulting in dryness which favoured the habitual
conditions of the Indian Peafowl. From there, they were spreading to the interiors of
the Kerala. The existence of Palakkad gap made it easier for the establishment of the
Indian Peafowl in central Kerala. But as a conventional thought, they should not be
present in Kerala since it was an area receiving high amount of rainfall and mostly
covered with tropical rain forest. This expanding distribution of the Indian Peafowl
actually warns about the spreading of dryness in Kerala. The reduction in the amount
of rainfall and hike in the temperature profile favoured the environmental conditions

which was suitable for the Indian Peafow! distribution.
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Using MaxEnt output analysis, the six bioclimatic variables used for modelling
had been critically analysed for their role in determining the distribution pattern of the
Indian Peafowl in Kerala. Table.8 shows the importance of temperature seasonality
(bio4) in model construction. But the variables which was playing the key role in
determining the probability of presence are precipitation of wettest month (biol3) and
isothermality (bio3). The Jackknife test of variable importance (Fig.9) showed
temperature seasonality (bio4) contained the most useful information by itself and
precipitation of wettest month (biol3) contained most information that isn’t present in

the other variables.
5.4.2 Predicted future distribution of the Indian Peafowl

Models prepared using the optimized variables under four different
Representative Concentration Pathways (RCP) such as RCP2.6, RCP4.5, RCP6 and
RCP8.5 gave the prediction for future distribution of the Indian Peafowl in Kerala for
the years 2050 and 2070. In every predictions the distribution of the Indian Peafowl
would be spreading compared to current scenario. Generally three factors were
considered for the abundance of species; suitable environment which favoured the
conditions for growth, availability of food materials and the number of species. This
study was mainly based on the environmental conditions. But the primary factor which
favoured the species distribution was their pre-existence over there or number of
population. If there was no population pre-existing, there won’t be any future
population. So keeping this as the primary factor, the environmental variables were
studied. The availability of food was also a key factor in determining the distribution.
Off late the Indian Peafowl was even considered as a pest species by the farmers. They

either fed upon or destroyed various crops including the vegetables and paddy.

In the analysis of distribution of the Indian Peafowl in Kerala. the six
bioclimatic variables were critically analysed. A single variable cannot determine the

distribution of the Indian Peafowl. The analysis was done by considering the combined
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effects of all the variables. The precipitation during the wettest month (biol3) was
found to be increasing all over Kerala in all the RCP predictions and the decreased
abundance in some RCP predictions could be explained by this. The predicted
distribution of the Indian Peafowl under different scenarios when each variable is
excluded in each run is shown in appendix-3. This would clearly depicts the areas
where each variable has its influence. The meteorological data shown in appendix-2
and the modelled distribution figures of the Indian Peafowl is used for analysing each

RCP prediction.
5.4.2.1 Distribution of the Indian Peafowl for 2050 under RCP2.6 prediction

Fig.10 shows that the distribution of the Indian Peafowl would increase over
central, northern low lands and southern mid lands and high lands of Kerala. The
increase or decrease in probability of presence could be explained by the response
curves of the variables (Fig.6). In all parts of Kerala, there would be an increase in the
minimum temperature of coldest month (bio6) and in the temperature seasonality
(bio4). The abundance in central and southern parts was due to the decrease in
isothermality (bio3) and precipitation of driest month (bio14). In northern Kerala apart
from the variation in above given variables, there would be a decrease in precipitation

during warmest quarter (bio18).
5.4.2.2 Distribution of the Indian Peafowl for 2050 under RCP4.5 prediction

The result (Fig.11) was almost similar to RCP 2.6 (Fig.10) prediction but would
show a decrease in the probability of Indian Peafowl in the mid lands of southern parts
of Kerala and in high lands of Palakkad region due to the increase in precipitation
during the wettest month (bio13). A widespread increase would be seen in low lands
of northern Kerala, high lands of Wayanad and low lands and mid lands of central
Kerala due to the increase in minimum temperature of coldest month (bio6) and
decrease in precipitation of driest month (biol4), precipitation of warmest quarter

(bio18) and temperature seasonality (bio4). In the low lands of Kannur and Kasaragod

80



and high lands of Thiruvananthapuram the precipitation of wettest month (biol3)

would be decreasing.
5.4.2.3 Distribution of the Indian Peafowl for 2050 under RCP6 prediction

Distribution of the Indian Peafowl! for 2050 under RCP6 prediction (Fig.12)
showed that, the low lands and mid lands of northern part of Kerala, low lands, mid
lands and high lands of central part of Kerala and high lands of southern part of Kerala
would show an increase in probability of presence due to the decrease in the
temperature seasonality (bio4), precipitation of driest month (biol4) and precipitation
of warmest quarter (bio18) and increase in the minimum temperature of coldest month
(bio6). In mid lands of central part of Kerala and high lands of Kollam, Pathanamthitta,
Idukki and Palakkad the distribution will be minimized due to the increasing

precipitation during wettest month (biol3).
5.4.2.4 Distribution of the Indian Peafowl for 2050 under RCP8.5 prediction

The probability of presence of the Indian Peafowl under RCP8.5 prediction
(Fig.13) was similar to RCP2.6 scenario (Fig.10), except the decrease seen in low lands
and mid lands of southern Kerala and high lands of Palakkad. This decrease was
explained by the increasing precipitation during wettest month (bio13). There would
be an increase in temperature seasonality (bio4) except in high lands of Kollam, a
decrease in precipitation during driest month (bio14) and warmest quarter (biol8) and
an increase of minimum temperature during coldest month (bio6) which resulted in the

increased distribution in the Indian Peafowl.
5.4.2.5 Distribution of the Indian Peafowl for 2070 under RCP2.6 prediction

During 2070 under RCP2.6 prediction (Fig.14) due to the increase in the
minimum temperature of coldest month (bio6) and in the temperature seasonality (bio4)
and decrease in the isothermality (bio3) and precipitation of driest month (bio14), the

probability of presence of the Indian Peafowl will increase compared to current
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conditions (similar to 2050 RCP2.6). The distinguishing characteristics of this
prediction was that Alappuzha would become a favourable environment for the growth
of the Indian Peafowl] due to the increase in the minimum temperature of coldest month
(bio6). The increased distribution of the Indian Peafowl] in lowlands and midlands of
central Kerala and low lands of Kasargode was due to the decreased precipitation of
warmest quarter (biol8). The high lands of Wayanad would have high abundance of
the Indian Peafow! due to the increased minimum temperature of coldest month (bio6)

and decreased precipitation of warmest quarter (biol8).
5.4.2.6 Distribution of the Indian Peafowl for 2070 under RCP4.5 prediction

The probability of presence of the Indian Peafowl during 2070 under RCP4.5
prediction (Fig.15) would decrease throughout Kerala compared to other RCP
predictions for the years 2050 and 2070. Only the mid lands and high lands of Thrissur
and Palakkad would show more probability for the distribution of the Indian Peafowl
due to the increased minimum temperature of coldest month (bio6). The lower
probability of presence for the Indian Peafowl was due to the increasing precipitation
during wettest month (bio13), driest month (bio14) and warmest quarter (biol8) and

increased isothermality (bio3) and decreased temperature seasonality (bio4).
5.4.2.7 Distribution of the Indian Peafowl for 2070 under RCP6 prediction

The distribution of the Indian Peafowl for 2070 under RCP6 prediction (Fig.16)
would be similar to the prediction made by RCP4.5 for the year 2050 (Fig.11). The low
lands of Kannur and Kozhikode. the low lands and mid lands of Malappuram and
Thrissur, mid lands and high lands of Palakkad and high lands of Kottayam,
Pathanamthitta, Kollam and Thiruvananthapuram would show high probability for the
distribution of the Indian Peafowl due to the decrease in isothermality (bio3) and
decreased precipitation during driest month (biol4) and warmest quarter (biol8) and

increase in minimum temperature of coldest month (bio6). The abundance would be
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decreasing in the low lands of Kasargode and high lands of Idukki due to the decreased

temperature seasonality (bio4) over there.
5.4.2.8 Distribution of the Indian Peafowl for 2070 under RCP8.5 prediction

During 2070 under RCP8.5 prediction (Fig.17) the low lands and mid lands of
southern Kerala and high lands of Idukki would show decrease in the probability of
distribution of the Indian Peafowl due to the decreased temperature seasonality (bio4)
and increased precipitation during wettest month (biol3) and driest month (bio14). The
mid lands and high lands of Palakkad. low lands, mid lands and high lands of
Malappuram and Thrissur would be showing high probability in the distribution of the
Indian Peafowl due to the increase in the minimum temperature of coldest month (bio6)

and decreased precipitation during wettest month (bio13) and warmest quarter (biol8).
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CHAPETR 6
SUMMARY AND CONCLUSION

Climate change can have broad effects on biodiversity and ecosystems. Several
studies have been undertaken to study the effects of climate change on both plant and
animal species and it revealed the changes occurring in the phenology, distribution and
abundance of species. Birds are considered as an important bio-indicators, which
reflects the changes happening in their environment. These changes can affect the bird
distribution and it is the field where predictive modelling can be applied. Accurate
mapping of presence records can be used for correlating it with environmental
variables, so that prediction for the future distribution of that species can be mapped.
This is used especially in the conservation practices, where the potential places of
occurrences can be identified and measures can be taken to protect them in the changed

habitat.

This study was emphasized on the impacts of climate change on the temporal
and spatial distribution of the Indian Peafowl] in Kerala. Using modelling techniques,
the distribution for the same is projected for the years 2050 and 2070 under various
climate change scenarios. The occurrence data for the Indian Peafowl was collected
for a 37 year period from 1979-2015. Using the current climatic conditions (1950-
2000) obtained from WorldClim as bioclimatic layers, correlation and probability was
calculated for current distribution using MaxEnt software using Maximum Entropy
method. Using the results obtained from these, future prediction is being made. By
analyzing the current and projected future distribution, following results have been

obtained.

e Indetermining the distribution of the Indian Peafowl using MaxEnt, subsampling
method was selected as an effective replication type since it have lower
correlation among variables than in cross-validate method and does not include

noisy variables like in bootstrap method.



The variable which showed highest percentage contribution in the construction of
model for the distribution of Indian Peafowl was temperature seasonality (bio4),
while the mean temperature of driest quarter had little contribution at all (bio9).
Altitude had no significant role in determining the distribution of the Indian
Peafowl.

The permutation importance in determining the probability of the Indian Peafowl
was higher for the precipitation of driest month and linear water inland (wlint)
when all variables were used for analysis.

Temperature annual range (bio7) and temperature seasonality (bio4) appeared to
have the most useful information by itself and linear water inland (wlint) have the
most information that isn’t present in other variables, when all variables were used
for modelling the distribution of the Indian Peafowl.

The variables which had a positive effect on the distribution of the Indian Peafowl
at a particular location were mean temperature of coldest quarter (bioll).
precipitation of seasonality (biol5). precipitation of warmest quarter (biol8),
minimum temperature of coldest month (bio6), mean temperature of wettest
quarter (bio8), inland water bodies (wbint), and perennial rivers (wlpere).
Precipitation of wettest month (biol3), precipitation of driest month (biol4).
precipitation of wettest quarter (biol6), precipitation of driest quarter (biol7),
precipitation of coldest quarter (biol9), mean diurnal range (bio2), isothermality
(bio3). temperature seasonality (bio4), linear water inland (wlint) and perennial
water bodies (wbpere) had a negative effect for the chance of survival of the Indian
Peafowl in that area.

Some variables such as altitude, mean temperature of warmest quarter (biol0),
annual precipitation (biol2), annual mean temperature (biol), maximum
temperature of warmest month (bio3) and mean temperature of driest quarter
(bio9) showed no significant change to the distribution of the Indian Peafowl.

It cannot prolong during high temperatures (>37°C) during summer season (bio5).
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Higher the precipitation, lower the probability of presence of the Indian Peafowl.
Regions receiving annual precipitation (biol2) lesser than 1000mm favours the
probability of presence for the Indian Peafowl by 100 percent and lesser than
3000mm rainfall shows probability of 60 percent and more in sighting the Indian
Peafowl in that region.

During driest period (biol4). no rainfall is good for achieving probability of
presence for the Indian Peafow! greater than 50 percent.

When precipitation of warmest quarter (biol8) was decreased (<300mm) the
probability of presence for the Indian Peafowl increased to 50 percent.

As isothermality (bio3) ranged between 53 and 63 the probability of presence for
the Indian Peafow] was greater than 50 percent.

When temperature seasonality (bio4) was between 12.5 °C and 16 "C. the
probability of presence for the Indian Peafowl was greater than 50 percent.

As the minimum temperature of coldest month (bio6) increased the probability of
presence for the Indian Peafowl increased and reached maximum (57%) at 22.5°C.
Model construction using variables of high permutation importance having |r| >0.7
was better when compared to other models.

Most abundant distribution of the Indian Peafow] in the current scenario was seen
in the central part of Kerala, especially in Palakkad and Thrissur districts. The high
lands of Wayanad and Idukki also shows probability of distribution greater than
50 percent. The low lands of Thrissur and North Kerala had the potential for the
habitation of peafowl.

The expanding distribution of the Indian Peafowl may be considered as a warning
about the spreading of dryness in Kerala.

The most contributing variable for the future prediction model construction of the
Indian Peafowl using the optimized variables was temperature seasonality (bio4)
by 41.9 percent and the least was minimum temperature of ¢oldest month (bio6)

by 4.2 percent. But the most heavily depended variable (permutation importance)
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in the model for distribution of the Indian Peafowl were precipitation of wettest
month (bio13) by 30.18 percent and isothermality (bio3) by 24.63 percent.
Probability for the presence for the Indian Peafowl would be increasing throughout
Kerala in all future projections except in low lands of Alappuzha and high lands
of Wayanad. Only in 2070 RCP2.6 projection there showed abundance of the
Indian Peafowl in Alappuzha and high lands of Wayanad.

The probability of presence for the Indian Peafowl increased to 100 percent in the
central parts of Kerala (Palakkad, Thrissur, and Malappuram).

In 2070 RCP4.5, the probability of presence for the Indian Peafowl would be lower
compared to other projections throughout Kerala.

Especially in southern parts of Kerala. the probability of distribution for the Indian
Peafowl would reduce in 2050 RCP8.5, 2070 RCP4.5 and 2070 RCP8.5
projections.

The increasing distribution of the Indian Peafowl over Kerala in the future
prediction was associated with the increase in minimum temperature of coldest
month (bio6) and decrease in precipitation of warmest quarter (bio18).

If the precipitation of wettest month (biol3) wouldn’t have increased the
probability for presence of the Indian Peafowl would have been increased
considerably all over Kerala. So precipitation of wettest month could be

considered as a controlling factor in the presence of the Indian Peafowl.
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CHAPTER 8
ABSTRACT

It has been of great importance for the researchers in finding the factors which
influenced the species distributions. They are keen to know the current and future
distribution patterns of endangered species for implementing the conservation
strategies. Some invasive species are expanding their territory into new areas and it
have to identify accurately. Avian species are regarded as a good bio-indicator of these
devastating changes in the environment. This study was done based on the spatial and
temporal distribution of the Indian Peafowl in Kerala. which would be supportive to
establish the changes happening in the environment at various places. During the recent
decades. rapid expansion in the distribution of the Indian Peafowl was occurred. The
hypothesis of this study was that. this expansion is due to the climatic changes. To
delineate species distributions and habitat associations, MaxEnt program was used.
Using the current presence data acquired from e-Bird data source and 19 bioclimatic
variables from WorldClim v1.4 the distribution of the Indian Peafowl had been
modelled. Using the current distribution analysis, it would project the distribution of
Indian Peafowl into the future by converging it to the maximum entropy probability
distribution, Only the uncorrelated variables were used for the study. selected by
checking for its percent contribution, permutation importance and R? value. The study
revealed the current (1950-2015) and projected distribution pattern of the Indian
Peafow! for the years 2050 and 2070 under different RCP projections. The projected
models tells about the increasing spatial distribution of the Indian Peafowl throughout
Kerala except in Alappuzha and western slopes of Wayanad. The central part of Kerala
is the hotspot of the Indian Peafowl currently and it will be the same in the future. The
combined effects of precipitation and temperature variation have an indispensable role

in this projected distribution of the Indian Peafowl.
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APPENDIX-I

Response curves of each variable using bootstrap, subsampling and cross-validate replication

types
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Bootstrap Subsampling Cross-validate
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Bootstrap Subsampling Cross-validate
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Bootstrap Subsampling Cross-validate
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Bootstrap Subsampling Cross-validate
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Precipitation of wettest month (bio13) in mm

APPENDIX-II

Sl Place 1950 2050 2070
No - RCP | RCP | RCP | RCP | RCP | RCP | RCP | RCF
2000 | 2.6 | 45 6 85 | 2.6 | 45 6 8.5
I | Achankovil, Kollam 233 | 313 | 328 | 314 | 306 | 297 | 319 | 366 | 384
2 | Adat, Thrissur 360 | 384 | 417 | 390 | 345 | 366 | 399 | 446 | 511
3 | Bekal, Kasargode 360 | 384 | 417 | 390 | 345 [ 366 | 399 | 446 | 511
4 | Chettuva, Thrissur 475 | 569 | 531 | 453 | 557 | 531 | 501 | 532 | 435
5 | Chinnar, Idukki 702 | 797 | 751 | 618 | 748 | 733 | 708 [ 748 | 592
6 | Choolanur, Palakkad | 568 | 672 | 634 | 532 | 651 | 620 | 598 | 630 | 514
7 | Fort St.Angelo. 583 | 700 | 642 | 563 | 691 | 673 | 605 | 654 | 531
Kannur
8 | Muthanga, Wayanad | 675 | 772 | 698 | 590 | 742 | 696 | 685 | 727 | 622
9 | Palode, 286 | 341 | 333 | 272 | 339 | 306 | 315 | 323 317
Thiruvananthapuram
10 | Parambikulam, 678 | 729 | 617 | 334 | 621 | 673 | 603 | 650 | 695
Palakkad
11 | Shendurney, Kollam | 378 | 432 | 407 | 356 | 417 | 443 | 380 | 425 342
12 | Thattekkad bird 1294 | 1364 | 1204 | 1021 | 1292 | 1261 | 1224 | 1290 | 1084
sanctuary, Idukki
13 | Thavanoor, 1266 | 1341 | 1213 | 1056 | 1332 | 1283 | 1290 | 1320 | 1189
Malappuram
14 | Veli, 741 | 841 | 782 | 652 | 782 | 788 | 736 | 789 | 604
Thiravananthapuram
15 | Vellanikkara, 726 | 832 | 774 | 649 | 780 | 778 | 730 | 781 605
Thrissur
All Kerala average | 652 | 741 | 690 | 583 | 702 | 689 | 660 | 701 574
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Precipitation of driest month (biol4) in mm

SIL Place 1950 2050 2070
No - RCP | RCP | RCP | RCP | RCP | RCP | RCP | RCP
2000 | 2.6 4.5 6 8.5 | 2.6 4.5 6 8.5
1 | Achankovil, Kollam 24 18 17 14 24 17 26 16 31
2 Adat, Thrissur 9 7 6 6 8 5 8 6 11
3 | Bekal, Kasargode 1 1 1 | | 1 1 1 1
4 Chettuva. Thrissur 2 2 1 2 2 1 2 ] 4
5 | Chinnar, Idukki 29 24 22 18 24 20 36 21 28
6 | Choolanur, Palakkad 2 2 1 2 2 1 2 | 3
7 | Fort St.Angelo, 3 2 2 3 2 2 3 3 3
Kannur
8 | Muthanga, Wayanad 4 3 3 3 4 3 4 3 5
9 | Palode, 14 11 10 10 12 9 15 9 16
Thiruvananthapuram
10 | Parambikulam, 22 19 16 13 22 14 26 14 28
Palakkad
11 | Shendurney, Kollam 2 2 | 2 2 1 2 | 3
12 | Thattekkad bird 3 3 2 3 2 2 4 2 6
sanctuary, Idukki
13 | Thavanoor, 25 21 18 19 24 20 30 15 39
Malappuram
14 | Veli, 18 14 14 12 19 12 20 12 22
Thiruvananthapuram
15 | Vellanikkara, | 1 1 1 1 1 1 1 2
Thrissur
All Kerala average 6 5 5 4 6 4 7 4 8
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Precipitation of warmest quarter (biol8) in mm

SL Place 1950 2050 2070
No - RCP | RCP | RCP | RCP | RCP | RCP | RCP | RCP
2000 | 2.6 | 4.5 6 85 | 2.6 4.5 6 8.5
1 | Achankovil, Kollam | 347 | 661 | 204 | 451 | 333 | 643 | 530 | 438 | 295
2 | Adat, Thrissur 207 | 217 | 146 | 170 | 130 | 182 [ 242 | 146 164
3 | Bekal, Kasargode 314 | 315 | 314 | 315 [ 314 [ 312 | 316 | 313 | 314
4 | Chettuva, Thrissur 255 | 243 | 193 | 216 | 176 | 223 | 272 | 191 222
5 | Chinnar, Idukki 203 | 312 | 170 | 200 | 150 | 328 | 27] 151 152
6 | Choolanur, Palakkad | 380 [ 445 | 260 | 297 | 224 | 390 | 524 | 264 | 265
7 | Fort St.Angelo, 362 | 358 | 328 | 346 | 320 | 351 | 389 | 232 | 348
Kannur
8 | Muthanga, Wayanad | 280 | 328 | 186 | 223 | 164 | 265 | 370 | 187 194
9 | Palode, 283 54 | 186 | 227 | 165 | 280 | 408 | 188 190
Thiruvananthapuram
10 | Parambikulam, 386 | 420 | 239 | 263 | 210 | 480 | 339 | 214 221
Palakkad
11 | Shendurney, Kollam | 374 | 443 | 255 | 294 | 220 | 380 | 520 | 257 | 260
12 | Thattekkad bird 282 | 266 | 218 | 241 | 206 | 249 | 291 | 217 | 250
sanctuary, ldukki
13 | Thavanoor, 542 | 675 | 330 | 378 | 294 | 643 | 723 | 329 | 314
Malappuram
14 | Veli, 738 | 823 | 402 | 611 | 415 | 778 | 709 | 581 394
Thiruvananthapuram
15 | Vellanikkara, 353 | 392 | 251 | 284 | 219 | 342 | 450 | 252 | 26l
Thrissur
All Kerala average 338 | 385 | 236 | 273 | 210 | 342 | 433 | 241 244
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Isothermality (bio3) ([bio2/bio7] x100)

S Place 1950 2050 2070
No - RCP | RCP | RCP | RCP | RCP | RCP | RCP | RCP
2000 | 2.6 4.5 660 8.5 2.6 4.5 6 8.5
1 Achankovil, Kollam 65 61 61 64 64 59 65 6l 64
2 | Adat, Thrissur 61 58 56 60 58 56 61 57 58
3 | Bekal, Kasargode 62 61 63 64 63 61 65 63 63
4 | Chettuva, Thrissur 59 56 55 58 57 55 59 56 56
5 | Chinnar, Idukki 65 60 63 65 65 60 66 63 64
6 | Choolanur, Palakkad 63 6l 60 63 63 60 65 61 62
7 | Fort St.Angelo, 6l 59 60 61 61 59 63 61 60
Kannur
8 Muthanga, Wayanad 61 60 58 6l 6l 57 63 58 59
9 Palode, 63 60 60 63 62 58 64 60 62
Thiruvananthapuram
10 | Parambikulam, 65 63 65 67 66 60 68 64 66
Palakkad
11 | Shendurney, Kollam 62 61 60 63 62 59 64 61 62
12 | Thattekkad bird 59 56 56 58 56 55 59 56 56
sanctuary, Idukki
13 | Thavanoor, 67 65 66 68 69 63 69 67 69
Malappuram
14 | Veli, 62 38 | 3939 | 61 60 57 63 58 60
Thiruvananthapuram
15 | Vellanikkara, 6l 61 60 62 61 59 63 60 60
Thrissur
All Kerala average 62 60 60 62 61 59 64 60 61

126



Maximum temperature of warmest month (biol3) in °C

SL Place 1950 2030 2070
No - RCP | RCP | RCP | RCP | RCP | RCP | RCP | RCP
2000 | 2.6 4.5 6 8.5 2.6 4.5 6 8.5
1 Achankovil, Kollam o [ 2214110110 1241107 | 114 ] 11.0
2 | Adat, Thrissur 133 | 141 | 145 ] 134|139 | 148 | 133 | 139 | 138
3 | Bekal, Kasargode 1.0 [ 109 [ 108 | 103 ] 104 | 11.1 | 108 | 105 | 10.1
4 | Chettuva, Thrissur 133 | 141 | 143 [ 134 | 139 | 146 | 133 | 13.8 | 13.6
5 | Chinnar, IdukKi 103 | 109 | 102 | 9.9 99 [ 115] 97 | 102 | 99
6 | Choolanur, Palakkad | 13.2 | 134 | 13.5 | 12.7 | 134 | 135 13.1 | 13.1 12,5
7 | Fort St.Angelo, 122 (124 [ 123 [ 116|119 | 126 | 11.8 | 11.8 | 11.6
Kannur
8 | Muthanga, Wayanad | 14.5 [ 147 | 154 | 144 | 149 | 151 | 145 147 | 144
9 | Palode, 1.7 124 | 127 | 116 | 12.0 | 130 | 11,7 | 121 11.7
Thiruvananthapuram
10 | Parambikulam, 8.7 9.8 8.7 8.5 8.5 9.8 8.5 8.6 8.1
Palakkad
11 | Shendurney, Kollam | 132 | 134 | 13.6 | 12. 134 | 136 | 132 | 132 | 12.8
12 | Thattekkad bird 135 [ 139 [ 140 | 13.1 [ 139 | 143 | 132 | 136 | 1353
sanctuary, ldukki
13 | Thavanoor, 94 9.7 9.6 9.4 9.5 102 | 9.5 9.4 8.6
Malappuram
14 | Veli, 15 128 [ 126 | 1210 [ 11.8 | 134 [ 113 | 123 | 120
Thiruvananthapuram
15 | Vellanikkara, 139 | 139 [ 143 [ 135 144 | 142 | 138 | 142 | 136
Thrissur
All Kerala average | 13.0 | 134 | 134 | 127 | 132 | 13.7 | 129 | 13.1 12.7

127



Table.6 Minimum temperature of coldest month (bio6) in °C

SL Place 1950 2050 2070
No - RCP | RCP | RCP | RCP | RCP | RCP | RCP | RCP
2000 | 2.6 4.5 6 85 | 2.6 4.5 6 8.5
| Achankovil, Kollam 165 | 17.6 | 185 | 184 | 192 | 17.2 | 19.7 | 19.0 | 20.6
2 | Adat, Thrissur 180 [ 193] 199 | 298 | 21.0 | 185 | 21.3 | 205 | 22.8
3 Bekal, Kasargode 214 | 225 | 234 | 229 [ 234 | 225 | 243 | 23.5 | 24.6
4 | Chettuva, Thrissur 157170 | 17.7 | 175 | 186 | 163 | 189 | 182 | 202
5 | Chinnar, Idukki 216 | 22.6 | 235 | 233 | 240 | 223 | 245 | 239 | 253
6 | Choolanur, Palakkad | 22.2 | 234 | 24.1 | 23.9 | 248 | 229 [ 252 | 245 | 263
7 | Fort StAngelo. 21.3 | 225 [ 233 | 229 | 23.6 | 222 | 24.2 | 236 | 249
Kannur
8 | Muthanga, Wayanad | 22.0 | 23.2 | 239 | 238 | 24.9 | 22,6 | 252 | 244 ;
9 | Palode, 18.8 | 20.0 | 20.7 | 20.7 | 21.7 | 194 [ 22,0 | 21.2 | 233
Thiruvananthapuram
10 | Parambikulam, 225 [ 235 | 244 | 242 | 249 | 232 | 254 | 24.8 | 26.]
Palakkad
11 | Shendurney, Kollam | 22.2 | 23.4 | 24.1 | 24.0 | 249 | 229 | 252 | 245 | 264
12 | Thattekkad bird 166 | 179 | 18.6 | 184 | 193 | 173 | 198 | 19.1 | 209
sanctuary, ldukki
13 | Thavanoor, 225 | 236 | 244 | 243 | 250 | 233 | 255 | 248 | 263
Malappuram
14 | Veli, 129 | 140 | 149 | 149 | 157 | 136 | 162 | 154 | 173
Thiruvananthapuram
15 | Vellanikkara, 22.) (233 | 240 | 23.8 | 24.8 | 22.7 | 25.1 | 244 | 263
Thrissur
All Kerala average 207 | 219 | 226 | 22.5 | 234 | 21.4 | 23.8 | 23.1 | 249
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The prediction of distribution of the Indian Peafowl for the year 2050 under RCP 4.5 prediction

when variables a) bio3 b) bio4 ¢) bio6 d) biol3 ¢) biol4 f) biol8




The prediction of distribution of the Indian Peafow] for the year 2050 under RCP6 prediction when

variables a) bio3 b) bio4 ¢) bio6 d) biol3 e) biol4 f) biol8




The prediction of distribution of the Indian Peafowl for the year 2050 under RCP8.5 prediction

when variables a) bio3 b) bio4 ¢) bio6 d) biol3 e) biol4 f) biol8




The prediction of distribution of the Indian Peafowl for the year 2070 under RCP2.6 prediction

when variables a) bio3 b) bio4 ¢) bio6 d) biol3 ¢€) biol4 f) biol8§




The prediction of distribution of the Indian Peafowl for the year 2070 under RCP4.5 prediction

when variables a) bio3 b) bio4 ¢) bio6 d) bio13 ¢) biol4 f) biol8




The prediction of distribution of the Indian Peafowl for the year 2070 under RCP6 prediction when

variables a) bio3 b) bio4 ¢) bio6 d) biol3 e) biol4 f) biol8
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The prediction of distribution of the Indian Peafow] for the year 2070 under RCP8.5 prediction

when variables a) bio3 b) bio4 ¢) bio6 d) biol3 e) biol4 f) biol8
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The effects of climate change on humans and other living ecosystems is an area
of on-going research. The ruminant livestock sector is considered to be one of the
most significant contributors to the existing greenhouse gas (GHG) pool. However,
there are opportunities to combat climate change by reducing the emission of GHGs
from ruminants. Methane (CH4) and nitrous oxide (N2O) are emitted by ruminants via
anaerobic digestion of organic matter in the rumen and manure, and by denitrification
and nitrification processes which occur in manure. The quantification of these emissions
by experimental methods is difficult and takes considerable time for analysis of the
implications of the outputs from empirical studies, and for adaptation and mitigation
strategies to be developed. To overcome these problems, computer simulation models
offer substantial scope for predicting GHG emissions. These models often include all
farm activities while accurately predicting the GHG emissions, including both direct as
well as indirect sources. The models are fast and efficient in predicting emissions and
provide valuable information on implementing the appropriate GHG mitigation strategies
on farms. Further, these models help in testing the efficacy of various mitigation strategies
that are employed to reduce GHG emissions. These models can be used to determine
future adaptation and mitigation strategies, to reduce GHG emissions thereby combating
livestock induced climate change.

Keywords: GHG, IFSM, livestock methane, mitigation, modeling, nitrous oxide

INTRODUCTION

Global warming, the rise in the average surface temperature of Earth has been attributed to
greenhouse gases (GHGs) like carbon dioxide (CO;), methane (CHy), water vapor (H,0), nitrous
oxide (N2O) and hydroflurocarbons (HFCs) through the “greenhouse effect” and is an alarming
issue worldwide (Smit et al, 2014; Li et al, 2016). The increasing atmospheric concentrations
of GHGs in recent years are primarily due to the anthropogenic activities involving fossil fuel
burning, application of nitrogen fertilizers in farming and the rearing and breeding of large
ruminants. In actuality GHG's are necessary for human survival. Over millennium GHGs have
stabilized in the atmosphere resulting in an average surface temperature of 15°C. Without the
heat retention capacity of GHG the Earth would likely be uninhabitable. Natural processes are
contributing to increasing levels of atmospheric GHG; however, the aforementioned anthropogenic
activities are now contributing to additional warming, leading to rapid climate change (IPCC
[ntergovernmental Panel on Climate Change, 2013; Quaghebeur et al., 2015).
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According to the IPCC-Intergovernmental Panel on Climate
Change (2013}, over the period 1880-2012 the average land and
ocean temperature increased by 0.85°C (0.65 ta 1.06°C), and the
last three decades were warmer than any other decade before
1850. The number of cold days and nights have decreased and
warm days and night have increased. In addition, the frequency
of heat waves has increased over Asia, Europe and Australia
(IPCC-Tntergovernmental Panel on Climate Change. 2013). The
sea surface temperature over the Northern Hemisphere increased
compared to the Southern Hemisphere. Over the period 1971
10 2010 the upper ocean (0 to 75 m depth) warmed by 0.11°C
(0.09 to 0.13°C). Increasing temperature has resulted in the
melting of glaciers and Arctic sea ice. Melting of the Greenland
ice sheet has increased from 34Gt yr™! to 215Gt yr~" over the
period 1992 to 2011 and Antarctic ice sheet melting increased
from 30Gt yr~" to 147Gt yr~' (IPCC-Intergovernmental Papel
on Climate: Change, 2013). Due to the melting of ice the
sea level has increased by 0.19m (0.017 to 0.21 m) over the
period 1901 to 2010 (IPCC-Intergovernmental Panel on Climate
Change, 2013). Rainfall distribution has shown high variability
in both the hemispheres. Averaged over the mid-latitudes the
Northern Hemisphere has experienced increased in rainfall,
whereas the Southern Hemisphere has experienced decreased
rainfall. Furthermore, extreme weather events appear to be
increasing in frequency globally.

Based on data from 2004, CO; contributed 77%, CHy 14%,
N3O 8%, and HFCs 1% of global GHG emissions ([PCC
Intergovernmental Pane! on Climate Change, 2007). The current
concentrations of COy, CHy, and N;O are 3954 ppm, 1893
ppb, and 326 ppb respectively, having a lifetime of 100-300,
12, and 121 years, respectively. Atmospheric concentrations
of CO; have increased by 16 times between 1900 and 2008
(Le Quéré et al, 2014; Beyzavi et al., 2013). The intensity of
warming for each gas is referred to as the Global Warming
Potential (GWP). The GWP of each gas is determined relative
to the GWP of COy which is given a value of one. The GWP
of CHy, N2O, and hydroflurocarbons are 23, 296, and 12000
respectively (UNEP, 2012). These gases are naturally occurring,
but the increasing concentration due to the anthropogenic effects
is of concern. GHG emissions have been determined for the
industrial/agricultural sector. Energy generation contributes 26%
of total global emissions, industries 19%, land use, land change
and forestry 17%, agriculture 14%, residential and commercial
buildings 8%, and waste and wastewater contribute 3% (IPCC
Intergavernmental Panel on Climate Change, 2007).

The livestock sector is considered to be a major contributor
to climatic change (Steinfeld et al., 2006). FAO (2006) presented
an aggregated view about the impacts of livestock on climate
change. The direct and indirect effects ol animal agriculture
on climate change were espoused. The sources of GHG from
livestock production systems were determined to be (rom land
use and land change, feed production, animal production,
manure management, and processing and transportation. A
US Environmental Protection Agency report which was also
published in 2006 suggested that by 2020 global enteric CH,
emission would be 2344 Mt COj-eq/yr and CH4 ennssions
from manure storage lo be at 523 Mt COs—eq/yr (I PA LS
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Environmental Protection Agency, 2006). Emissions of N3O
from cropping practices were estimated to reach 2937 Mt CO,-
eqfyr by 2020 (EPA-US Environmental Protection Agency, 2006).

It is clear that climate change is real and that the forces behind
this change are GHG emissions. It is inevitable that renewable
energy will form a component of, any attempts to reduce GHG
emissions from the livestack sector. However, using renewable
energy in livestock production is not enough. The livestock sector
needs to focus emissions reduction strategies on management
approaches that can be applied to livestock in the field. It has
been estimated that approximately 12.5% of the total global GHG
emission are from the livestock sector (Steinfeld et al., 2013) and
80% of the total emission from agriculture is from the livestock
sector. Approximately 9% of COs, 36% of CHy, and 64% of N2O
is contributed to the livestock production process and 75% of
the CO; emitted from livestock is from ruminants (Prasad et al.,
2015). Methane and N>O have a GWP of 23 and 296 with a
lifetime of 12 and 114 years, respectively, whereas CO; has a
lifetime of 100-300 years (Le Quéré et al, 2014). Mitigating the
emission of CO; in the livestock sector will be less effective in
reducing the effects of GHGs compared to the mitigation of short
living gases like CHy and N;O which are the major GHG from
the livestock sector. This review is an attempt to highlight the
role of livestock in contributing to climate change through enteric
fermentation and manure management. Special emphasis has
been given to highlighting the difficulties in conducting on farm
mitigation studies and signifying the importance of modeling as
an alternative for finding solution in curtaining livestock related
climate change.

SOURCES OF GHGs IN LIVESTOCK
FARMS

According to Steinfeld et al. (2006), global livestock agriculture
was responsible for 7516 Mt per year of CO; equivalents (CO; eq)
or 18% of the anthropogenic GHG emissions annually. It is from
the animal and manure emissions that 37% of global agricultural
CHy and N.O arise and the remainder is associated with
cropping and deforestation (EPA-US Environmental Protection
Agency, 20046). The various sources of GHGs from livestock
farms are described in Figure 1. Globally dairy animals,
including cull cows and dual purpose beef cattle account for
approximately 4% of anthropogenic GHG emissions (FAO-Food
and Agriculture Organization of the United Nations, 2010), In
developed countries the GHG emissions from dairy production
are generally lower than in developing countries due to the higher
productivity (Hagemann et al. 2011), and better feed quality.
According to the EEA (2011), beef and dairy cattle are estimated
to contribute 2.1 and 1.2% respectively to anthropogenic GHG
inventories in the European Union (EU) whereas in the United
States (US) the contributions are 2.75 and 0.55% respectively
(FPA-US Environmental Protection Agency. 2006). However, in
developed countries where pastoral agriculture is a significant
portion of the economy, such as Ireland and New Zealand
or developing countries like Brazil and India, the emission
contribution from dairy production to the national inventory
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FIGURE 1 | Different sources of GHGs from livestock farms (Adopted from Sejian et al,, 2015).

will be higher (FAO-Food and Agriculture Organization of the
United Nations, 2010). Tt is misleading if the CHy emissions
from the livestock sector are examined only as a proportion
of total anthropogenic GHG emission (Knapp et al. 2014).
Methane emissions are dependent upon the population size of
the ruminants, their productivity, and manure handling system.
Reducing CH4 and N;O emissions from livestock production are
focused on because they are less expensive to mitigate than CO;
emissions (EPA-US Environmental Protection Agency, 2006;
FAO-Food and Agriculture Organization of the United Nations,
2010; Shafer et al,, 2011; Gerber et al., 2013).

Enteric fermentation causes the emission of CHy which is
a by-product of the breaking down of carbohydrate molecules
into soluble particles by methanogens residing within the rumen.
Thus, formed CHy is eructated by the animal and becomes a
GHG. Feed quality is a major determinant of CHy production.
High fiber content (cellulose) in the feed will increase CHy
emission. Methane is also produced, as is N> O via the breakdown
of manure. When manure is managed in a liquid form the
organic matter contained in it are exposed to anaerobic bacteria
that decompose the manure and in the process GHGs are
formed and liberated. The formation of NzO is by nitrifying

Frontiers in Environmental Sciance | www. irontrssin.ong

and denitrifying bacteria which reside in the soil. The emission
of N;O from manure depends upon the nitrogen and carbon
content of manure, and for the duration of the storage and type of
treatment (IPCC-Intergovernmental Panel on Climate Change,
2006). The oxidation of ammonia nitrogen to nitrate nitrogen
(nitrification) is a necessary prerequisite for the emission of N;O
from stored animal manures. Nitrification happens in aerobic
condition, whereas denitrification occurs in anaerobic conditions
in which the nitrites and nitrates are transformed to N;O and
dinitrogen (N3). In order for N;O to be produced from manure,
nitrites and nitrates are required (under anaerobic conditions)
which then allow the formation of the oxidized forms under
aerobic conditions (IPCC- Intergovernmental Panel on Climate
Change, 2006).

Nitrogen fertilizer, animal manure applications to land and
urine deposition by grazing animals are the main sources of
emitted N;O (Brown et al., 2001). Unlike CHy, N2O production
can only take place if specific conditions are met, ie, the
combined processes of anaerobic and aerobic bacteria: (1)
Nitrification, transformation of ammonium to nitrate (aerobic);
and (2) Denitrification, formation of nitrogen gas from nitrate
reduction (anaerobic). Oxygen content, moisture content and
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soil conditions will influence NoO emission. Normally due to
the anaerobic conditions prevailing in manure, nitrification and
denitrification doesn’t occur. But when forced and controlled
aeration of liquid manure or solid manure for removing organic
matter (OM), nitrogen and water (drying) then denitrification
occurs after aeration (nitrification). A mixture of manure and
straw/litter, results in partial compaction and this forms favorable
conditions for passive aeration, resulting in uncontrolled
nitrification and denitrification (Groenestein and Van Faassen,
1996). The other sources of GHG emission from livestock farms
are, livestock related land use change, feed production, on farm
fossil fuel use and post-harvest emission (Steinfeld et al,, 2006).

SIGNIFICANCE OF REDUCING GHG FROM
THE LIVESTOCK SECTOR

From the above discussion, it is evident that livestock act as an
important source of GHG emissions and any attempt to develop
miligation strategies to reduce emissions may be beneficial in
slowing climate change. Furthermore, CHy production through
enteric fermentation also contributes to the dietary energy loss. In
addition, nutrient use efficiency decreases due to CHy synthesis.
Any factor (feed or management) that reduces nutrient use
efficiency will result in greater CHy emissions. Deficiencies
in nutrient requirements for rumen microorganisms reduce
microbial growth efficiency, which further reduces microbial
biomass resulting in reduced digestibility of foodstuffs and
reduced feed intake. In order to combat this, as a consequence
of the interspecies hydrogen transfer, the bacteria which are
syntrophic to the methanogens produce | ATP per molecule of
glucose which they utilize for growth and biomass production.
It is important to note that this energy is not utilized by
the animal. Hence, any attempt to reduce livestock related
GHG emissions, apart from the goal of reducing their impact
on climate change, may also improve production efficiency of
livestock by preventing the dietary energy loss.

DIFFICULTIES ASSOCIATED WITH
EXPERIMENTAL REDUCTION

The production of GHGs through enteric fermentation and
manure management is a complex process. The quantification
of these pases often requires complex and expensive eéquipment.
Additionally the collection and measurement of GHGs are time
consuming. Further, the mitigation strategies designed for a
particular ecological zone will not necessarily be suitable in
another zone due to the complexities in the rumen microbial
population. In addition, the feeding habits of the animals
and the feed resources available may not be the same across
agro-ecological zones. Furthermore, the climatic conditions
prevailing in a particular locality are a crucial factor influencing
GHG production. All these factors are involved in livestock's
contribution to GHG emissions and hence climate change. The
complexity of various (arming systems makes 1t difheult 10
identify appropriate mitigation strategies that can be universally
applied. There is every chance that even il a strategy is identified

by conventional experiments, by the time the work is completed
other components of this complex might influence the gas
production in a different way. This means that expensive studies
need to be repeated numerous times, Hence, research efforts ave
needed to identify strategies that may be cost effective, less time
consuming and with wider applicability.

SIGNIFICANCE OF MODELING

Projections indicate that by 2050 animal production is expected
to increase by 80% compared to 2005 (Alexandratos and
Bruinsma, 2012). There is an increasing global demand for
milk and meat, and this demand is being met with increased
production from pasture based systems (Fiala, 2008; Thornton,
2(i10). Projections show that the global annual growth rate of beef
to 2050 will be 1.2%, which is very close to the annual growth
rate of 1.3% for total meat production to 2050 (Alexandratos
and Bruinsma, 2012). Hence there is an urgent need to identify
simpler cost effective technologies to quantify GHG emissions
and to find appropriate solutions for climate change. Computer
simulation models are valuable tools for the study of feedback and
feed forward interactions between mitigation of GHG emissions
and adaptation to climate change in ruminant based production
systems. These models offer substantial scope for identifying
solutions to livestock related climate change. The maodels will
also provide strategic direction for Government policies related
to climate change and food security. It is inevitable that the
models will have complex interactions among farm components
and climate systems. Tools and models are being developed 1o
estimate GHG emission from livestock systems in the form of
process-based simulation (Schils et al.. 2007b), emission factor
calculations (Amani and Schiefer, 201 1; Colomb et al., 2012), and
life cycle assessments (LCA)-based approaches (De Vries and de
Boer, 2010: De Boer et al., 2011; Cowie et al., 2012). These models
have wide acceptance in the scientific community due to the
efforts made to improve the understanding of the effect of various
systems and changes in farm performance. Further, these models
may serve as an alternative for the expensive, time consuming
and technically difficult experimentation in a field and farm scale
{Bryant and Snow. 2008),

MODELING OF GHGs IN LIVESTOCK
FARMS

The primitive models which used the prediction equations
corresponding to the nutrient uptake of the animals and the
subsequent emission of gases were evaluated. These models
are commonly referred to as Empirical/Statistical models. They
use simple and uncomplicated regression equations based on
feed characteristics. However, these models were used in very
costly extensive expeniments. The environmental changes and
the microbial populations residing in the rumen are not
included in these models. No factors other than the feed
characteristics are studied. The interactions of various other
systems are not evaluated. Further, these models cannot be
used to predict the changes in CHy emissions outside Lhe
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range they were developed for. Hence, to overcome these
drawbacks, mechanistic/dynamic models which simulate CIy
emissions based on a mathematical description of ruminal
fermentation biochemistry were developed. These models are
not costly and they evaluate the complexities associated with
enteric CHy emission. Mitigation measures can be assessed for
their effectiveness under varying scenarios of climate and feed
intake at field level. The information pertaining to the chimate
of the particular ecological zone and the routine management
practices being followed in livestock farms is also included in
these models (Del Prado et al., 2009; Cullen and Fekard, 201 1;
Graux et al., 2011, 2012; Bell et al., 2012). These models also take
into account the information on microbial population and their
efficiency in CHy production rate. However, the complexity of
the systems involved in a mechanistic model makes it difficult
to operate. The rapid dynamic changes in metabolic flux during
lactation, especially in late pregnancy and early lactation are also
difficult to quantify using these models. The models use empirical
equations derived from statistical analysis to simulate the enteric
CHy emission. These equations have limitations in their ability
to quantify the characteristics of the animals and diets they use
(Ellis et al., 2010). The success rate for accurately predicting the
GHG emission using these models relies heavily on the quality
of the input data, such as the chemical composition of the diet,
degradation rates of feed components, and passage rates.

Components of Modeling

Input flows and output flows in the livestock sector depends upon
the management practices and the environmental conditions
prevailing at the site. For each gas the emission mechanism is
different. Carbon dioxide emissions depend on C intake and the
fixation processes linked with respiration and the direct energy
use. Methane emission occurs due to the enteric fermentation
in the rumen and the manure management under anaerobic
conditions. Denitrification and nitrification processes in manure
starages and soils, and the leaching of NO: and volatilization
of NHy results in N>O emission. Although these are all the
primary pathways by which the models predict the GHGs
that are being produced from livestock farms, emissions from
other sectors beyond the boundaries of the farm have been
considered in few models. The models have used different
approaches to incorporating all of the components into a single
system, The objectives of each model differ: such as GHG
emission estimates, GHG mitigation measures and implications
of various adaptation and mitigation strategies in on the farm.
The various components in the models have to be interrelated
eifectively if the objective (correct output [rom the model)
is to be achieved. To adequately analyze animal productivity,
emission estimates, feeding practices, and animal type the models
need to be quantified based on metabolic parameters. Manure
management is incorporated into the model by quantifying the
flows transformations of manure on the farm and the emission
are simulated. Further, information pertaining to housing of
the animals, manure storage facilities, treatment of manure
and application of manure in the field is programmed into
these models. The different livestock related activities and their
contribution to existing GHG poal are described in Figure 2.

1
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In addition, the dry matter (DM) volume and the liquid
content of manure is dynamically tracked for the C and N
fractions (Olesen et al., 2006; Chardan et al., 2012; Rotz et al.,
2012). Often CHy is modeled using the IPCC Tier 2 approach
(TPCC-Intergovernmental Panel on Climate Change, 2006) while
NHi and N>O emissions are modeled by volatilization and
aerobic condition of manure respectively (Rotz et al., 2012),

For the estimation of N2O emission and C sequestration
management practices and their interactions belween soil,
animal, plant and weather conditions are evaluated. The process
based models look into the various interactions and dynamic
changes happening to the N pathway (Li et al., 2012) such as
denitrification and nitrification processes where N infermediates
for N;O and N3 production (Firestone and Davidson, 1989).
Temporal variability of N2O depends upon the temperature,
rainfall pattern and the amount of N substrate availability and
by proper modeling of climate and management practices it is
evaluated.

For grazing animals the pasture availability is very important
and it can be modeled as the function of soil water, N availabilities
and weather condition. From the empirical equations (Foley
et al., 2011) mechanistic models are developed by incorporating
soil characteristics, ambient temperature and solar radiation
as the driving factors (Del Prado et al, 2011; Rotz et al,
2012). Different grazing systems can be included in the model
(rotational grazing being the most difficult one to simulate; Graux
et al, 2011). Spatial variability of the pastures is incorporated in
some models, while others assume uniform distribution over the
whole field. The variations in GHG emission with soil properties
can be analyzed accurately using this simulation (Linn and
Doran, 1984; Ruser et al., 2006).

Soil C constitutes the other component in the field. Soil is the
third largest global € pool (1.al, 2008). Improved management of
grasslands for increased forage production has the potential to
increase C stocks (Freibauer et al., 2004; Rees et al., 2005). The C
stock and GHG emission are interrelated, and by modifying the
quality and composition of manure, land use changes, variability
in feed intake and wider variations in the microbial activity will
change the metabolic functions and thereby emission quantity
(Vellinga and Hoving, 201 1). Natural sources and sinks are not
included in the models as they are insignificant contributors to
CO» changes in the atmosphere. During long term analyses C
sequestration is not considered because C assimilated equals C
stored and emitted C from the farm (Del Grosso et al., 2002;
Matthews et al., 2010).

Many models have been developed to analyze animal
productivity in different environmental conditions and the
associated GHG emission. MITERRA- (a Furopen model) is an
environmental assessment model used to assess the effects of
the implementation of NHi and NOj; measures and policies
on the GHG emissions such as CHy, N>O, and COj;. The
MITERRA-Europe madel is partly based on the models GAINS
(Greenhouse Gas and Air Pollution Interactions and Synergies)
and CAPRI (Common Agricultural Policy Regionalised ITmpact),
complemented with an N leaching medule, a soil C module and
a module for mitigation (Lesschen er al, 2011). Tt measures the
emission from enteric fermentation, manure management, N>O

At e :
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FIGURE 2 | Pictorial representation of different livestock related activities and their contribution to GHG pool.
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emission, fertilizer production, organic soil cultivation, liming,
and fossil fuel use. The data for livestock numbers, crop areas, and
animal production are inputted from the databases of FAO and
Eurostat and for emission factors from IPCC, GAINS and spatial
environmental data. This model is able to simulate nitrogen and
GHG emissions however, at the global scale further validation
and model comparisons are needed to increase the confidence
intervals for the model. The feed intake parameter needs to be
further tested and parameterized. Table 1 describes the different
models available and their merits and demerits.

The Integrated Model to Assess the Global Environment
(IMAGE) model studies the long term effects of human activities
on the environment. The regional production of food, animal
production, timber harvest, local climatic conditions and terrain
the evaluation are incorporated within the model. The land use
and cover are efficiently simulated in this model (Kram and
Stehfest, 2006; Neumann et al, 2011). The model evaluates the
efficient population needed in a region and estimates the feed
requirement by the animals (Bouwman ¢t al., 2005; Neumann
et al., 2011). IMAGE distinguishes the pastoral livestock systems
based on the grazing ruminants and mixed and landless
(industrial) production systems, integrating crop and livestock
production where animals are fed with a mixture of crops,
grasses, and fodder and crop residues.

The LEITAP model which is based upon the Global Trade
Analysis Project (GTAP) model was developed to evaluate the
changes associated with GHG emission based on the number
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of animals on a national level. It is formulated based on the
neoclassical microeconomic theory multiregional, multisectorial,
static, and the applied general equilibrium model. Projections for
livestock numbers and agricultural land use were calculated for
the EU for 2010, 2020, and 2030 (Neumann et al, 2011). For
the estimation of GHG emissions from livestock farms within
the EU a model named FarmGHG was created. This model
evaluates the emission of CHy and N;O released from farms
and the CO;, CHy, and N;O emission from feed, fertilizer and
imported energy. This model was developed to quantify the
effects of management practices on emissions of GHGs. The
model proposed that by increasing N use, efficiency the emission
of GHG can be reduced.

The DairyWise model was developed to estimate GHG
emissions from dairy farms. This empirical model integrates
all the major systems in the dairy into a whole farm model.
Inputs such as farm management, herd type, cropping plan,
soil characteristics, grass and feed management, buildings and
equipment are quantified in this model (Schils et al., 2007a). The
CHy4 emission is calculated from the enteric fermentation and
N;O is calculated from the manure management. Both direct
and indirect N;O emissions are simulated where direct emissions
for N inputs through fertilizers, manure application, biological
fixation, and urine excreted during grazing, crop residues, and
peat oxidation (Schils et al., 2007b).

The Sustainable and Integrated Management Systems for
Dairy Production (SIMS-Dairy) model simulates biodiversity,

zoy
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TABLE 1 | Various types of madels, components, merits and demerits.

Mentelirg ©

Maodel Components Merits Demerits References
MITERRA- Eurgpe  Livestock numblers, crop areas. animal production,  Effects of mitigation measures At a'global scale more vabdation  Lesschen al af, 201
enteric fermentation, manure management, N20 is needed
emission, fertilizer production, organic soil
cultivatiorn, Brmiig and lossil fuel use
IMAGE Anirnal productivity, Feed conversion, Livestock Enidraiymental consequences of Valuesg ol danimal, plant life, health ntl Stentas!
rations. Production system Mix, Livestock human activities worldwide can be  and diversity are difficult to
production, Managemenlt intensity ivestock, Grass  evaluated quantify, highly complex, large
requirement, Animal stocks, Feed crop requireimert and chaalic
LEITAP Land allocation, productivity of marginal land, lang  Population of animal stock canbe  No climate module Nevrnant et.al, 2017
supply function calculated
FarmGHG Feed, fertilizer, energy imported Craantitying (GHG emission Based on feed tdesan el al., 2006
DainWise Farm management, herd typa, cropping plan, soil Whaola farm modél, direct and No olimate mociule
charactenistics, grass and feed management, ndirect emissions can be calculated Sciils el al,. 20670
buildings and equiprments
SIMS-Dairy Biodiversity, landscape, animal wellare, scll quality  Emphasis on managerment Nao climate module Dol Piatio aiwd
and product quality strateges and sustainable Sehalefigld
developiment
FarmSim Tne area and type ot crop and grassiand and nerd  Sot nine interacting modules. No cimate module
types arid number, the grassiands, the crops and  Integrated with IPCC tier 1 and 2 Saletes et al, 2004
the feeding and waste management systermns methodolagy
IFSM Crop production, feed inmake, manurg amaunt, Integrates bidlogical and physical  Metabolic fluxes are nat Uhianese ¢t an, 2008
ammal respiration and microbial tespiration process of crop and animals considered
GLEAM Herd, manre, and teed Simulate envirorenental mplications  No climale module Letber gy, 2014

an the producticn system

IMAGE, Integrated Moded 1o Assass the Giobal Envwonment: SIMS:-Dary, Sustainable and integrated Managemard Systams for Dairy Production: Model; FarmSim, FARM. SIMuistion
Model, (FSM, integrated Farm Systerm Model, GLEAM, Global Livestock Ervicanimental Assgesmant Mo,

landscape, animal welfare, soil quality and product quality (Del
Prado and Scholefield, 2006). It focuses on the management
practices in the livestock sector and aims to obtain a sustainable
system. The possible impacts of mitigation strategies on the
emission of GHG are studied in this model. Emission from
soil, animal excreta as manure, or urine and emissions [rom the
rumen are analyzed (Schils et al.. 2007h).

The FARM SIMulation (FarmSim) model simulates GHG
emission from nine interacting modules. The flow of product
among various components of the farm system isincluded in this
model. PASIM model where GHGs exchanged over the different
grassland types on the farm are integrated with IPCC Tier |
and Tier 2 methodology, where emissions from cropland and
cattle housing are evaluated and included in the FarmSim model.
The structure of the farm, including the area, type of crop(s),
grassland and herd type, the number of herd per type, the area
of grasslands, the crops and the feeding and waste management
systems are inputted into the model.

The Integrated Farm System Model (IFSM) integrates the
biological and physical processes of a crop, beef or dairy farm in
order to simulate crop production, feed use and manure output
over a period of time while at the same time incorporating the
weather parameters (Rotz et al. 200¢). The crop production
of alfalfa, grass, corn, soybean, and small grain crops can be
predicted based on daily soil and weather conditions. The feed
consumed by an animal and the response (e.g., average daily
gain) are related to the nutrient content of the feed. The manure
quality and quantity is based upon the nutriemt content of the
feed consumed. When simulating GHG emission modules (or

the balance of C will need to be based upon processes like crop
production, animal respiration and microbial respiration plus
manure management. Certain criteria have been formulated for
the potential evaluation of the models The models should (i)
simulate the processes by which CO; emissions will be affected
when farm management practices change; (i) represent every
process influencing GHG emissions; (i) predict the observed
data in the past for its accuracy under different potential
conditions: and (iv) accurate data should be available for the
accurate simulation.

The Global Livestock Environmental Assessment Model
(GLEAM) explores the environmental implications of on farm
production practices (Gerber et al., 2013). Its development is
based upon five modules which reproduce the main elements of
livestack supply chains: (1) Herd nodule; this module evaluate
the number of animals per GIS grid cell, where they have been
managed with different farming systems; the herd characteristics
and structure of each cell are studied under this module; (2)
Manure module; evaluates the manure production from the
GIS cell from each animal type; (3) Feed module; calculates
the various components in the feed, nutrient content and the
emissions per kg of feed given; (4) System module; incorporates
the herd, manure and feed modules to determine the energy
requirement by each animal type, the annual production from
each GIS cell, emissions produced from manure management,
enteric fermentation and feed production, and (5) Allocation
module; calculates the total GHG emission from the farm
incorporating all the direct, indirect and post farm emissions.
GLEAM uses geo-referenced data to caleulate the GHG emissions



from the farm. The information regarding the productivity and
the practices undertaken to increase livestock production is
collected at various levels of aggregation such as at a country
level, agro-ecological zones, or a combination of these. The
main data sources are Gridded Livestock of the World (FAO-
Food and Agriculture Organization of the United Nations, 2007),
National Inventory Reports of Annex | countries (UNFCCC
United Nations Framework Convention on Climate Change.,
2009), International Food Policy Research Institute (IFPRI),
Life Cycle Inventory data from SIK, International Agricultural
Research (CGIAR) and statistics from FAO (FAOSTAT, 2009).

ADVANTAGES OF MODELING OVER
CONVENTIONAL EXPERIMENTS

The models outlined above are being used for simulating and
predicting the GHG emission from the livestock sector. However,
further development is required to improve the accuracy of
the model outputs. Components of the model must include
modules which are comprised of animal, crop, soil, and climate
data. Models need to be developed based upon the various
animal characteristics, their feeding habits, metabolic fluxes,
microbial population, manure management, [arm management,
and climatic conditions. These models should be region specific
rather than global as the components of model may be different
for different regions. Furthermore, the parameters (hat are
standardized for one agro-ccological zone may not be the same
for another. In addition, the climatic conditions will also differ
between regions. For example the body weight of a cow in
Europe will be different from that of Asia. Any differences will
result in errors if the same standardized values made for another
region are used. The model assumptions have to be changed
according to the conditions prevailing in respective regions.
These regionalized models can be effectively used to simulate
and predict the GHG emissions from livestock enterprises.
These models could become an alternative solution for livestock
related climate change by initiating quick actions to mitigate
such emissions. Doing experiments in the field may take years
to quantify the emissions and to analyze the implications of
various mitigation strategies employed for the reduction of
emission. However, through modeling each variation in any
of the targeted parameters can be identified real time. Using
simulation models we can vary conditions at the farm level that
affect the metabolic mechanism of animals and fermentation
processes. The model outputs can then be used to evaluate
potential mitigation strategies. Projection of emissions from
the animals can be projected into the future. This is not
possible in experimental conditions. The projections can be
used to formulate the appropriate mitigation strategies for the
future, thus making management strategies more systematic and
efficient.

CONCLUSION

Livestock undoubtedly need to be a priority focus as the global
communily seeks to address the challenge of climate change. The
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magnitude of the discrepancy between the estimates illustrates
the need to provide the climate change community and policy
makers with accurate GHG emission estimates and information
about the link between agriculture and climate. Improving
the global estimates of GHG attributed from livestock systems
is of paramount importance. This is not only to define the
magnitude of the impact of livestock on climate change, but to
understand their contribution relative to other sources of GHG.
Estimates of GHG emission through experiments under different
production system is practically impossible and with growing
awareness of global warming and its continuous negalive impact
on agricultural production systems, attention should be directed
toward immediate mitigation strategies to curtail such emissions.

The complexity of various farming systems makes it difficult to
identify appropriate mitigation strategies that can be universally
applied. Hence simulation models offer huge scope as these
models may serve as an alternative for the expensive, time
consuming and technically difficult experimentation in a field
and farm scale. Such information will enable effective mitigation
options 1o be designed to reduce emissions and improve the
sustainability of the livestock sector, while continuing to provide
livelihoods and food for a wide range of people.

A synthesis of the available literature suggests that the
mechanistic models are superior to empirical models in
accurately predicting the CHy emission from farms, The latest
development in prediction model is the IFSM which is a process-
based whole-farm simulation technique. The IFSM takes into
account the entire livestock farm operations, including breed
of animal, production stage, available feed resources, grazing
information, pasture management, manure handling, and local
weather condition. It is possible through these models to evaluate
the variations in GHG emission by altering any of the targeted
parameters in real time mode. Thus, these models could become
an alternative solution for livestock related climate change by
initiating quick actions to mitigate such emissions,

FUTURE PERSPECTIVES

Farmers typically adopt the most cost-effective and easy-to-adapt
options. The services provided by the models have currently no
market value among the farming community, but may become
valuable in the future. Although many modeling studies are
being undertaken, they do not have the capability to quantify
the potential interactions among ecosystem services. The rapid
dynamic changes in metabolic flux during lactation, especially
in late pregnancy and early lactation have to be rectified in
future models. There is also a need to integrate the effects
of climate change on plant protection issues, pollination and
risks from pathogens. Because this can affect the safety of the
feed quality given to the animals and the microbial population
is atlected badly by the pesticide actions within the rumen.
A balanced systems-based approach to quantify synergies and
trade-offsis still lacking in current models because of the inherent
complexity of some of these relationships. Multifurictionality in
farms implies greater levels of heterogeneity in farming systems.
and hence increase the complexity of the farm scenarios to be
modeled.
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