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CHAP TERI

INTRODUCTION

The world is worried about global warming and the impact it will have on the

people and the ecosystems on which they depend. Climate change became one of the

major challenges of our lime and it adds enormous stress to our societies and to the

enviromnenl. Prominent changes are reflected in the temperature and apparently these

changes are a result of the increased levels of the greenhouse gases. According to IPCC

AR5 synthesis report, in the Northern Hemisphere the period from 1983 to 2012 was

likely the warmest 30 year period of the last 1400 years. Over the period 1880 to 2012,

the globally averaged combined land and ocean surface temperature showed a warming

of 0,85 "C (0.65 "C to 1.06 "C) (Allen ei al.. 2014). Scientist assumes that there could

be a further heat increase of at least 1.8 degrees during the 2H' centuiy, even if we take

decisions for mitigation now. Also there would be changes in the precipitation patterns.

TTie effects of these changes are vast challenges for mankind. The human activities and

tlie related anthropogenic activities like fossil fuel combustion and the greenhouse gas

emissions are the primar>' causes for climate change. Climate change intensifies other

problems like loss of biodiversity and ecosystem services, water scarcity, floods and

droughts, desertification and land degradation and intensified biogeochemical cycles.

Adaptive mechanisms have to be practiced to combat the climatic changes experienced

over the globe. The knowledge regarding these changes have to be updated and

constantly reviewed. People have to be aware about the climate change and its

penalties.

The effects of climate change on biodiversity are poorly understood compared

to the physical dimensions of these changes. Climate change effects a number and

variety of plant and animal species in a particular location. A sudden change in the

climate requires larger and faster scales of adaptation than in the past. The species

which fails to adapt are at a risk of extinction. A single loss of species will lead to
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cascading effects since each organisms are connected by food webs and other

biological interactions.

The migration of animals are linked to climate factors such as temperature,

moisture availability and amount of daylight. The natural patterns of various species

are disnipted due to the changes in the climate. These in turn will affect the behavior

and interactions of various species. Some may adjust their life cycle patterns to the

changing weather conditions, but some may fail.

There are evidences which shows that the recent climatic changes have affected

numerous organisms with diverse geographical distributions. Climatic regimes

influences species distributions through .species-specific physiological thresholds of

temperature and precipitation tolerance. These climatic envelops are shifted due to the

warming trends. Some animal and bird species will change their locations in search of

a better place where the environmental conditions are favorable for their growth and

reproduction. The .stress condition imparted by the combined effect of temperature and

humidity causes metabolic changes in the living species. For avoiding the stress they

can alter the metabolic and physiological activity. The migration will lower the stress

by maintaining their bodily functions same as before by finding ambient conditions

outside. These migrations can be considered as a biological indicator of climate change

which tells the society about the change happening in the environment. The species are

expected to track the shifting climate.

In Kerala there is a change in the climate during recent years, which led to the

species distributional change, especially causing migration changes in the avian

species. The birds are best regarded as a good bio indicator of climate change. Also

they can be easily understood by the public and policN' makers, since birds are veiy

popular and it have a recognizable and iconic status throughout the world. A slight

change in the environment will be tracked by the bird and will rush to a safe place
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where the environment is quite favorable for their growth and reproduction. The biotic

interactions are not static in spatial and temporal resolution and it can be linked with

the impacts of the climatic changes.

There has been a considerable change in the distributional range of Peafowl

(Pavo cristatus) in Kerala. One of the earliest bird survey in Kerala, (erstwhile

Travancore-Cochin), was conducted by Salim Ali and Hugh Whistler (1935-36).

However, Ali (1969) reports that he found the Indian PeafowTs from the deciduous

forests of Peechi-Vazhani. Subsequent to that there are quite a few records of the Indian

Peafowl from Kerala (eBird, 2016).

For the understanding of the distributional change with respective to the

environment, species distribution models can be used. They are empirical models

which relates the field observations to the environmental predictor variables using the

statistical methods. These models are used to predict the changCvS in the distributions

that would happen in the future by incorporating the climate model data.

In this project we are trying to model the distribution change happened to the

Indian Peafowl in Kerala using appropriate model techniques. We are putting a

hypothesis that, changes in the distribution of the Indian Peafowl was due to the recent

changes in the climate of Kerala. This species can be used as a bio-indicator of climate

change if the results obtained are good. So far by observational and traditional

experiences we came to such a conclusion, but there is no scientific explanation to all

these.

The primary objective of this study is to find out the reasons for the expansion

of the distribution of the Indian Peafowl {Pavo cristatus) in Kerala and to find out the

possible reasons for the change in the distribution pattern of the Indian Peafowl. Using

modelling techniques we can develop an ecological niche model based on the current

climate data and to project the regional shifts in the distribution pattern of the Indian
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Peafowl based on the results of the model in the changing future climatic conditions

under different scenarios.

The methodology followed can be used for further studies of various other

species which are being changing its distributions. The study can reveal better about

the physical changes happening in the environment whereas the statistical data analysis

can just give the quantified changes which may not be ecologically significant. The

models will be beneficial to predict the future distributional changes in the Indian

Peafowl and in a similar way other significant species can also be studied. This study

can provide a better idea about the impact of climate change on the geographical

distribution of the Indian Peafowl.
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CHAPTER 2

REVIEW OF LITERATURE

2.1 SPECIES DISTWBUTION: FACTORS

The strong relationship of the distributions of individual species and species

richness with the climate of that region had been noted by bio geographers centuries

back itself. Combinations of predictor's especially environmental factors had a

significant correlation with the species distribution, but the effect was uncertain

(Freedman. 1983; Graham, 2003; Whittingham et al., 2006; Platts et al., 2008; Murray

and Conner, 2009). Factors affecting the species distribution was an unresolved issue

in ecology (Araujo and Guisan, 2006). It was concluded that the decline in the

population of Turdus toryucUus (Ring Ouzel) in Northern Britain was due to the

increase in summer temperature and decrease in summer rainfall (Beale el aL, 2006).

Bird species distribution was affected by other factors like summer weather (Robinson

et al., 2007), food availability (Conrad et al.. 2006) and habitat distribution and quality

(Fuller et al., 2007). The bird population was also affected by trends in uniform crop

land associated with tlie crop loss, margin and hedge foraging habitat and nest sites

(Gregory et al., 2007; Thaxter et al.. 2010). Climatic variables such as number of cold

and wet days, length of winter frosts and snow periods, summer drought and spring

temperatures affected the bird species demography leading to varying population

trends over time (Robinson et al., 2007). Due to increased winter temperature

population oi' Ardea cinerea (Grey Heron) in Northern Italy has increased (Fasola et

a/., 2010).

2.2 CLIMATE CHANGE IN KERALA

There were evidences which showed the decline of annual rainfall in the

southern part of Kerala, whereas northern part doesn't showed similar trends (Soman
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el ai. 1988). An increase in Ihe mean surface temperature (1.5''C) during monsoon

season was predicted in the decade 2040-2049 with respect to 1980s (Saseendran et al.,

2000). Studies showed that southwest monsoon rainfall and annual rainfall was

decreasing, but post monsoon rainfall as increasing (Krishnakumar et al., 2008; 2009).

Annual rainfall received in the Palakkad Gap in Western Ghats region varied with

altitude and compared to the entire state annual rainfall was comparatively lower over

these regions (Raj and Azeez, 2009; 2010).

The following results were released by India Meteorological Department in

their monograph published on 2013. Increasing annual mean maximum (+0.01"C/year)

and minimum temperature (+0.0rX7year) trend was significant (95%) over Kerala.

Significant increase in annual mean diurnal temperature range DTR trends

(+0.01"C/year) had been observed in Kerala. However annual average rainfall had

decreased (-1.43mm/year) over Kerala. Winter mean maximum temperature trend was

increasing (+0.01"C/year). In winter rainfall there observed a decreasing trend in

Kerala (-0.4 mm/year). There showed an increasing trend in summer mean maximum

temperature (+0.01"C/year) whereas no trend was observed in summer mean minimum

temperature trends. But summer mean temperatures had significantly increased over

Kerala (+0.01"C/year). State averaged summer mean DTR trend was increasing at the

rateof+O.OlX/year. Maximum decline in summer mean rainfall trends had taken place

over Kerala (-1.15 mm/year). The monsoon mean maximum (+0.02^C/year) and mean

temperature (+0.01XVyear) was increasing. Monsoon season mean DTR trend also

showed an increasing trend (+0.02*^C/year). The monsoon rainfall trend showed a

decreasing trend (-2.42 mm/year). The post monsoon mean maximum (+0.01"C/year),

mean minimum {+0.01"C/year) and mean temperature (+0.01"C7year) was increasing.

The post monsoon rainfall showed an increase of +1.68 mm/year (Rathore e! al., 2013).



2.3 IMPACTS OF CLIMATE CHANGE ON BIRDS

2.3.1 Birds as bio-indicators

Tlie avian species had the capacity to be considered as important bio-indicators

which was easily understood by the public and policy makers, since birds were very

popular and it have a recognizable and iconic status throughout the world (Crick, 2004).

Climate change was considered as one ofthe most dangerous and widespread threat to

biological diversity (IPCC, 2007). According to Willis and Bhagwat (2009)

antliropogenic activities were transforming ecological systems globally, changing the

world's climate and reducing and fragmeiumg habitats. Birds were well known

indicators of climate change having advantages of best known class of organisms in

climate research (Wormworth and Sekercioglu, 2011) and birdwatchers across the

globe make up an extensive datasets (www.ebird.org; www.vvorldbirds.org).

2.3.2 Effect of climate change on phy.siology of bird.s

The weather affects the metabolic rate of birds directly and indirectly, which

influenced the bird behaviour. Important activities like feeding and breeding would be

reduced when birds avoid places with unfavourable climates (Walsberg, 1993). Crick

(2004) reported that the success of breeding depends upon the production of various

hormones which would be fluctuated under various weather conditions. Indirect elTect

on bird activity and behaviour was induced by tJie temperature changes and humidity.

Results by Gregory ef al. (2009) showed that due to climate change a detectable

continent-wide effect had already took place with negative and positive effects at the

level of large species assemblage. Nevertheless, there were studies which hinted at the

important role of physiological responses of birds to the climatic changes (McKcchnie,

2008;McNab, 2009).
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2.3.3 Responses of birds towards climate change

The responses done by the species to climate change was generally by three

methods such as movement (if the species are mobile they will track the suitable

environment niches), adaptation (if the species are able to adjust to the changing

conditions and have high physiological tolerances) and extirpation (when both

movement and adaptation fails) (Holt, 1990; Melillo et al., 1995). Apart from climatic

factors, land-use and habitat change, biotic interactions and evolutionary adaptation

also played a role in the species distribution (Huntley et al., 2006; La Sorte and

Thompson, 2007; Beale el a/., 2008). Thomas (2010) stated that climate can be

considered as one of the major determinants of range boundaries. Endolhermic birds

were affected indirectly by climate change due to its impacts on vegetation in their

communities rather than direct effects on physiology (Aragon et al., 2010a). Chen et

al. (2011) argued that the majority of the shifts in distribution was due to climate

warming and he showed evidences for range shifting towards the pole and upwards by

many species (Chen ei al., 2011).

2.3.4 Climate change and avian distributional range

Gibbons and Wolton (1996) showed that the distributional range expansion of

Dartford Warbler (Sylvia imdata) in the UK since the 1960s was due to the lack of

severe winters. The studies that documented earlier revealed that, the shifl in the

distributional range in many regions was appeared to track changing temperatures and

the interaction between temperature and precipitation also played a significant role in

the range distributions (Hawkins et a!., 2003). Temporal distributional study could be

done to investigate how much change have happened for this interactions over the

century (Hawkins et al., 2003). A different approach study by studying the community

index rather than species range margins revealed that, in France northward shift in

breeding bird a.ssemblage was substantial but it was not a fast response to track the
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climate warming experienced there (Devictor ef a!., 2008). I he shifting distribution of

birds had been linked to climate change already (Gregory ei ciL, 2009; Niven et aL,

2009; Chen et a!., 2011). A significant relation was found between predicted changes

in the range extent and variations in population trend, of those bird species whose

ranges were expanding showed an increase in population size and vice-versa (Gregory

et al., 2009). A non-significant upward shift was detected in the breeding bird's

distribution over Western Italian Alps (Popy et al., 2010). Considering the whole bird

community, not much significant distributional change was observed, and scientists

predicted using the models, based on current distribution and climatic variables that,

tlie distribution would be substantially rearranged for a single bird species according

to the predicted climate warming (Virkkala et al., 2010). Re\i'et al. (2010) found that,

al higher latitude and altitude, range reduction was observed in some species due to the

lack of habitat. Tropical bird species was increasingly recognized as most vulnerable

species to climate change (La Sorte and Jetz, 2010; Harris et al., 2011; Sodhi et al.,

2011; Wormwoilh and Sekercioglu. 2011). The findings of Bradbury et al. (2011)

showed that, between 1974 and 2006, Sylvia iimlaia expanded its range upward and

northward in UK. The impacts of climate change on species distribution was important

since it also affected the demographic rates of birds (Pautasso, 2012).

2.3.5 Importance of range distribution studies

A wide knowledge regarding the species ecological and geographic distribution

was needed for the better understanding of ecological and evolutionary determinants

of various spatial paltems of biodiversity (Rosenzweg, 1995; Rickiefs. 2004: Graham

et al., 2006) and for the conservation planning and forecasting (Ferrier. 2002b; Funk

and Richardson, 2002; Rushton et al., 2004). Indicators of the impact of climate change

was in the developing stage and scientists and policy makers were looking forward for

the further development to study the biological consequences of climatic warming and

implementing adaptive and mitigalive measures (Mace and Baillie. 2007; EEA. 2007).



2.4 MODELLING OF SPECIES DISTRIBUTION

2.4.1 Importance of species distribution modelling

Root (1988a. 1988b) and Root and Schneider (1993) found strong statistical

correlation between the distribution and abundance of 148 wintering land birds and six

environmental factors which mainly included the climatic variables. Gates ei al. (1994)

used mullivariate regression equations for modelling the species distribution in UK,

with reference to the land use and climatic variables and the results showed that the

climate had strong relationship with bird distribution and redistributions were

happening with the predicted climate warming. By using climate envelops they

described the spatial distribution and such predictions had to be tested against current

distribution pattern for the change in the measurements of distribution. Additional

factors like biotic interactions, geographic barriers and history were not included,

which meant that species would be present rarely in the suitable environments

(Anderson el al., 2002; Svenning and Skov, 2004; Araujo and Pearson, 2005).

Species distribution models were used to study the spatial configuration and

characteristics of habitats tliat permitted the continuity of species in landscapes (Araujo

and Williams. 2000; Ferrier el al., 2()02b; Scotts and Drielsma; 2003). past species

distribution (flugall el al.. 2002; Peterson et a!., 2004). species distribution in future

climatic conditions (Bakkenes el al.. 2002; Skov and Svenning, 2004; Araujo et al.,

2004; Thomas et al., 2004; Thuiller et al., 2005) and relationships between

environmental parameters and species richness (Mac Nally and Fleishman. 2004).

Conservation practitioners depended upon distribution models for the

estimation of most suitable areas for a species and could predict the probability of

presence in areas where systematic surveys have not done (Elith. 2002). For the study

of changing distributions the use of predictive modelling was used. The environmental

10
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variables, including climate could be possibly correlated with the absence or presence

of a species if their distribution was accurately mapped (Crick, 2004).

Using the known distributional information of species, the environmental

conditions were defined and thus identifying the geographical regions having similar

environment and modelling the species distribution (Pearson and Dawson, 2003). The

distribution of species abiotic niches in relation with the environmental data at the

observed localities had been studied widely using bio-geographical analysing

techniques (Guisan and Thuiller, 2005 ).The only way to test the hypothesis or scenarios

foretelling the future was by watching the real future to unfold and to overcome this

difficulty we could use pa.st changes in the environment to test whether species and its

ecosystems have responded in a similar way that the models predicted (Araujo et aL,

2005). Species distribution models are trying to give the predictions of the species

distribution using the presence or abundance of species in relation to a particular

environment predictors. These models were widely used as a tool to explore the various

arguments in ecology, evolution and conservation (Elith el aL, 2006).

These models could also estimate the future species distribution under various

climate change scenarios (Jeschke and Straycr, 2008; Sinclair el aL, 2010), potential

expansion in newly colonized areas by the introduced species (Jimenez-Valverde el aL,

201 1; Jeschke and Strayer. 2008) and could be used in reserve planning (Thorn et aL,

2009). The study of these shifts in the distribution of bird species were essential for the

management of protected area networks and conservation of endangered bird species

(Aragon el aL. 2010b: Araujo el aL, 2011). Due to the shills in distribution the current

protected areas would become outdated, leading to the managenieni of whole landscape

for biodiversity conservation (Paulasso et aL, 2011).

11
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2.4.2. Process of species distribution modelling

2.4.2.1 Steps in species distribution modelling

The modelling of species distribution was done by several steps: (1) present day

data of species in the form of point of occurrence (Peterson et al., 1998; Peterson and
Stockwell, 2001b); (2) ecological niche models are developed which is tested using the

distributional data (Guisan and Zimmerman, 2000; Kobler and Adamic, 2000); (3)

based on the general circulation models of climate change, the shift in the distribution

is projected onto the landscape of interest; (4) onto the transformed landscapes

distributional shifts are being modelled by projecting ecological niche models of

particular species. In the environmental space models can estimate the suitable

ecological niche by analysing the response of species to abiotic environmental factors

(Soberon and Peterson, 2005) and using these, the model could derive the probability

of presence of species for any given area or trace the specific environmental conditions

which suits the particular species (Elith et al.. 2011).

2.4.2.2 Methods for testing accuracy

There were several methods used for the modelling of species distribution

which varied in the steps of modelling; selecting the most suitable predictor variables,

defined functions for each of the variable, weight variable contributions, the

interactions of predictors and species and in predicting the geographic patterns of

occurrence (Guisan and Zimmerman, 2000; Burgman et al.. 2005; Winile and Bardos,

2006). The various rules in the models were made up of individual algorithms and

based on it, the landscapes would be identified within and outside the ecological niche

(Peterson, 2001a). Hierarchical portioning could be adopted in order to compare

alternative models and to study the weight of evidence of different factors that were

included in the model (Mac Nally, 2002). Concerns of the accuracy of prediction of

future species distribution under varying climatic conditions were addressed by testing

the climatic envelope models (Akcakaya et al.. 2006; Pearson el al.. 2006; Araujo and
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Rahbek, 2006; Zimmer. 2007). The accuracy of model description about the range of

conditions suitable for a species depended upon the degree of environmental

dimensions that defined the species distributional limits (Pearson et al.. 2007). Models

were built mainly on correlations between the variables and distribution patterns and

this did not identified the causal relationship due to autocorrelation among the variables

(Bahn and McGilk 2007; Currie, 2007; Beale ef al., 2008), but this method was limited

due to the same data source used for all the different models. To reduce the

misinterpretation of tlie responses of the species distribution, large geographical areas

were examined and thus the correlation of environmental variables with climatic

variables was reduced (Maclean el al., 2008). It was used to resolve ambiguities due to

correlated predictors, but it failed to find out the spurious correlations among the

environmental factors which was used to define the spatial distribution (Ashcrofl et a!.,

2011). To improve the credibility of predictions of species distribution range

generalized linear mixed models were applied (Swanson el al.. 2013).

2.4.3. Advancements in species distribution modelling

Over the terrestrial distribution of species, climate got a primary influence and

it was the core idea of niche modelling. Even though predictive power of models have

increased, the understanding of mechani.sms lying behind was challenging (Shipley,

1999). Studies related to the modelling of future distribution over past distribution

shifts were fewer, but the usage of climate envelope approach were used commonly to

resolve this (Berry et a!., 2002; Thomas el al.. 2004; Harrison et al.. 2006). For the

prediction of species distribution from environmental data, usage of ecological niche

modelling was appreciated (Pearson and Dawson. 2003). Advancements in science and

technology led to the development of complex mathematical general circulation

models (GCMs). which stimulated the global climate and associating with different

greenhouse gas emission scenarios, future climate was also predicted (Raper and

Giorgi. 2005). The correlation between climatic and non-climatic factors and shortage

of data regarding the species-specific physiological parameters and processes still
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became an encounter (Keaniey, 2006). The models were used to predict the current

bird species distribution using the present climate data and likewise they could also be

used to predict the future distribution based on predicted future climatic conditions

(Huntley et al., 2006). Predictive models had been developed using the association

between climate and vertebrate distribution focusing on birds (Jetz et aL, 2007).

2.4.4. Species distribution studies

Species richness and distribution patterns of the animals could be explained

according to environmental variables including climatic conditions (Kerr. 2001;

Ricklefs, 2004; Ceballos and Elirlich. 2006; Mittelbach, 2010). Numerous studies

succeeded at predicting the species distribution using climate data (Pearson et al., 2002;

Bakkenes et al., 2002; Bums et al., 2003; Thuiller et aL, 2005; Calef et aL, 2005;

Rehfeldt el aL, 2006; Hamann and Wang. 2006; McKenney et a!., 2007; Peterson et

a!., 2008; Stankowskl and Parker, 2010; Joyner eta!., 2010; Beever et aL, 2010). li was

assumed in the studies of future distribution predictions that, the changes in the species

ranges occurring at warmer conditions was mirrored by the changes in the colder

extremities since both used the same climate-space (Berry et aL. 2002; Thomas et ol.,

2004; Harrison et aL, 2006). There were studies which predicted the mass extinction

of species over the next centur\' (Peterson et a!., 2002: Bakkenes et aL, 2002; Thomas

et aL, 2004; Thuiller et aL, 2005; Malcom et aL, 2006), and redistribution of species

range (Iverson and Prasad, 1998; Pearson et al,, 2002; Burns et aL, 2003; Calef et aL,

2005; Rehfeldt et aL, 2006; Hamann and wang, 2006; McKenney et aL, 2007; Peterson

et aL. 2008). As a result of devastating impacts on biodiversity due to climate change,

numerous analytical techniques had developed to correlate quantifiable climatic

variables with the known location of species (Heikkinen et aL, 2006; Hliih et aL, 2006;

Guisan et aL, 2007; Eoiselie et aL, 2008: Graham el aL, 2008: Feeley and Silman. 2010;

Beever et aL. 2010). The changes in distribution could be of range shifts or range

expansion and the role of the temperature dependence had been studied (Maclean et

uL, 2008). At various levels prediction of species richness had been explained by
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environmental variables (Coops el al.. 2009; Hinsley el ai. 2009: Hansen el c/L. 2011;

BarMassada el ai, 2012; Fitterer el aL, 2012). It was observed that for forest bird

richness temperature variables were strongly correlated and for open woodland bird

richness it was precipitation variables (Goetz el al.^ 2014).

2.5 DATA USED FOR MODELLING

2.5.1 Type of data and performance of the model

Due to the biases in the geographic and environmental space, the presence only

models failed to get a general test of model accuracy when used withheld data for

predicting species distribution (Bojorquez el al., 1995, Hijmans el aL, 2000: Soberon

el al., 2000: Kadmon et aL, 2004). Possibilities to check the performance of the model

were done by including artificial data and checking the accuracy predicted responses

or using both presence and presence-absence data for modelling and fitted functions

were compared (Austin el aL, 1995). More predictive success was there when the

independent data was not used to build the model, which were called as 'test" data and

the 'training' data were those which were used for building the model (Fielding and

Bell. 1997). Numerous test statistics or discrimination indexes was being used for the

testing of model performance (Fielding and Bell, 1997; Pearce and Ferrier. 2000). The

predictive performance of the models were more focused in the evaluation step and

some known occurrences which are withheld (only presence data) from the

development of model by splitting the data set, k-fold partitioning, or bootstrapping

(Fielding and Bell, 1997: Hastie el aL, 2001: Araujo et aL, 2005).

The assessment of accuracy was based upon llie wellness of prediction using

the withheld data (Boyce el aL, 2002; Hirzel and Guisan, 2002b). Kappa and the area

under receiver operating characteristic curve (AUC) which were the commonly used

indices, were not suitable for the evaluation of poorly sampled regions ( Boyce el aL,

2002; Phillips e/ al., 2006). Predicting higher proportion of test localities (low omission

rate) and not predicting a large proportion of study area would provide informative
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prediciions as the model was statistically identical from a random prediction. Chi-

square test or upper-tailed binomial probability was used for assessing the statistical

significance of model when data portioning was done for testing (Anderson et ai,

2002). Performance of the predicted model was dependent on the observed absence

data available (Loiselle et al., 2003). A 2-2 confusion matrix could be used for

describing the frequency of predicting correctly and incon-ectly about the absences and

presences and test were limited that do not require absence data in presence only

models (Anderson el ciL, 2003).

According to theoretical grounds, it was suggested not to include absence data

(which may occurred due to non-inclusion of data in the model), since it would judge

false-positive predictions as failures when potential suitable habitat was modelled

(Anderson el aL, 2003; Pearson and Dawson, 2003; Sobero'n and Peterson, 2005).

Using a random or spatially stratified partition (Peterson and Shaw, 2003), was most

common and simple, but the problems with these small records were, the data was too

small while partitioning into test and training data sets and negative data was

problematic (Anderson and Martinez-Meyer, 2004). Predictive performance was

decrea,sed when some studies had done using small samples (Stockwell and Peterson,

2002; Reese el al.. 2005). Since distribution models were widely used and advancement

in data availability and modelling methods were increasing, it was the need of the hour

for broad synthetic analyses of high predictive ability and accuracy of species

distribution modelling methods for presence only data (Elith el al., 2006). Using

independent, well-structured presence-absence dataset for validation improved the

evaluation of the model performance (Elith el aL, 2006).

By the development in the machine learning and statistical disciplines many

methods had been produced which were capable to capture complex responses, even

the data was very noisy. But it doesn't received any exposure in distribution modelling

even though the work was promising (Phillips el al., 2006. Leathwick el a!., 2006).

Biases in the geographic and environmental space were also seen in resampling designs
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too (Elith el al.. 2006). When only few observed locality records were available, jack-

knife approach could be used which enabled the assessment of predictive ability. Jack-

knife ('leave-one-out') procedure was good in assessing the model having a small

number of occurrences. The model excluded each observed locality (n) once and

continued to build the model using the remaining n-1 localities. For testing the model,

'n' different models were built and the predictability was assessed by the model ability

to predict the single locality from the training data (Pearson el al., 2007). The modelling

techniques and validation used presence data only because its absence data were rarely

available and difficult to detect in surveys (Pearson ef al., 2007). Studies done by Algar

el al., (2009) showed that temporal prediction was quite accurate, but in order to reduce

the biases spatial autocorrelation could be done by using regression models.

2.5.2 Presence and absence records

The re.search on the development of distribution modelling had focused on the

creation of models using presence/absence or abundance data, where systematic

sampling methods were done in the regions of interest (Austin and Cimningham, 1981;

Flirzel and Guisan. 2002b; Cawsey el al., 2002). In the past, the presence only data

were anaiy.scd using the calculations of envelopes or distance-based measures which

were developed specifically for that purpose (Silverman. 1986; Busby. 1991: Walker

and Cocks, 1991: Carpenter et al., 1993). In most presence/absence models, it was

assumed that breeding habitats were saturated (Capen el al.. 1986). Only presence data

were assessed as some methods suggested in the species distribution modelling (Mix,

1986; Carpenter el al.. 1993).

There was a chance for two types of errors such as false positives and false

negatives while using presence/absence models (Fielding and Bell. 1997). Later on

adaptation to model presence-only data from presence-absence methods (which used a

binomial response for modelling) using the background environment samples (data

developed by selecting random points over the study area) or using *non-use' or
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'pseudo absence' area (Stockwell and Peters. 1999: Boyce el al.y 2002; Peirier e! al.,

2002b; Zaniewski ei ciL, 2002; Keating and Cherry, 2004; Pearce and Boyce, 2006).

Since absence data were rarely available due to poor sampling or missing species

occurrences during surveys, methods which required both the data set uses 'pseudo-

absences' instead of real absence data (Ferrier et al., 2002a; Engler el oL, 2004) or

some methods used background data for the entire study area (Hirzel et al. 2002b).

Species occurrence data were widely available and more accessible, as they

were available as environment data layers of high spatial resolution created using

satellite imageries (Turner el ai. 2003) and tiirough highly sophisticated climate data

(Thornton et al., 1997: Hijmans el a/.. 2005). It was challenging to validate the absence

data since wildlife-habitat connection was absent even though there existed a potential

for a species to be seen al a site (MacKenae el al., 2004; Gu and Swihart, 2004).

Alternative methods of several kind were used for modelling ecological niches

and most of them used both the presence and absence records (Bourg el al., 2005).

Predictions from each methods differed greatly, which in turn showed the importance

of selection of methods and verification of results from different methods (Thuiller et

al., 2004: Pearson et al., 2006). Most of the species occurrence data had been recorded

without any specific sampling methods, and a high portion of these data were obtained

from presence only records from museum or herbarium collections which were

accessible electronically (Graham ei al.. 2004; Huettmann 2005; Soberon and Peterson,

2005). Currently there were methods which used the presence information of others

members of community, which supplemented the data regarding the modelled species

and for rare species this method was promising since the wider community information

helped in revealing the modelled relationships (Elith et al., 2006). Tlie problem with

these type of presence data was that, the intent and methods employed for collecting

the data were rarely known and the with certainty we could not infer the absence data

(Elith et al., 2006). Novel tactics had been introduced over (he last decade which
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exploited only presence data, thus removing the necessity of absence locations

(Baldwin. 2009).

2-6 ASSESSMENT OF CLIMATIC CHANGES

For the assessment of climate change on biodiversity, several tools were used

which included global climate models, regional climate models, dynamic and

equilibrium vegetation models, species bioclimaiic envelope models and site-specific

sensitivity analysis (Sulzman et al.A995). Equilibrium simulations which used a step

increase in C02 showed the increasing temperatures in both hemispheres, but transient

simulations showed both tlie ups and downs in the temperature distribution (Sulzman

et al.. 1995). Regional models could be used along with the Global Circulation Models

(GCMs) which gave more resolution. MM5 (Mesoscale Model version 5) and RAMS

(Regional Atmospheric Modelling System) were the two major regional models that

were widely used (Sulzman etal., 1995). The climate dynamics of southern hemisphere

and northern hemisphere were different, so models developed witli primary focus for a

particular hemisphere would not yield good results in the other hemisphere (Grassl,

2000).

For determining the local climate change, regional models was more usefnl than

that of global models which depended on global forcings (Pitman et tii, 2000). TTiese

models could represent the land-use changes and its effect on cloud formation

mechanisms. But the results of these models were not easily available for all regions.

GCM and regional climate models were used by dynamic vegetation models, forest

gap models, biome envelope models and species envelope models in order to give light

into different aspects of llie biogeography of future climate change (Cramer et ciL,

2000).

General Circulation Models (GCMs), modelled the global climate provide

projections at various resolutions and there were differences between the various

models in projected climate change values for each grid cell and they were regarded as
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the entry points for the conservation assessments of climate change since only these

models provides estimates of future climate change due to the greenhouse gas forcings

(Hannah et al., 2002). The assessments were improved by opting results from transient

(not equilibrium) simulations of C02 increase and models which was completely

coupled with ocean and atmosphere to the regions of interest (Hannah et al.. 2002).

2.7 SPECIES DISTRIBUTION MODELLING TYPES AND TECHNIQUES

2.7.1 Modelling in relation to land scape and vegetation

Forest 'gap' models were used to simulate species-specific succession

dynamics in an area less than 1 ha, but there were limitations for representing the

landscape-level changes (Shugart, 1990). Global biome models projected the future

^  distribution of current vegetation using the limiting climatic conditions. In these

models vegetation was in equilibrium with climate and therefore it cannot model the

transition dynamics of species. But dynamic global vegetation model incorporated

dynamics but they cannot be used to obtain species-specific results (Woodward and

Beerling, 1997). In a competitive and dynamic environment, prediction of species

composition at a landscape scale cannot be done by models. Dynamic vegetation was

lacking the character of species-specificity, dynamic and competitive elements were

lacked by envelope models and gap models lacked the spatial resolution (Woodward

and Beerling, 1997). Land use projection models showed tlie pattern of the habitat

4k fragmentation and based on the projections of the parameters like population and

consumption levels it modelled the future (Sala et al., 2000).

The projected land use model reduced the potential range shift of a species done

by bioclimatic models. For example, when potential climate envelope of a species

shifted into an area having agriculture or to an urban settlement, the species may be

faced with extinction. Integrative and sensitivity analysis on the basis of the site

ecology and individual species characteristics could be used as an essential supplement
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to the mocleiling purposes, even though it lacked the spatial specificity of models

(Hannah et 2002).

The species-specific interaction had to be studied in conservation planning

measures and the best tool available for this were species bioclimatic envelope models.

They shared the same principle of biome envelope models, in which the cuirenl

distribution of species was used to 'train' a model for the future incorporating tlie

predicted climatic conditions (Hannali et al., 2002). Envelopes were constructed using

the Geographic Information System (GIS) software's or by genetic algoritlims or

general additive modelling (Peterson el al., 2001a: Berry et al., 2002; Midgley el al.,

2002). But these models could not model dynamic transitions, interspecific

competition, herbivory, dispersal or other factors. By coupling with land-use projection

models, application of the results of the bioclimatic envelope models could be used in

real world conservation (Hannah et al., 2002).

2.7.2 Generalized Dissimilarity Models (GDM)

Tor the modelling of spatial turnover in a community composition among a

pairs of sites as functions of environmental differences between these sites,

Generalized Dissimilarity Models (GDM) were used. For the estimation of probability

of occurrence of species distributions of a given species, kernel regression algorithm

was used within the transformed environmental space produced by GDM (Lowe,

1995). Elements of matrix regression and generalized linear modelling were combined

which allowed the user to model non-linear responses of the environment which

captured the ecologically realistic relationships between dissimilarity and ecological

distance (Ferrier. 2002. Ferrier et al. 2002c).

2.7.3 GLM and GAM models

Non-parametric and non-linear functions were used by Generalised Linear

Models (GLM) whereas Generalised Additive Models (GAM) used parametric and

combinations of linear, quadratic or cubic temis. GAMS can model complex ecological
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response shapes than GLM because of greater flexibility (Yee and Mitchell. 1991).

GLM and GAM were widely used in species distribution modelling because ecological

relationships were modelled realistically and they have strong statistical foundations

(Austin, 2002).

2.7.4 IMuitivariate .Adaptive Regression Splines (MARS)

For fitting non-linear responses, an alternative regression based method called

Multivariate Adaptive Regression Splines (MARS) were used. It used piece wi.se linear

fits rather than smooth functions. It was very easy to use in GIS applications for making

prediction maps, faster to implement compared to GAMs and had the ability to analyse

community data (MARS-COMM) which helped in relating the variation in occurrence

of species to the environmental predictors in one analysis, and later estimating the

individual model coefficients for each species simultaneously (Leathwick el aL, 2005).

2.7.5 Genetic Algorithm for Rule-set Prediction (GAR?)

For the approximation of species fundamental ecological niches several

approaches had been used such as BIOCLIM (Nix, 1986), logistic multiple regression

(Austin et aL, 1990) and Genetic Algorithm for Rule-set Prediction (GARP). GARP

was defined by heterogeneous rules that defined the polyhedrons in the ecological

niche spaces that were assiuned to be liveable by a particular species. The model quality

was assessed by dividing the occurrence points into 'training data' used for training

and 'test data' used for testing models (Fielding and Bell. 1997). GARP had having

two versions: DK-GARP used widely for the modelling data from natural history

collections and OM-GARP. a new open modeller implementation, where both these

used a genetic algorithm for selecting a set of rules for adaptations of regression and

range specifications, hence predicted the best species distribution (Stockvvell and

Peters. 1999). GARP is a machine-leaming approach and aLso linked the occurrence

records to the environment variables using envelope (variables are bounded to lower

and upper bounds), atomic (values are assigned to each variable) and logistic regression
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rules. The algorithm used pseudo-absence localities since the model works on

presence-absence data (Stockwell and Peters. 1999). GARP included the properties of

both BIOCLIM and logistic multiple regression and it was based upon artificial-

intelligence (Stockwell and Noble. 1992; Stockwell and Peters, 1999). The extensive

testing done on GARP model showed that it have high predictive ability for species

geographic distributions (Peterson and Cohoon, 1999; Peterson and Stockwell. 2001b;

Peterson el a!.. 2001a).

2.7.6 Maximum Entropy Modelling (MaxEnt)

MaxEnt uses the distribution of maximum entropy which was subjected to the

constraint that the expected value of each environment variable (interactions) in the

estimated distribution matched its empirical average for estimating the species

distribution (Phillips ef uL, 2006). Using the background locations and data derived

constraints, it approximated the most uniform di.stribution (Philips el a!.. 2004: Philips

el aL, 2006). In this model the complexity of the fitted functions could be choose, if

presence only species data were used. It was observed that Maximum entropy

modelling (MaxEnt) had done better or as well than other modelling techniques (Elith

el al.. 2006; Hemandez el al. 2006; Philips et o/., 2006). Compared to other algorithms,

MaxEnt achieved higher success rate and it marked the differences even at low sample

sizes (Pearson el al., 2007). MaxEnt models predicted broader area of suitable

conditions and the MaxEnt projection had tlie ability to predict excluded areas also, but

the model performance felt a negative impact when sample sizes were reduced

ailificially (Pearson ei al.. 2007).

MaxEnt had used to investigate the distributional patterns of Geckos (Uroplatus

spp.) for predicting the species distribution (Pearson etal.. 2007), American black bear

{Ur.su.s americanu.s) for the assessment ofdenning habitat (Baldwin and Bender. 2008).

Bush dog {Speuihos venaticus) to appraise the excellence of protection (DeMatteo and

Loiselle. 2008). Little bustard {Teirax lelrax) for modelling the seasonal distribution
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changes (Suarez-Seoane et al.. 2008), predicting and mapping of Sage grouse's

{Centrocercus urophasiafius) nesting habitat, Asian slow lorises {Nycticebus spp.) was

assessed to threats and species distribution analysed to find conservation urgencies

(Thorn et al., 2009). MaxEnt can precisely build the model even there are less number

of location points and it was an advantageous feature since frequently there are

deficiency of dependable locations obtainable for mapping the spreading of species

(Baldwin, 2009).

2.7.7 Boosted Regression Trees (BRT)

Boosting Regression Trees were developed in a forward stage-wise manner,

where small modifications were done in the model at each step for better fitness of data

(Friedman el al., 2000). BRT used the combination of two algorithms: regression-tree

algorithm also called as the boosting algorithm to construct a combination or

"ensemble" of trees. The use of regression-trees helped in the good selection of relevant

variables and it could model interactions. It was upon the weighted versions of data set

where the observation that were poorly fitted in the preceding model and they were

accounted by adjusting the weights (Elith et al., 2006). Over fitting of data were

avoided by using cross-validation in BRT. to grow the models progressively during the

predictive accuracy testing on witlilield portions of the data (Elith et al., 2006).

2.8 FACTS ABOUT THE INDIAN PEAFOWL {Pavo cri^tatus)

The Indian Peafowl were mainly seen in tropical forest of the country

(Mukharjee, 1979). Activity of birds were high during dawn and dark (Sharma, 1979)

mainly during the time interval 6:30 A.M-9;30 A.M and 4:30 P.M-6:30 P.M. For

breeding, roosting and foraging they select scrubs, huge trees and fields respectively

(Johnsingh and Muraii. 1980). They usually opt for scrubs and open areas for dust

bathing and lekking. an action to attract the females (Yasmin and Yahva. 1996). They

were preferred to seen in areas like scrub jungles, forest fringes, agricultural fields,

stream sides (Padmanabhan P. 2007) and human habitation in semi-wild conditions
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where the climate was mostly humid, dry atid semi-arid conditions (Ramesh and

McGowan, 2009). Abundance ofthe Indian Peafowl depended upon three main factors:

prey density, biomass (Ramesh and McGowan, 2009) and the habitat diversity resulting

in availability of food (Ranjith and Jose, 2016). In areas where there was a lack of

predators, competing species and awayness from anthropogenic activities increased the

number of Indian Peafowl. Validating their affinity towards crop fields, more number

of the Indian Peafowl are located nearby paddy fields. When the human interaction

augmented by increased logging, clearing of bushes and construction work, the

population dimished in tliose areas (Ranjith and Jose, 2016).
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CHAPTER 3

MATERIALS AND METHODS

3.1 POINT LOCALITIES OF THE INDIAN PEAFOWL

The Indian Peafowl presence data were obtained from the e-Bird reference data,

an Internet-based checklist program which is freely available (www.eBird.org). These

data are published in compliance with the Avian Knowledge Network (AKN) and it is

run by the National Audubon Society and the Cornell Lab of Ornithology and the data

is copyrighted with these organizations. The data consists of Breeding Bird Survey

from 1966 onwards. It have advanced geo-referencing and broad user-base. The

georeferenced data of the Indian Peafowl from the years 1979-2015 were retrieved

from it. Duplicate records were avoided using the tools in Excel and a corresponding

shape file was generated in ArcMap 10.3.

Figure 1. Occurrence points for the Indian Peafowl in Kerala
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3.2 ENVIRONMENTAL VARIABLES

The bioclimatic variables were used for the current and future conditions from

the WorldClim vL4 database (http://www.worldclim.org/download) (Hijmans er aL,

2005) for each georeferenced presence locations. These variables were derived from

the monthly rainfall and temperature values and generated 19 different variables which

are more meaningful. These variables represent annual trends, seasonaliiy and extreme

or limiting enviromnental factors. They are coded under different names such as;

3.2.1 biol (Annual Mean Temperature): The average temperature of 12 months was

used to acquire the annual mean temperature. This approximated the total energy inputs

for an ecosystem.

3.2.2 bio2 (Mean Diurnal Range): Each month's diurnal range (difference between

maximum and minimum temperature) was averaged for 12 months of a year. This

provided information regarding the relevance of temperature fluctuation for different

species.

3.2.3 bio3 (Isothennality): Isothermality was used to measure the oscillations of day

to night temperatures relative to the annual oscillations ((bio2/bio7)xl00). This could

reveal the influence of larger or smaller variations in temperature of a month relative

to that year.

3.2.4 bio4 (Tempci*aturc Seasonality): It is the temperature variation (SDxlOO) over

a year (or averaged years) relative to the SD (variation) of monthly temperature

averages. Greater variability in temperature is inferred from larger SD.

3.2.5 bio5 (Maximum Temperature of Warmc.sf Month): It measures the maximum

monthly temperature over a year which was useful in the detennination of alTects by

warm temperature anomalies in species distribution.
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3.2.6 bio6 (Minimum Temperature of Coldest Month): Measures the minimum

temperature over a time period useful in the analysis of affects from cold temperatures.

3.2.7 bio7 (Temperature Annual Range): Quantifies the temperatiu-e variation over

a period (bio5-bio6) and helps in the examination of species distribution and the effects

of extreme temperature conditions on it.

3.2.8 bio8 (Mean Temperature of Wettest Quarter): Approximation of mean

temperatures prevailing during the wettest season and its effect on species distribution

can be studied.

3.2.9 bio9 (Mean Temperature of Drie.st Quarter): Mean temperature of driest

quarter was measured to know the effects of it on species distribution.

3.2.10 biolO (Mean Temperature of Warmest Quarter): Quantifies tlie mean

temperature over warmest quarter and helps in the examination of species distribution.

3.2.11 bioil (Mean Temperature of Coldest Quarter): Mean temperature of coldest

quarter was measured to know the effects of it on species distribution.

3.2.12 biol2 (Annual Precipitation): It is the sum total of all the monthly precipitation

and it evaluates the total water inputs which was useful in ascertaining the importance

of water availability in detennining the species distribution.

3.2.13 biol3 (Precipitation of Wettest Month): Precipitation of wettest month was

measured and studies the species distribution when an extreme precipitation condition

occurs.

3.2.14 biol4 (Precipitation of Driest Month): Total precipitation received during the

driest month was measured to study the extreme conditions and its impacts on species

distribution
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3.2.15 biolS (Precipitation Seasonality); Variation of monthly precipitation

throughout the year was measured. It is the ratio of SD of monthly total precipitation

to the mean monthly total precipitation.

3.2.16 biol6 (Precipitation of Wettest Quarter): Precipitation of wettest quarter was

measured and studies the species distribution when an extreme precipitation condition

occurs.

3.2.17 biol? (Precipitation of Driest Quarter): Total precipitation received during

the driest quarter was measured to study the extreme conditions and its impacts on

species distribution

V  3.2.18 biolS (Precipitation of Warmest Quarter): Precipitation of warmest quarter

was measured and studies the species distribution when an extreme precipitation

condition occurs.

3.2.19 biol9 (Precipitation of Coldest Quarter): Mean precipitation of coldest

quarter wa s measured to know the effects of it on species distribution.

The unit of temperature is '"CxlO' and that of precipitation is 'mm'. 30 arc-

seconds (0.86 km^ at the equator) data were used for both current and future conditions.

They were in the latitude/longitude coordinate reference system under the datum

WGS84. The bioclimalic variables were calculated from aggregated data such as

monthly precipitation, minimum, mean and maximum temperature. The data layers

were generated by interpolating average monthly data available from weather stations.

Tliis data had got its own advantages and disadvantages. According to World

Meteorological Organization (WMO) climate is defined as the measurement of the

mean and variability of relevant quantities of certain variables (such as temperature,

precipitation or wind) over a period of time, ranging from months to thousands or

millions of years. The classical period is 30 years.
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The WorldClim interpolated climate layers were made by using major climate

databases compiled by the Global Historical Climatology Network (GHCN), the Food

and Agriculture Organization of the United Nations (FAD), World Meteorological

Organization (WMO), the International Center for Tropical Agriculture (CTAT). R-

HYdronet and numerous other databases for Australia, New-Zealand, the Nordic

European Countries, Ecuador, Peru and Bolivia, The Shuttle Radar Topography

Mission (SRTM) elevation database and using ANUSPLIN software which

interpolates noisy multi-variate data using thin plate smoothing splines (Hutchinson

and Xu, 2013). The current bioclimatic layers corresponds to the time period from 1950

to 2000. For ecological niche modelling the future prediction of distribution for the

Indian Peafowl, the same current bioclimatic layers and future bioclimatic layers

corresponding the climatic responses of Representative Concentration Patliways

(RCPs) using the coupled model HadGEM2-A0 of 30 seconds resolution were used,

which is available in the WoridClim database. All the four scenarios such as RCP2.6,

RCP 4.5. RCP 6.0 and RCP 8.5 were used.

Table 1. Different RCP\s and its characteristics

Name Model

used

Radiative forcing C02

equivalent

(ppm)

Temperature

anomaly ("C)

RCP2.6 IMAGE 3.1 W/m-at mid-centui7,

returning to 2.6 W/m^ by

2100

490 1.5

RCP4.5 MiniCAM 4.5 W/m^ post 2100 650 2.4

RCP6 AIM 6 W/m- post 2100 850 3.0

RCP8.5 MESSAGE 8.5 W/m^in2100 1370 4.9

Besides the bioclimatic layers altitude (alt), inland water bodies (wbint).

perennial water bodies (wbpere). linear water inland (wlint). perennial rivers (wlpere)
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and land cover (landcov) were also used for the ecological niche modelling. The world

water bodies' datasets uses the source from DcLorme publishing company's

1:2,000,000 world data. The land cover data is sourced from SPOT VEGETATION,

Defence Meteorological Satellite Program (DMSP) data under the name Land Cover

Classification System (LCCS) having 85 percent accuracy with Forest Sui-vey of India

Report at a resolution of 1km. The altitude data was obtained from Shuttle Radar

Topography Mission (SRTM) at a resolution of 3 arc-second or 90 meters.

3.3 MAXIMUM ENTROPY SPECIES DISTRIBUTION MODELLING (MaxEnl)

The species distribution of the Indian Peafowl was studied using MaxEnt

3.3.3k. The MaxEnt software is based upon the maximum-entropy principle and used

for species habitat modelling. This software uses a set of georeferenced occurrence

locations and environmental layers obtained from WorldClim database to create the

species distribution model. MaxEnt is freely available online

(https://www.cs.princeton.edu/~schapire/MaxEnt/). The data should be inputted into

the software in the required format. Species data was made into \csv' format and the

bioclimatic layers should be of Lasc' format. Software was programmed to appropriate

levels according to our requirements for the run under settings options (Philips el a!.,

2004; 2006).

3.4 OPTIMIZATION OF REPLICATION RUN TYPE

The replication run in MaxEnt were done mainly using three types: cross-

validate, bootstrap and subsampling.

Cross-validation is a form of replication in which the occurrence data were

randomly split into numerous (k) groups ('folds') of equal size and leaving out a single

part, it will fit the model to the other k-1 parts (combined), thus obtaining predictions

for the lefl-out part. This procedure was repealed for each part and the results were
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combined. Tlie advantage of using cross-validation was that it used all the data for the

validation purpose which would be helpful in dealing with small number of data sets.

It used the data efficiently for reporting the range and standard error. It simultaneously

allowed to assess uncertainties in prediction which was useful in model evaluation. But

since only a part of the data was used for model fitting, it was difficult to retrieve test

data which was statistically (spatially) independent of training data (Hijmans, 2012;

Wenger and Olden, 2012). Overestimation of model performance and underestimation

of the standard error of predictions could occur while using spatially correlated folds.

Bootstrap method lose statistical independence of the test and train data and the AUC

values would end up slightly inllated.

The bootstrap method is a ilexible and strongest statistical tool which could be

used to quantify the uncertainly associated with a given estimator 'r' statistical method.

It could provide the estimation of standard error of a coefficient or a confidence interval

for that coefficient. In this method distinct data sets were prepared by repeated

sampling observations from the original data set witli replacement, rather than

repeatedly obtaining independent data sets from the population. This method was most

commonly used if the occun'ence data are small. The 'bootstrap data sets' were created

by sampling with replacement having the same size of the original data set. So some

observations could appear more than once and some doesn't showed up at all in lliese

data sets. In each bootstrap sample there was a significcuit overlap with the original

data, about two-thirds of the original data points appears in each sample, fhis w'ould

lead the bootstrap to seriously underestimate the true prediction error.

In repeated subsampling the presence data sets were repeatedly split into

random training and testing data sets. The number of replicates and the percentage to

be withheld from each replicated run could be fixed. These method could be adopted

if there w as moderate to many occurrences of the species. One possible disadvantage

ofthe subsampling was the selection of the weak effect variables. These variables have
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low inclusion frequencies due to the correlation between other variables (De Bin el al.,

2015).

Based on these three replication run types, 3 different models were done using

similar conditions. Among them the best type was chosen and based on that further

modelling steps have been forwarded.

3.5 VARIABLE CONTRIBUTION TO THE MODEL

Analysis had done to identify the contribution of each variable to the modelling

of distribution for the Indian Peafowl, including all bioclimatic variables, altitude and

water bodies. This was done for current distribution (no future projection), using the

most suited sampling technique identified from previous analysis. 10 subsampling

replicates were used, keeping 25 percent of the data for testing and the remaining data

were used to build the model. The output was made in logistic format to get the

probability of occurrence in the range of 0-1. In the deteimination of the percentage

contribution, the increased regularized gain is added to the contribution of the

corresponding variable, or subtracted from it if the change to the absolute value of

lambda is negative in each repetition of the training algorithm. For the estimation of

permutation importance, the values of each environmental variable on training

presence and background data were randomly permuted.

3.6 VARIABLE Ol^TlMIZATION IN THE MODEL

For analysing the accuracy of model prediction, trials were done using a single

sampling technique with 10 replicates and 25 test percentage. Only bioclimatic

variables were used for optimization since they are going to be used for the future

prediction. Other variables like altitude, land cover and water bodies cannot be

predicted for future, so tliey were dropped in further modelling procedures. MaxEnt

output had features that described the authenticity of the data and how fit was the
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predicted model. Omission curves and AUC curves both described the accuracy of the

model (Fielding and Bell. 1997; Philips et ah, 2006; Elith et al., 2011). The analysis of

omission/commission graph revealed the omission rate and predicted area at different

threshold levels. The orange and blue shading surrounding the lines on the graph

represented its variability. The predicted omission rate was a straight line according to

the definition of cumulative output format. The omission rate should be close to the

predicted omission. The sensitivity vs. 1-specificity graph depicted the area under the

Receiver Operating Characteristic (ROC) curve or area under the curve (AUC). This

allowed easy comparison of the performance of one model with another and a most

useful tool to evaluate multiple MaxEnt models. An AUC value of 0.5 indicated that

the model performance was no better than random, while values close to 1.0 indicated

better model performance. Using these features of MaxEnt output, the various models

projected under different settings were analysed and the best fitted model based on the

ROC curve and having high AUC value was selected (Philips et al., 2006).

Variable optimization was a very important part in the model building process.

Some Vtiriables may not be related to the outcome and even ifall variables were related

to the outcome, it was advised to remove some, having a small effect in order to

increase the interpretability of the final model (epistemic sparsity) or to produce a

model with better predictability (predictive sparsity) by reducing the variance (De Bin

ef a/., 2015). For interpreting the contributions of each environmental variable to the

species distribution model, highly correlated variables should be removed to avoid

autocorrelation. Many climatic variables were highly correlated among each other and

including all these would not affect the quality of the MaxEnt model prediction but

seriously limited the contribution of other comelated variables. If there was a highly

correlated variable in the model, then it excluded all other correlated variable from

being incorporated into the model which may have a significant imponance in the

prediction of species distribution (Brown. 2014). The response curves made from the

presence could be misleading if the correlation exists. When there are highly correlated
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variables, the percent contributions should be taken with caution. If the test and training

data were spatially auto correlated, the lest omission line lied well below the predicted

omission line which was not a good fit for the model. Spatially auto correlated data

would inflate the accuracy measurement for presence only models (Veloz, 2009), so it

was essential to eliminate spatially correlated variables prior to the modelling process.

The biocliniatic variables (biol-biol9) for the current conditions (1950-2000)

were statistically studied using correlation matrix (Pearson) and coefficients of

determination (R^). The variables were categorized based on the correlation values lr|

>0.7 and |r|>0.9 and R^>0.9. From these variables, those were selected having higher

percentage contribution and permutation importance results based on MaxEnt model

output were used for future predictions. The percentage contribution chart showed the

relative contribution of each environment variables to the MaxEnt model. In each

iteration of the training algorithm, the increase in regularized gain was added to tlie

contribution of the corresponding variable or subtracted from it if the change to the

absolute value of lambda is negative. They depended on the path taken by the MaxEnt

code to get the solution and the contribution values changed when it took another way

to get the same result. When there were highly correlated variables care should be taken

in interpreting tliese values. The permutation ijnportance depended on the MaxEnt

model rather than the patli it used to obtain the value. The importance was measured

by randomly permuting the values of that variable among both the presence and

background (training points) and by calculating the decrease in training AUC. Higher

the decrease showed that the model heavily depended on that variable. The .lack-knife

test of variable importance depicted the environment variable having the highest gain

when used in isolation (having the most useful information) and the environment

variable which decreased the gain the most when it is omitted (having the most

information that isn't present in the other variables). The selected variables alter

removing the correlated ones were used for the further modelling.
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3.7 FUTIIRH r»RHDiCTIC)NS OF DIS rRIBlJTION FOR THE INDIAN PEAFOWL

Prediction of species distribution in the future could be done in MaxEnt by

projecting the trained environment layers to another set of environment layers

containing the future climatic data set. The projection layers should have trained layers

which were mutually compatible but the conditions will be different. Tlie name of the

layers and the map projection should be the same as that of the trained data. A model

was trained oji the environmental variables which corresponded to the current climatic

conditions and was projected into a separate layer based on the future environmental

data. Models of different RCPs were done using a single sampling technique with 15

replicates and 25 test percentage. To know the role of different variables in determining

the varying distribution patterns there, model trials were done corresponding to the

number of variables used for the future prediction. In each trials one of the variable is

excluded, to analyse the changes happening in the prediction without that variable.

Through this method, impact of each variable in specific locations could be identified

and concluded.

5^
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CHAPTER 4

RESULTS

4.1 DISTRIBUTION OF THE INDIAN PEAFOWL IN THE PAST

■V

Saiini Ali and Hugh Whistler had conducted one of the earliest bird survey of

Kerala (erstwhile Travancore-Cochin). during the period 1935-1936. There were no

reports of spotting of the Indian Peafowl in Kerala. It was on 1969, Ali reports that he

found the Indian Peafowl's from the deciduous forests of Peechi-Vazhani. According

to the e-Bird reference data, the first recorded sighting of the Indian Peafowl in Kerala

was on 1979 from the district of Wayanad. This data proves the less abundance of the

Indian Peafowl in Kerala. But during the subsequent periods the presence records of

the Indian Peafowl showed an increasing trend. Also these data depicts the spreading

of the Indian Peafowl to most parts of Kerala especially in the districts of Palakkad and

Thrissur. Table 2 shows the number of presence records and Fig. 2 shows the increasing

spatial distribution of the Indian Peafowl in Kerala over the past 37 years.

Table 2, Number of presence records of the Indian Peafowl in Kerala over the
past 37 years

Time Period No. of presence records

1980-1990 2

1991-2000 8

2001-2010 53

2011-2015 1451
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Figure 2. Spatial distribution of the Indian Peafowl in Kerala over the period

a) 1980-1990 b) 1991-2000 c) 2001-2010 d) 2011-2015
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4.2 SELECTION OF REPLICATION RUN TYPE

Replication run t\'pes using bootstrap, cross-validate and subsampling

showed different AUC values, omission/commission graphs, distribution patterns of

species, response cun'es and variable contributions. Even in the same replication type

there was variations in the above features e.xcept in cross-validate where every feature

was exactly the same as other models.

In the Fig.2 the response curves of mean temperature of warmest quarter

(biolO) is depicted. When bootstrap (Fig.2a) and cross-validate (Fig.2c) was used as a

replication type for modelling, the SD was higher whereas the SD was lower for

subsampling (Fig.2b). Higher the SD. higher was the variability leading to lower

reliability on the model. Only one variable (biolO) was shown here and the Figures for

the remaining 18 variables were given in Appendix 1.

Even though the standard deviation (SD) for the AUC curve was very much

lower in bootstrap method (Table. 1) compared to others, the SD for the response curves

was higher (Fig.2a) and it was found lower in subsampling (Fig.2b). In cross-validate,

all the model output showed the same result (Table. 1).

In bootstrap (Fig. 2a) the omission on training line was too below the predicted

omission line where as in subsampling (Fig. 2b) and cross-validate (Fig. 2c). both line

were more or less close and parallel to each other. But the standard deviation in cross-

validate (Fig. 2c) replication type was higher than that of subsampling (Fig. 2b). Thus

it was concluded that the subsampling replication was more reliable in the modelling

of distribution of the Indian Peafowl.
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replication type (blue colour Indicates the SD).

Table 3. Output values from models using different replication run type

Replication Rcpiicatlon Test Average test AUC Standard Deviation

run type number percentage values (SD) for AUC curve

Model No. 1 2 3 1 2 3 1 2 3 1 2 3

Bootstrap 2 2 2 20 20 20 0.920 0.917 0.911 0.003 0.006 0.008

Subsampiing 2 2 2 20 20 20 0.798 0.820 0.807 0.011 0.030 0.013

Cross- 2 2 2 0 0 0 0.820 0.820 0.820 0.030 0.030 0.030

validate
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4.3 VARIABLE CONTRIBUTION TO THE MODEL DISTRIBUTION OF THE

INDIAN PEAFOWL

Table 4. Percent contribution and permutation importance of all environmental

variables to the model

Environmental variables Percent contribution Permutation

bio4 28 2.6

bioI2 8.1 0.7

wlint 7.9 23.1

wbpere 7.7 6.2

bioiy 6.3 5.8

landcover 5.8 1.5

biol8 5.3 3-7

bio3 4.6 1.6

biol4 3.7 24.4

biol5 3.6 1.8

bio5 3.6 0

bioI3 3.6 10.5

wlpere 2.9 4.2

bio 10 2.1 0.1

bio2 L7 1.2

wbint L2 1.2

bioI9 1 2.5

alt 0.8 4

bio 16 0.6 0.4

bio7 0.4 0.3

bid 1 0.3 1.4

biol 0.3 0.3

bio8 0.2 1.2

bio6 0.1 1.1

bio9 0 0.2
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The MaxEnt output showed tlie percent contribution, pemiutation importance

and Jackknife importance of all the environmental variables and it is shown in Table.3.

The variable which showed higher percent contribution was temperature seasonaliiy

(bio4) and mean temperature of driest quarter (bio9) doesn't showed any contribution

at all. Eight variables out of twenty five showed contribution lesser than 1.0.

Considering the permutation importance, precipitation of driest month (biol4) and

linear water inland (wlint) and shows higher importance with 24.4 and 23.1 percent

respectively. Maximum temperature of warmest month (bio5) showed no importance

at all and other variables like biol2, biolO, biol6, bio7, biol and bio9 showed

importance lesser than 1.0.

The jackknife results shown in Fig.4 explains that, the precipitation of driest

quarter (biol7) and temperature seasonality (bio4) had the highest gain when it was

done using only that variable. Variables like altitude, biol 1, bio6, wbint, wbpere and

wlpere showed a gain lesser than 0.1. While looking into the gain without a variable,

three water related variables (wbpere, wlint and wlpere) showed lesser gain. But this

was not significant as it was much above than 0.8 and closest to the gain achieved with

all variables.

The response curves from the MaxEnt output (Fig.5) showed how each

environmental variable was affecting the distribution of the Indian Peafowl. The curves

shown below are logistic prediction changes as each environmental variable was

varied, keeping all other environmental variables at their average sample value. The

variables which showed positive response in favour of the distribution at a particular

location when tlie values were increased are bio6. bioS. biol 1. biol5. biol8, wbint.

wlint and wlpere. Whereas hio2. bio3, biol2, biol3, biol4, biol6, biol7, biol9,

landcover, wlint and wbpere lowered the chance of survival of species in that area when

the values were increased. Some variables like biol, bio4. bio5. bio5, bio7, bio9, bio 10

and altitude showed no significant change to the survival of species. The response

curves created using only the corresponding variable are depicted in Fig.6.
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The analysis of the response curves using only the corresponding variables is

given below. This explains the role of each variable, when they were used alone.

43.1 Annual mean temperature (bid)

Wheii the annual mean temperature (biol) was low (<22.5*'C) the probability

on the occurrence of the Indian Peafowl was below 50 percent. However, when the

annual mean temperature (biol) was higher 27-28 °C, the probability on the occurrence

of the Indian Peafowl increased.

43.2 Mean diurnal range of temperature (bio2)

There showed a 63 percent probability of presence for the Indian Peafowl when

the mean diurnal range of temperature (bio2) was between 5.5 "C and 5.9 "C. An

increasing trend was observed in probability of presence for the Indian Peafowl when

the mean diurnal range of temperature went beyond 6.5 and reached 50 percent at

8.2 X. The probability on the presence of the Indian Peafowl was the highest (83%)

when the mean diumai range of temperature was 9X and above.

433 Isothermaiity (bio3)

When the isothermaiity (bio3) was in the range 5.3 and 6.3, the probability of

presence for the Indian Peafowl was greater than 50 percent. There was lower

probability of presence for tlie Indian Peafowl (10%) when the isothermaiity was <4.3

and >6.7.

43.4 Temperature seasonality (bio4)

The favourable range of temperature seasonality (bio4) was between 12.5 X

and 16X. At <1200 and >2200 the probability of presence for the Indian Peafowl was

lesser than 30 percent.
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4.3.5 Maximum temperature of warmest month (bio5)

The distribution of the Indian Pealbwl was found to be greater than 50 percent

when the maximum temperature of wamiest month was between 34 "C and 37 "C and

beyond 37 "C the distribution of the Indian Peafowl dropped to 25 percent.

4.3.6 Minimum temperature of coldest month (bio6)

When the minimum temperature of coldest month (bio6) was 22 °C, the

probability of presence for the Indian Peafowl was the highest (57%).

4.3.7 Temperature annual range (bio?)

The most suited temperature annual range (bio7) for the distribution of the

Indian Peafowl was between 14°C and 15.1 X.

4.3.8 Mean temperature of wettest quarter (bio8)

As mean temperature of wettest quarter (bioS) increased from 12°C, there was

an increa.se in the probability distribution of the Indian Peafowl and reached the highest

(60%) at 26 "C.

43.9 Mean temperature of driest quarter (bio 9)

Probability of presence for the Indian Peafowl was more than 50 percent when

the mean temperature of driest quarter (bio9) was greater than 27 "C and was highest

(80%) at 29 T.

4.3.10 Mean temperature of warmest quarter (biolO)

As mean temperature of wannest quarter (bio 10) increased, the probability of

presence for the Indian Peafowl increased and reached 75 percent at 30 ̂'C. But higher

the mean temperature ol' warmest quarter (<30 "C) the distribution for the Indian

Peafowl reduced drastically.
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4.3.11 Mean temperature of coldest quarter (bioll)

The probabilily of presence for the Indian Peafowl was 50 percent when the

mean temperature of coldest quarter (bio) 1) was between 21 °C and 26 In all other

mean temperature of coldest quarter (biol 1) the probability of presence for the Indian

Peafowl was lower.

4.3.12 Annual precipitation (bioll)

As annual precipitation (bio 12) increased, the probability distribution of the

Indian Peafowl decreased. The probability of presence for the Indian Peafowl was

higher (0.95) when the annual precipitation (biol 2) was below 1000mm. When annual

precipitation increased above 3()()0mm the probability of presence for the Indian

Peafowl dramatically touched the minimum point (15%).

4.3.13. Precipitation of wettest month (biol3)

The probability of presence for (he Indian Peafowl was 97 percent when the

precipitation of wettest month (biol) was below 200mm. As precipitation of wettest

month (biol) increased probability of presence for the Indian Peafowl reduced

considerably. When the precipitation of wettest month was greater than 1200mm, the

probability of presence for the Indian Peafowl was at its minimum (18%).

4.3.14 Precipitation of driest month (biol4)

^  According to the model prediction the precipitation of driest month should be
lower for the maximum probability of presence for the Indian Peafowl (68%). When

precipitation of driest month increased the probability of presence for the bidian

Peafowl was reduced.

4.3.15 Precipitation of scasonality (bio]5)

When precipitation of sea.sonaliiy (biol5) was below 50mm, the probability of

^  presence for the Indian Peafowl was 54 percent which reduced to the minimum when
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precipitation increased. But the probability of presence for the Indian Peafowl

■« increased when the precipitation of seasonality was greater than 60mm and reached

maximum (74%) at 100mm and when precipitation of seasonality was greater than

100mm the probability of presence for the Indian Peafowl decreased to 28 percent.

4.3.16 Precipitation of wettest quarter (biol6)

When precipitation of wettest quarter (bio 16) was below 400mm. the

probability of presence for the Indian Peafowl was 98 percent and as biol6 increased,

the probability distribution of the Indian Peafowl decreased and reached the minimum

value (20%) at 2700mm.

4.3.17 Precipitation of driest quarter (biol7)

When precipitation of driest quarter (biol7) was between 30mm to 40mm, the

probability of presence for the Indian Peafowl was 64 to 70 percent respectively. At

lower (<30mm) and higher (>60mm) precipitation of driest quarter, the distribution of

the Indian Peafowl was found low.

4.3.18 Precipitation of warmest quarter (biol8)

At lower (<180mm) and higher (>300mm) precipitation of warmest quarter

(biol 8), the probability of presence for the Indian Peafowl was lower than 50 percent.

4.3.19 Precipitation of coldest quarter (biol9)

When the precipitation of coldest quarter (bio 19) increased from 0mm to

2200mm, the probability of presence for the Indian Peafowl decreased from 80 to 20

percent.

4.3.20 Altitude (alt)

At altitudes (alt) between Om and 9()0m the probability of presence for the

Indian Peafowl was found to be 50 percent. At higher altitudes (alt) the relation was

neuative.
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4.3.21. Quantitative variables

Quantitative variables such as inland water bodies (wbint), perennial water

bodies (wbpere). linear water inland (wiint). perennial rivers (wlpere) and land cover

(landcover) also do had a role in the probability of distribution of the Indian Peafowl.

4.4 VARIABLE OPTIMIZATION IN TKE MODEL

The six trial models produced by the MaxEnt was analysed for the average test

AUC values and SD and among them the best was selected for further studies. The

output showed varying average test AUC values and SD for each trials, even though

the sampling type, number of replicates and lest percentage of data used were same for

every models.

Table 5. Average test AUC values and SD of each trial model of the distribution

of the Indian Peafowl using subsampling replication

Model Trial No. Average test .*\UC value SD of AUC curve

1 0.813 0.029

2 0.809 0.022

3 0.807 0.017

4 0.820 0.020

5 0.807 0.026

6 0.810 0.025

The fourth model was selected as a typical one that can be used for further steps

such as variable optimization and future prediction since it had highest AUC value and

SD was lower as compared to the other 4 models. The third model had the lowest SD,

but the AUC value of it was the lowest among them.
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'5.

The test omission rate and receiver operating characteristic (ROC) curve (Fig.7)

was found more fit in this model compared to others. The Fig.7a shows that the mean

omission line on the test data was passing though the predicted omission line. In the

Fig.7b tlie AUC line was passing through the left top of the random prediction.

hitng* Olirtttn ind Pndleut Ant tor iwislmrair v«. 1 - tptoBclty tar

30 40 M M

CumuMhatatthM)

03 01 0$ 0.0 07

< • ̂tclhlo {FrsOMnii PiMimo «■•*)

Mean afea *
Mean area one stddev *

Mean omission on test data *
Mean omission one stddev

Predicted omission ■

b)
Mean (AUC = 0.820)
Mean */• one stddev

Random Prediction

Figure 8. Test onussion rate (a) and ROC curve (b) of v ariable optimization

model of the Indian Peafo>> l

To find out the correlation among the environmental variables, they were tested

by using Pearson correlation matrix and coefficients of determination (R"). The results

are depicted in the Table.5 and Table.6. Six variables were chosen in |r|>0.7 and 9
variables under |r|>0.9 prioritized on the basis of percent contribution and permutation

importance. In the same manner twelve variables were selected under the criteria

R*>0.9. Only precipitation of warmest quarter (bio 18) was having no correlation in all

categories. The variable having more number of correlation between other variables
was mean temperature of warmest quarter (biolO) (six correlations under (r[ and 5

correlations under R"). In |r|>0.9 criteria variables like bio3» bio4, biol5, biol8 and

bio 19 are uncorrelated. Eight variables such as bio3, bio4, bio5 bio 14, bid 5, bid 7,

bio 18 and bio 19 are uncon-elated under R->0.9.
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The |r| and values in combination with percent contribution atid permutation

importance were used for selecting the most suitable variables, which determined the

spatial distribution of the Indian Peafowl.

Table 8. Percent contribution and permutation importance of biocHmatic

variables based on selected model trial

*

Variable Percent contribution Permutation importance

bio4 31.0 07.4

biol7 14.5 09.6

bio 15 09.7 06.2

bio 18 07.8 04.7

biol2 07.7 03.7

biol4 05.4 15.5

bio3 04.9 10.1

bio 13 04.2 20.4

bio5 03.8 0.3

bio 19 03.2 05.6

bio2 02.5 02.9

biol 01.2 01.7

biol6 01.1 01.5

bio6 0.9 07.9

biolO 0.8 0.3

bio7 0.5 0.1

bio 11 0.4 01.4

bio8 0.2 0.8

bio9 0.1 0
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4.4.1. Model using variables of high percentage contribution having |r| >0.7

^  Variables were sorted out having high percentage contribution according to the
correlation coefficient below 0.7 (|r| >0.7). Six variables were selected; bio4, bioI7,

biolS, bid 5, bio5 and bio2. The average test AUC value was 0.799 witha SD of0.028.

4.4.2. Model using variables of high permutation importance having |r| >0.7

Six variables having high permutation importance based on correlation

coefficient below 0.7 (jrj >0.7) such as biol3, biol4, bio3, bio6, bio4 and bioI8 were

selected. The average test AUC \alue was 0.800 having a SD of 0.024.

4.4.3. Model using variables of high percentage contribution having {r| >0.9

The nine variables selected based on the high percentage contribution having |r|

>0,9 are bio4, bio 17, bid 5, bid 8, bid 2, bio3, bio5, bio 19 and bio2. The average test

AUC value was 0.811 and SD of it is 0.032.

4.4.4. Model using variables of high permutation importance having |r| >0.9

Based on the pennulation importance, nine variables having |r| >0.9 were

selected; bid 3, bio 14. bio3, bio6. bio4. bid 5. biol9, bid 8 and bio2. This model have

got average test AUC value of 0.812 and a SD of 0.020.

4.4.5. Model using variables of high percentage contribution having R^>0.9

The twelve optimized variables having percentage contribution and >0.9

were bio4, bid7. biol5, biol8. blol2, biol4. bio3. biol, bio5. biol9. bio2 and bid.

Tlie average test AUC value was found to be 0.797 and SD was 0.033.

4.4.6. Model using variables of high permutation importance having R^>().9

Tvvehe xariablcs were selected based on high permutation importance and

having R~ >0.9. They were biol3. bio4. bio3. biol7. bio6. bio4. biol5. biol9. bid8,

biol2, blo2 and bio5. The average test AUC value oftliis model was 0.823 and having

a SD of 0.021.
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From these models, the model based on variables having high permutation

importance and |r| >0.7 was selected for the fiiture prediction of the Indian Peafowl,

since the variables were less and have a good AUC value of 0.8 and low SD value of

0.024.

4.5 Current and future predictions of the distribution of the Indian Peafowl

The current distribution pattern of the Indian Peafowl was depicted by MaxFnt

software using the optimized variables. The current distribution of the Indian Peafowl

using the presence records from 1979 to 2015 is given in Fig.7. Tlie current distribution

pattern showed abundance of Peafowl in central part of Kerala, mainly Palakkad,

Thrissur and Malappuram districts. In the eastern slopes of Western Ghats (Chinnar,

Wayanad and Parambikulam), there were presence of Peafowl having a probability

greater than 50 percent.

Table 9. Percent contribution and permutation importance of optimized variables

in the future prediction model for distribution of the Indian Peafowl

Environmental variable Percent contribution Permutation

importance

bio4 41.88 11.43

biol3 19.90 30.18

biol8 13.03 03.68

biol4 11.78 19,29

bio3 09.43 24.63

bio6 04.18 10.83

The most contributing variable {41.9%) for the model construction was

temperature seasonality (bio4) and the least (4.2%) was minimum temperature of

coldest montii (bio6). The variable having high permutation importance (30.18) were

precipitation ofwettestnionlh (biol3) and isothermality (bio3) by 24.63 percent.
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Figure 9. Current distribution of the Indian Peafowl in Kerala
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The results of the Jackknife test of variable importance showed higher gain for

temperature seasonaJity (bio4) when used in isolation and the environment variable that

decreased the gain the most when it was omitted was precipitation of wettest month

(biol3).

Jackknife of regularized training gain for lndian_Peafowl

bio13

n btoWl
n

w

I bl03|
I blD4l

UJ

bio6

WIthoutvariable *

With onty variable ■

With all variables ■

0.05 0.10 0.15 0.20 0.25 0.30 035 0 40 0.45 0.50 0.55 0.60 0.65 0.70

regularized raining gain

Figure 10. Jackknife of regularized training gain in the future prediction models
of distribution for the Indian Peafowl, when optimized variables are used

Models prepared using the optimized variables under four different

Representative Concentration Pathways (RCP) such as RCP2.6, RCP4.5, RCP6 and

RCP8.5 gave the prediction for future distribution of the Indian Peafowl in Kerala for

the years 2050 and 2070. The comparison of climate data of different RCPs are shown

in appendix-2.

The predicted distribution of the Indian Peafowl in 2050 under the RCP2.6

model is given in Fig. 10. According to which the probability of the Indian Peafowl

distribution would expand to the midlands of Thiruvananthapuram, Kollam, Kottayam,

the midlands and low lands of Emakulam, the low lands, midlands and the high lands

in Thrissur, tlie mid and the high lands of Palakkad, low lands of Malappuram,

Kozhikode, Kannur and Kasargode. The highlands of Wayanad, Idukki, Kottayam,

Pathanamthitta, Kollam and Thiruvananthapuram also showed probability for the

presence of the Indian Peafowl.
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Figure U. Prediction of the future distribution of the Indian Peafowl for 2050

under RCP2.6 prediction
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The predicted distribution of the Indian Peafowl in 2050 under the RCP4.5

model is given in Fig. 11. According to which the probability of the Indian Peafowl

would become stronger in the mid lands and low lands of Emakulam, the low lands,

mid lands and the high lands in Tlirissur, the mid and the high lands of Palakkad, low

lands of Malappuram, Kozhikode, Kannur and Kasargode. The Indian Peafowl,

distribution would expand to the mid lands and high lands of Thiruvananthapuram,

Kollam, and Kottayam. Also the high lands of Wayanad, Idukki and Palhanamthitta

showed probability of presence for the Indian Peafowl.

Tlie predicted distribution of the Indian Peafowl in 2050 under the RCP6 model

is given in Fig. 12. A noiihward expansion of distribution of the Indian Peafowl was

seen under RCP6 model predictions. Based on this model the probability of the Indian

Peafowl would become stronger in the mid lands and low lands of Emakulam, the low

lands, mid lands and the high lands in Thrissur. the mid lands and the high lands of

Palakkad, low lands and high lands of Malappuram, low lands of Kozhikode, Kannur

and Kasargode and high lands of Wayanad. The Indian Peafowl distribution would

expand to the high lands of Thiruvananthapuram and Kollam.

The predicted distribution of the Indian Peafowl in 2050 under the RCP8.5

model is given in Fig. 13. Similar to 2050 RCP6 model prediction, a northward

expansion of distribution of the Indian Peafowl would be seen in RCP8.5 prediction.

Based on this model prediction the probability of the Indian Peafowl would become

rich in the low lands and mid lands in Thrissur, the mid lands and the high lands of

Palakkad, low lands and high lands of Malappuram, low lands of Kozhikode and

Kannur and high lands of Wayanad. Certain parts of the high lands of Kollam and

Pathanamthitta shows probability for the distribution of the Indian Peafowl.
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Figure 12. Prediction of the future distribution of the Indian Peafowl for 2050

under RCP4.5 prediction
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Figure 13. Prediction of the future distribution of the Indian Peafowl for 2050

under RCP6 prediction
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Figure 14. Prediction of the future distribution of the Indian Peafowl for 2050

under RCP8.5 prediction
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The predicted distribution of the Indian Peafowl in 2070 under the RCP2.6

model is given in Fig. 14. The Indian Peafowl, distribution would expand to the low

lands, mid lands and high lands of Thiruvananthapuram and Kollam, mid lands and

high lands of Kottayam, low lands of Alappuzha, the mid lands and low lands of

Ernakulam, the low lands, mid lands and the high lands in Thrissur, the mid lands and

the high lands of Palakkad, low lands of Malappuram, Kozhikode and Kannur. The

high lands of Wayanad. Idukki. Kottayam and Pathanamthitta. would also show

probability for the presence of the Indian Pcalbwl.

The predicted distribution of the Indian Peafowl in 2070 under the RCP4.5

model is given in Fig. 15. Based on this model prediction, the probability of the Indian

Peafowl would confine mainly to the mid lands and high lands of Palakkad and

Malappuram. The low lands of Kozhikode and Kannur, high lands of Wayanad and

Kollam and low lands and mid lands of Thrissur and Ernakulam shows probability for

the distribution of the Indian Peafowl.

The predicted distribution of the Indian Peafowl in 2070 under the RCP6 model

is given in Fig. 16. The Indian Peafowl, distribution would expand to the low lands,

mid lands and highlands of Thiruvananthapuram, mid lands and high lands of Kollam,

Kottayam, the low lands, midlands and the high lands in Ernakulam, Thrissur and

Malappuram. the mid and the high lands of Palakkad, low lands of Kozhikode and

Kannur.

The predicted distribution of the Indian Peafowl in 2070 under the RCP8.5

model is given in Fig. 17. Based on the RCP8.5 model prediction the probability ofthe

Indian Peafowl would become rich in the low lands, mid lands and high lands in

Thrissur and Malappuram. the mid lands and the high lands of Palakkad, low lands of

Kozhikode and Kannur and high lands of Wayanad. Certain parts ofthe high lands of

Idukki. Pathanamthitta and Kollam showed probability for the distribution ofthe Indian

Peafowl.
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Figure 15. Prediction of the future distribution of the Indian Peafowl for 2070

under RCP2.6 prediction
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Figure 16. Prediction of the future distribution of the Indian Peafowl for 2070

under RCP4.5 prediction
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Figure 17. Prediction of the future distribution of the Indian Peafowl for 2070

under RCP6 prediction
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Figure 18. Prediction of the future distribution of the Indian Peafowl for 2070

under RCP8.5 prediction
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CHAPETR 5

DISCUSSION

The effects of climate change are being spread in all sectors. Tlie existence of

life is being questioned and several species have become extinct due to the devastating

incidents happened to nature. Intolerant species have been perished and some gone

extinct when the habitat is changed drastically due to the extreme climatic events.

Several other species changed their habitat to appropriate spaces or showed adaptive

mechanisms. Among avian species, changes in distribution is widely seen since they

are sensitive to small climatic shifts and due to their migration.

The Indian Peafowl was a sparsely distributed species in Kerala. This study was

initiated because of the wide spread occurrence of the Indian Peafowl over the last one

decade or so. For the last 10 years or so there have been widespread records of the

Indian Peafowl from various habitats from across Kerala.

Thus the present study examines the current distribution patterns of the Indian

Peafowl based on climatic variables and other physical variables and also the

distribution of the Indian Peafowl is being projected for the years 2050 and 2070 under

four Representative Concentration Pathways (RCP).

MaxEnt software was used to study the distributional changes of the Indian

Peafowl by relating the presence data points to the climatic conditions prevailing there.

The study used the occurrence data points of the Indian Peafowl from 1979 to 2015

and climate data from 1950-2000 for current conditions and for the years 2050 and

2070, climate was predicted by using the coupled model HadGEM2-A0 of 30 second

resolution under four different Representative Concentration Pathways (RCPs). In this

chapter the results obtained are discussed and analysed in detail.
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5.1 SELECTION OF REPLICATION RUN TYPE

The objective of replication run type is to assess generality, thereby achieving

sense for the model in the identification of attributes of the species distribution and to

evade noisy sampling procedures. MaxEnl provides three t\'pes of replication types for

the evaluation of models such as cross-validation, bootstrapping and subsampling. In

cross-validation, presence locations are alienated to training and test data, to fit the

model and to evaluate the model respectively. It is preferred by some studies since it

handles data efficiently and users can easily find the statistical results such as range

and standard error (Merovvc/cv/.. 2013). But while using cross-validation, only one part

of the data is used for model fitting which questions the statistical and spatial

independency of test data from training data. This will lead to spatially correlated folds

which overestimates the model performance and undervalues the standard error of

prediction (Anderson and Raza, 2010). The model is taking test data in a self-manner,

so automatically test percentage becomes to zero even the user decided to use some

portion of data for testing. In all trial models based on cross-validation, the average test

AUC value and SD (Table.2) and the result outputs are the same, telling the lack of

independency of lest data. So this method is not well suited for future predictions. The

SD for the AUC curve (Fig.2c) was quite higher compared to other models.

The bootstrap technique produces pseudo samples which is disconcerted forms

of the parent data (Efron. 1979). This is one of the popular resampling technique used

for statistical approaches. Replacement of observations from original data is done

which allows the creation of possible replications of some observation (De Bin el al.,

2016). Our study revealed that it have got high average test AUC value and low SD

(Table.2) which can be regarded as best fit of the model. But the problems related to

bootstrap is the propensity in choosing loo many variables (Janilza et ai, 2015). High

inclusion frequency for noise variables are prominent in bootstrap approaches

(Rospleszcz el al., 2014). The analysis of omission rale in Fig.3a shows clearly about
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the autocorrelation with lest and training data. In both bootstrap and cross-validation

the SD for the response curves were higher (Fig.2 a,c).

Subsampling is regarded as an effective substitute for bootstrap (Hartigan,

1969) and it was observed to produce a stable model (Meinshausen and Buhlmann,

2006; 2010). Even when bootstrap fails, it showed linear consistency (Davison ef al.^

2003). Unlike bootstrap there is no replacement of observations. Subsampling does not

encourage the inclusion of noise variables, which permits the acknowledgement of

relevant variables. It uses all possible thresholds to discriminate relevant and noise

variables (Dc Bin et al., 2016). Selection of weak effect variables can be considered as

a disadvantage to this technique. Even though average test AUC value of subsampling

was lower compared to cross-validate and bootstrap (Table.2) and subsampling was

selected as an effective replication type since it have lower correlation among variables

than in cross-validate and does not include noisy variables like in bootstrap.

5.2 VARIABLE CONTRIBUTION TO THE MODEL DISTRIBUTION OF THE

INDIAN PEAFOWL

MaxEnt model output gives the contributions of environmental variables which

are used in the construction of distribution model of the Indian Peafowl. In each step

of the MaxEnt algorithm, coefficient of a single feature is altered and the gain of the

model is increased. At the end of training process these increased gain of each variable

are converted into percentage, thus obtaining the percentage contribution. From the

analysis of Table.B, temperature seasonality (bio4) showed highest percentage

contribution (28%) in the con.struction of model, whereas mean temperature of driest

quarter (bio9) have no contribution at all. Other than bioclimatic variables linear water

inland (wlinl). perennial water bodies (wbpere) and land cover variables have a

significant role as they contribute 7.9, 7.7 and 5.8 percent respectively. Altitude have

lower contribution (0.8%) in the distribution of the Indian Peafowl. But these

percentage contributions are heuristically defined. They will differ when the path used

^  to get the same solution changes according to different algorithms. Also due to the
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correlations among the variables, handling ofpercemage contributions should be made

with caution.

l"he determination of permutation importance (Table.3) is path independent and

it depends only on the final MaxEnt model. The decrease in training AUC in

accordance with the random permuting values of each variable among both background

and presence data is calculated and higher the decrease in AUC resembles the increased

dependency of that particular variable. The resulting values are normalized to

percentages. So it is more advisable for measuring the contribution of each variable.

For the di.slribution of model precipitation of driest month (biol4) and linear water

inland (wlint) shows higher importance. Among the other bioclimatic variables

precipitation of wettest month (bio 13). precipitation of driest quarter (bio 17),

precipitation of warmest quarter (bio 18) and temperature seasonality (bio4) shows

higher importance.

The Jackknife depicts (Fig.4) the training gain of each variable when the model

was run in isolation and later it compares to the training gain of all variables. This is

helpful in identifying the most contributed variable individually. The variables showing

good fit to the training data are temperature annual range (bio?) and temperature

seasonality (bio4) and appears to have the most useful information by itself. The

environment variable that decreases the gain the most when it is omitted is linear water

inland (wlint), which therefore appears to have the most information that isn't present

in the other variables. But since it is of no considerable change when compared to

others, it can be concluded that no variable contains substantial amount of useful

information that is not already contained in other variables.

The responses of each variable is depicted in the graphs shown in Fig.5 and

Fig.6. Tlie Fig.5 shows the response of each curves when other variables are at their

average values. The variables which have a positive effect on the distribution of the

Indian Peafowl at a particular location are minimum temperature of coldest month
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(bio6). mean temperature of wettest quarter (bio8), mean temperature of coldest quarter

■V (biol 1), precipitation of seasonality (bio 15). precipitation of wannest quarter (bid 8),
inland water bodies (wbint), and perennial rivers (wlpere). whereas Mean diurnal
range (bio2), isothermalily (bio3), temperature seasonality (bio4), Precipitation of
wettest month (biol3), precipitation of driest month (biol4). precipitation ot wettest
quarter (bio 16). precipitation of driest quarter (bio 17), precipitation of coldest quarter
(bio 19). linear water inland (wlinl) and perennial water bodies (wbpere) have a
negative effect for the chance of survival of the Indian Peafowl in that area. Variables
like annual mean temperature (biol), maximum temperature of warmest month (bio5),
temperature annual range (bio7), mean temperature driest quarter (bio9), mean
temperature of warmest quarter (bio 10). annual precipitation (bio 12) and altitude (alt)

.»! showed no significant change to the survival of species. Bui these response curves
depends on the values of other variables too. Interpreting these response curves are

difficult, if there are strong correlation existing among vfiriables. These curves show

marginal effect of changing exactly one variable, whereas the model may take
advantage of sets of variables changing together.

in contrast to the above marginal response cur\'es, MaxEnt creates another set

of response curves using only the corresponding variable (Fig.6). The dependence of
predicted suitability both on the selected variable and on dependencies induced by
correlations between the selected variable and other variables is reflected in these plots.

\  If there is strong correlation between variables, it is easier to interpret using these
curves.

The ideal annual mean temperature (biol) for the presence of Peafowl is 27-

28"C (Fig.5). During the maximum warmest period (bio5) the optimum range of
temperature is 34"C to 37 X' (Fig.6), Bui it caiTt prolong at this higher temperature for
a longer time. Mean temperature greater than 30 "C during the warmest quarter (biolO)
is negatively affecting the probability of presence (Fig.6). Higher the mean diurnal

A  range (bio2). higher is the probability of presence and annually it ranges from 14*'C to
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15 "C (Fig.6). When the minimum temperature of coldest month (bio6) and mean

temperature of coldest quarter (bio! 1) are lower, the probability of presence for the

Indian Peafowl decreased (Fig.6). Precipitation is negatively affecting llie probability

of presence. Annual precipitation (bioI2) should be low (<1000mm) for higher

probability of the Indian Peafowl (100%) and at regions receiving annual rainfall less

than 3000mm have a probability of <60 percent for the presence of the Indian Peafowl

(Fig.6). During wettest month (biol3), the Indian Peafowl are abundant (97%) in areas

having <200mm rainlall and it can go upto <400mrn while considering the whole

wettest quarter (biol6). During the coldest quarter (bioI9), lower precipitation is

favouring the probability of presence (Fig.6).

5.3 VARIABLE OPTIMIZATION IN THE MODEL

The trials of model run for selecting the most titled one show'ed the results as

shown in Table.3. The average test AUC value is used as a selection criteria for this.

Based on the ranking of locations it measures the predictive accuracy which is

tlireshold independent. It can be interpreted as the probability of ranking higher a

randomly chosen presence location than a randomly chosen background point (Merow

et al. 2013). In the case of presence only data, higher the AUC shows that, the model

is well distinguished between presences and background locations. The model having

higher AUC is more accurate. Table.4 shows the different trials and the average test

AUC values. The fourth trial obtained high AUC value and it is taken as the reference

model for further studies. Also in the Fig.7a it is seen that the omission on test samples

is a very good match to the predicted omission rate. In the ROC cui*ve (Fig.7b), the

mean (red line) is above the random prediction line which shows the model is belter in

predicting the presences.

Climatic variables are well known for high correlation among each other

(Brown. 2014). For the interpretation of the contribution of each input variable to the

species distribution model. autocoiTelation of the input have to be reduced by removing
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highly correlated variables. Inclusion of these variables will not affect the quality of

the prediction, but can seriously limit the inference of the contribution of any correlated

variable. When a highly correlated variable is included in the model, then all other

highly correlated variables will be excluded from being incorporated. This will result

in the improper representation of the 'analysis of variable contributions' in the model

output. To find out the correlation among the environmental variables, they were tested

by using Pearson correlation matrix |r| and coefficients of determination (R^). The result

is shown in the Table.5 and Table.6. Variables having jrl value >0.9 and >0.7 and

value >0.9 are selected separately to draw out the important variables according to tlie

percentage contribution and permutation importance (Tablc.7). Models based on these

conditions are created and the most suitable one is selected based on the outputs

produced my MaxEnt. Only bioclimatic variables are used for further analysis, because

future projections for others is not predictable.

Model selection is based on the average test AUC value. SD. |r| and R* value

and the number of variables used. Lesser the number of variables, more good is the

model. It is considered that, if les.ser variables explain the model, the correlation will

be at its minimum, percent contribution can be effectively studied and it is easy to

interpret the model. Model considering the |r|>0.7 will certainly have lesser amount of

variables, since most olThc variables have some sort of correlation with one another.

|rl>0.9 will contain greater number of variables than |r|>0.7 since most of them have

correlation lesser than 0.9. So number of variables are considered initially and the

model using variables of high percentage contribution having |rj >0.7 and model using

variables of high permutation importance having |ii >0.7 arc selected. The AUC value

of the first (0.799) was lower than the second (0.800). Also the SD was higher for the

first (0.028) than the second (0.024). So it can be concluded that model using variables

of high permutation importance having |r| >0.7 is better. The variables selected are

isolhermality (bio3), temperature sea.sonality (bio4), minimum temperature of coldest

month (bio6). precipitation of wettest month (biol3). precipitation of driest month
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(bio!4) and precipitation of warmest quarter (biolS). Based on this, the models are

constructed for the current distribution and future distribution.

5.4 CURRENT AND FUTURE PREDICTIONS OF THE DISTRIBUTION OF THE

INDIAN PEAFOWL

5.4.1 Current distribution

The cun'ent distribution of the Indian Peafow l based on the six variables in the

selected model is shown in Fig.8. Most abundant distribution was seen in the central

part of Kerala, especially in Palakkad and Thrissur districts. The high lands of Wayanad

and Idukki also showed probability of distribution greater than 50 percent. In Chinnar

region, Idukki the probability was almost 100 percent. Even the low lands of Thrissur

had the potential for the survival of the Indian Peafowl, In districts such as Alappuzha,

Kottayam, Kollam (except high lands) and Thiruvananlhapuram, Kannur (except low

lands) and Kasaragod had no probability of distribution for the Indian Peafowl in the

current conditions. The abundance of the Indian Peafowl in Palakkad. Thrissur,

Wayanad and Chinnar could be explained by temperature profile and amount of

rainfall. The Indian Peafowl was a species which inhabited in dry conditions. They

were commonly seen in North India and Tamil Nadu where low precipitation and

moderate temperatures were experienced. Likewise the eastern slopes of Western

Ghats in Kerala received lower rainfall resulting in dryness which favoured the habitual

conditions of the Indian Peafowl. From there, they were spreading to the interiors of

the Kerala. The existence of Palakkad gap made it easier for the establi.shmcnt of the

Indian Peafowl in central Kerala. But as a conventional thought, they should not be

present in Kerala since it was an area receiving high amount of rainfall and mostly

covered with tropical rain forest. This expanding distribution of the Indian Peafowl

actually warns about the spreading of dryness in Kerala. Tlie reduction in the amount

of rainfall and hike in the temperature profile favoured the environmental conditions

which was suitable for the Indian Peafowl distribution.
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Using MaxEnt output analysis, the six bioclimatic variables used for modelling

had been critically analysed for their role in determining the distribution pattern of the

Indian Peafowl in Kerala. Table.8 shows the importance of temperature seasonality

(bio4) in model construction. But the variables which was playing the key role in

determining the probability of presence are precipitation of wettest month (biol3) and

isothermality (bio3). The Jackknife test of variable importance (Fig.9) showed

temperature seasonality (bio4) contained the most useful information by itself and

precipitation of wettest month (bio 13) contained most information that isn't present in

the other variables.

5.4.2 Predicted future distribution of the Indian Peafowl

Models prepared using the optimized variables under four different

Representative Concentration Pathways (RCP) such as RCP2.6, RCP4.5. RCP6 and

RCP8.5 gave the prediction for future distribution of the Indian Peafowl in Kerala for

the years 2050 and 2070. In every predictions the distribution of the Indian Peafowl

would be spreading compared to current scenario. Generally three factors were

considered for the abundance of species: suitable environment which favoured the

conditions for growth, availability of food materials and the number of species. This

study was mainly based on the environmental conditions. But the primary factor which

favoured the species distribution was their pre-existence over there or number of

population. If there was no population pre-existing, there won't be any future

population. So keeping this as the primary factor, tlie environmental variables were

studied. The availability of food was also a key factor in determining the distribution.

Off late the Indian Peafowl was even considered as a pest species by the farmers. They

either fed upon or destroyed various crops including the vegetables and paddy.

In the analysis of distribution of the Indian Peafowl in Kerala, the six

bioclimatic variables were critically analysed. A single variable cannot determine the

distribution of the Indian Peafowl. The analysis was done by considering the combined
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effects of all the variables. The precipitation during the wettest month (bio 13) was

found to be increasing all over Kerala in all the RCP predictions and the decreased

abundance in some RCP predictions could be explained by this. The predicted

distribution of the Indian Peafowl under dilTerent scenarios when each variable is

excluded in each run is shown in appendix-j. This would clearly depicts the areas

where each variable has its influence. The meteorological data shown in appendix-2

and the modelled distribution figures of the Indian Peafowl is used for analysing each

RCP prediction.

5.4.2.1 Distribution of the Indian Peafowl for 2050 under RCP2.6 prediction

Fig. 10 shows that the distribution of the Indian Peafowl would increase over

central, northern low lands and southern mid lands and high lands of Kerala. The

increase or decrease in probability of presence could be explained by the response

curves of the variables (Fig.6). In all parts of Kerala, there would be an increase in the

minimum temperature of coldest month (bio6) and in the temperature seasonality

(bio4). The abundance in central and southern parts was due to the decrease in

isothemiality (bio3) and precipitation of driest month (biol4). In northern Kerala apart

from the variation in above given variables, there would be a decrease in precipitation

during warmest quarter (biol 8).

5.4.2.2 Distribution of the Indian Peafowl for 2050 under RCP4.5 prediction

^  The result (Fig.l I) was almost similar to RCP 2.6 (Fig. 10) prediction but would
show a decrease in the probability of Indian Peafowl in the mid lands of southern parts

of Kerala and in high lands of Palakkad region due to the increase in precipitation

during the wettest month (bio 13). A widespread increase would be seen in low lands

of northern Kerala, high lands of Wayanad and low lands and mid lands of central

Kerala due to the increase In minimum temperature of coldest month (bio6) and

decrease in precipitation of driest month (bio 14), precipitation of warmest quarter

(biol 8) and temperature seasonality (bio4). In the low lands of Kannur and Kasaragod
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and high lands of Thiruvananthapuram the precipitation of wettest month (bioI3)

would be decreasing.

5.4.2.3 Distribution of the Indian Peafowl for 2050 under RCP6 prediction

Distribution of the Indian Peafowl for 2050 under RCP6 prediction (Fig. 12)

showed that, the low lands and mid lands of northern part of Kerala, low lands, mid

lands and high lands of central part of Kerala and high lands of southern part of Kerala

would show an increase in probability of presence due to the decrease in tlie

temperature seasonality (bio4). precipitation of driest month (biol4) and precipitation

of warmest quarter (biol 8) and increase in the minimum temperature of coldest month

(bio6). In mid lands of central part of Kerala and high lands of Kollam. Pathanamthitla,

^  Idukki and Palakkad the distribution will be minimized due to the increasing

precipitation during wettest month (biol 3).

5.4.2.4 Distribution of the Indian Peafowl for 2050 under RCP8.5 prediction

The probability of presence of the Indian Peafowl under RCP8.5 prediction

(Fig. 13) was similar to RCP2.6 scenario (Fig. 10), except the decrease seen in low lands

and mid lands of southern Kerala and high lands of Palakkad. This decrease was

explained by the increasing precipitation during wettest month (bio 13). There would

be an increase in temperature seasonality (bio4) except in high lands of Kollam, a

decrease in precipitation during driest month (biol4) and warmest quarter (biol 8) and

an increase of minimum temperature during coldest month (bio6) which resulted in the

increased distribution in the Indian Peafowl.

5.4.2.5 Distribution of the Indian Peafowlfor 2070 under RCP2.6 prediction

During 2070 under RCP2.6 prediction (Fig. 14) due to the increase in the

minimum temperature of coldest month (bio6) and in the temperature seasonality (bio4)

and decrease in the isothermality (bio3) and precipitation of driest month (biol4), the

probability of presence of the Indian Peafowl will increase compared to current
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condilions (similar lo 2050 RCP2.6). The dislinguishing characteristics of this

prediction was that Alappuidia would become a favourable environment for the growth

of the Indian Peafowl due to the increase in the minimum temperature of coldest month

(bio6). The increased disti-ibulion of the Indian Peafowl in lowlands and midlands of

central Kerala and low lands of Kasargode was due to the decreased precipitation of

w-armest quarter (biol8). The high lands of Wayanad would have high abundance of

the Indian Peafowl due lo the increased minimum temperature of coldest month (bio6)

and decreased precipitation of warmest quarter {bio 18).

5.4.2.6 Distribution of the Indian Peafowlfor 2070 under RCP4.5 prediction

Tlie probability of presence of the Indian Peafowl during 2070 under RCP4.5

prediction (Fig. 15) would decrease throughout Kerala compared to other RCP

predictions for the years 2050 and 2070. Only the mid lands and high lands of Thrissur

and Palakkad would show- more probability for the distribution of the Indian Peafowl

due to the increased minimum temperature of coldest month (bio6). The lower

probability of presence for the Indian Peafowl was due to the increasing precipitation

during wettest month (biol3). driest month (biol4) and warmest quarter (bioI8) and

increased isothermality (bio3) and decreased temperature seasonality (bio4).

5.4.2.7 Distribution of the Indian Peafowl for 2070 under RCP6 prediction

The distribution of the Indian Peafowl for 2070 under RCP6 prediction (Fig. 16)

would be similar to the prediction made by RCP4.5 for the year 2050 (Fig. 11). Tlie low

lands of Kannur and Kozhikode, the low lands and mid lands of Malappuram and

Thrissur, mid lands and high lands of Palakkad and high lands of Kottayam,

Patlianamthitta, Kollam and Thiruvananthapuram would show high probability for the

distribution of the Indian Peafowl due to the decrease in isothermality (bio3) and

decreased precipitation during driest month (bio 14) and warmest quarter (bio 18) and

increase in minimum temperature of coldest month (bio6). The abundance would be
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decreasing in the low lands of Kasargode and high lands of Idukki due to the decreased

temperature seasonality (bio4) over there.

5.4.2.8 Distribution of the Indian Peafowl for 2070 under RCP8.5 prediction

During 2070 under RCP8.5 prediction (Fig. 17) the low lands and mid lands of

southern Kerala and high lands of Idukki would show decrease in the probability of

distribution of the Indian Peafowl due to the decreased temperature seasonality (bio4)

and increased precipitation during wettest montli (bio 13) and driest month (bio 14). The

mid lands and high lands of Palakkad, low lands, mid lands and high lands of

Malappuram and Thrissur would be showing high probability in the distribution of the

Indian Peafowl due to the increase in the minimum temperature of coldest month (bio6)

and decreased precipitation during wettest month (bio 13) and warmest quarter (biol 8),
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CHAPETR 6

SUMMARY AND CONCLUSION

Climate change can have broad effects on biodiversity and ecosystems. Several

studies have been undertaken to study the effects of climate change on both plant and

animal species and it revealed the changes occurring in the phenology^ distribution and

abundance of species. Birds arc considered as an important bio-indicators, which

reflects the changes happening in their environment. These changes can affect the bird

distribution and it is the field where predictive modelling can be applied. Accurate

mapping of presence records can be used for correlating it with environmental

variables, so that prediction for the fijture distribution of that species can be mapped.

This is used especially in the conservation practices, where the potential places of

occurrences can be identified and measures can be taken to protect them in the changed

habitat.

This study was emphasized on the impacts of climate change on the temporal

and spatial distribution of the Indian Peafowl in Kerala, Using modelling techniques,

the distribution for the same is projected for the years 2050 and 2070 under various

climate change scenarios. The occurrence data for the Indian Peafowl was collected

for a 37 year period from 1979-2015. Using the current climatic conditions (1950-

2000) obtained from WorldClim as bioclimatic layers, correlation and probability was

calculated for current distribution using MaxEnt software using Maximum Entropy

method. Using the results obtained Irom these, future prediction is being made. By

analyzing the current and projected future distribution, following results have been

obtained.

•  In detennining the distribution of the Indian Peafowl using MaxEnt, subsampling

method was selected as an effective replication type since it have lower

correlation among variables than in cross-validate method and does not include

noisy variables like in bootstrap method.
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•  The variable which showed highest percentage contribution in the construction of

^  model for the distribution of Indian Peafowl was temperature seasonality {bio4),
while the mean temperature of driest quarter had little contribution at all (bio9).

•  Altitude had no significant role in determining the distribution of the Indian

Peafowl.

•  The permutation importance in detennining the probability of the Indian Peafowl

was higlier for the precipitation of driest month and linear water inland (wlint)

when all variables were used for analysis.

•  Temperature aimual range (bio7) and temperature seasonality (bio4) appeared to

have the most useful information by itself and linear water inland (wlint) have the

most information that isn't present in otlier variables, when all variables were used

for modelling the distribution ofihe Indian Peafowl.

•  The variables which had a positive effect on the distribution of the Indian Peafowl

at a particular location were mean temperature of coldest quarter (bioll),

precipitation of seasonality (biol5), precipitation of warmest quarter (biol8),

minimum temperature of coldest month (bio6), mean temperature of wettest

quarter (bio8), inland water bodies (wbint), and perennial rivers (wlpere).

•  Precipitation of wettest month (biol3), precipitation of driest month (biol4),

precipitation of wettest quarter (biol6), precipitation of driest quarter (biol7),

precipitation of coldest quarter (biol9), mean diurnal range (bio2), isothermality

.  (bio3), temperature seasonality (bio4), linear water inland (wlint) and perennial

water bodies (wbpere) had a negative effect for the chance of survival of the Indian

Peafowl in that area.

•  Some variables such as altitude, mean temperature of warmest quarter (bio 10),

annual precipitation (bio 12), annual mean temperature (biol), maximum

temperature of warmest month (bio5) and mean temperature of driest quarter

(bio9) showed no significant change to the distribution of the Indian Peafowl.

^  * 11 cannot prolong during high temperatures (>37 "C) during summer season (bio5).
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•  Higher the precipitation, lower the probability of presence of the Indian Peafowl.

^  Regions receiving annual precipitation (bio 12) lesser tlian 1000mm favours the
probability of presence for the Indian Peafowl by ICQ percent and lesser than

3000mrn rainfall shows probability of 60 percent and more in sighting the Indian

Peafowl in that region.

•  During driest period (bioI4). no rainfall is good for achieving probability of

presence for the Indian Peafowl greater than 50 percent.

•  When precipitation of wiirmesl quarter (bio 18) was decreased (<300mm) the

probability of presence for the Indian Peafowl increased to 50 percent.

•  As isothermality (bio3) ranged between 53 and 63 tlie probability of presence for

the Indian Peafowl was greater than 50 percent.

•  When temperature seasonalily (bio4) was between 12.5 "C and 16 "C. the

probability of presence for the Indian Peafowl was greater than 50 percent.

•  As the minimum temperature of coldest month (bio6) increased the probability of

presence tor the Indian Peafowl increased and reached maximum (57%) at 22.5''C.

•  Model construction using variables of high permutation importance having lr| >0.7

was better when compared to other models.

•  Most abundant distribution of the Indian Peafowl in the current scenario was seen

in the central part of Kerala, especially in Palakkad and Thrissur districts. The high

lands of Wayanad and Idukki also shows probability of distribution greater than

50 percent. The low lands of Thrissur and North Kerala had the potential for the

habitation of peafowl.

•  The expanding distribution of the Indian Peafowl may be considered as a warning

about the spreading of diyness in Kerala.

•  The most contributing variable for the future prediction model construction of the

Indian Peafowi using the optimized variables was temperature seasonalily (bio4)

by 41.9 percent and the least was minimum temperature of coldest month (bio6)

_  by 4.2 percent. But the most heavily depended variable {permutation importance)
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in the mode! tor distribution of the Indian Peafowl were precipitation of wettest

month (biol3) by 30.18 percent and isothermality (bio3) by 24.63 percent.

Probability for the presence for the Indian Peafowl would be increasing throughout

Kerala in all futui^ projections except in low lands of Alappuzlia and high lands

of Wayanad. Only in 2070 RCP2.6 projection there showed abundance of the

Indian Peafowl in Alappuzha and high lands of Wayanad.

The probability of presence lor the Indian Peafowl increased to 100 percent in the

central parts of Kerala (Palakkad, Thrissur, and Malappuram).

In 2070 RCP4.5, the probability of presence for the Indian Peafowl would be lower

compared to other projections throughout Kerala.

Especially in southern parts of Kerala, the probability of distribution for the Indian

Peafowl would reduce in 2050 RCP8.5, 2070 RCP4.5 and 2070 RCP8.5

projections.

The increasing distribution of the Indian Peafowl over Kerala in the future

prediction was associated with the increase in minimum temperature of coldest

month (bio6) and decrease in precipitation of warmest quarter (bio 18).

If the precipitation of wettest month (bio 13) wouldn't have increased the

probability for presence of the Indian Peafowl would have been increased

considerably all over Kerala. So precipitation of wettest month could be

considered as a controlling factor in the presence of the Indian Peafowl.
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CHAPTERS

ABSTRACT

It has been ofgreat importance for the researchers in finding the factors which

influenced the species distributions. They are keen to know the current and future

distribution patterns of endangered species for implementing the conservation

strategies. Some invasive species tu*e expanding their territory into new areas and it

have to identity' accurately. Avian species are regarded as a good bio-indicator of these

devastating changes in the environment. This study was done based on the spatial and

temporal distribution of the Indian Peafowl in Kerala, which would be supportive to

establish the changes happening in the environment at various places. During the recent

decades, rapid expansion in the distribution of the Indian Peafowl was occurred. The

hypothesis of this study was that, this expansion is due to the climatic changes. To

delineate species distributions and habitat associations. MaxEnt program was used.

Using the current presence data acquired tVom e-Bird data source and 19 bioclimatic

variables from WorldClim vl.4 the distribution of the Indian Peafowl had been

modelled. Using the current distribution analysis, it would project the distribution of

Indian Peafowl into the future by converging it to the maximum entropy probability

distribution. Only the uncoiTelated variables were used for the study, selected by

checking for its percent contribution, permutation importance and R' value. The study

revealed the current (1950-2015) and projected distribution pattern of the Indian

Peafowl for the years 2050 and 2070 under different RCP projections. The projected

models tells about the increasing spatial distribution of the Indian Peaiowl throughout

Kerala except in .Alappuzlia and western slopes of Wayanad. The central part of Kerala

is tJie hoispot of the Indian Peafowl currently and it will be the same in the future. The

combined effects of precipitation and temperature variation have an indispensable role

in this projected distribution of the Indian Peafowl.
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Response curves of each variable using bootstrap, subsampling and cross-validate replication
types
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APPENDIX-II

Precipitation of wettest month (bio 13) in mm

SI. Place 1950 2050 2070

No - RCP RCP RCP RCP RCP RCP RCP RCP

2000 2.6 4.5 6 8.5 2.6 4.5 6 8.5

1 Achankovil, Kollam 233 313 328 314 306 297 319 366 384

2 Adat. Thrlssur 360 384 417 390 345 366 399 446 51 1

3 Bekal. Kasari^ode 360 384 417 390 345 366 399 446 511

4 Chetiuva, Thrissur 475 569 531 453 557 531 501 532 435

5 Chinnar. Idukki 702 797 751 618 748 733 708 748 592

6 Choolanur, Palakkad 568 672 634 532 651 620 598 630 514

7 Forl St.Angelo.
Kannur

583 700 642 563 691 673 605 654 531

8 Muihanga, Wayanad 675 772 698 590 742 696 685 727 622

9 Palode,

Thiruvananlhapuram

286 341 333 272 339 306 315 323 317

10 Parambikulam,

Palakkad

678 729 617 534 621 673 603 650 695

n Shendumev, Kollam 378 432 407 356 417 443 380 425 342

12 Thatlekkad bird

sanciuary. idiikkl

1294 1364 1204 102! 1292 1261 1224 1290 1084

13 Thavaiioor.

Maiappiiram

1266 1341 1213 1056 1332 1283 1290 1320 1 189

14 Veil.

Thiruvananlhapuram

741 841 782 652 782 788 736 789 604

15 Vellanikkara,

Thrissur

726 832 774 649 780 778 730 781 605

All Kerala average 652 741 690 583 702 689 660 701 574
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Precipitation of driest month (biol4) in mm

S). Place 1950 2050 2070

No _ RCP RCP RCP RCP RCP RCP RCP RCP

2000 2.6 4.5 6 8.5 2.6 4.5 6 8.5

1 Achankovil, Kollam 24 18 17 14 24 17 26 16 3!

7 Adai, Thrissur 9 7 6 6 8 7 8 6 n

3 Bckal, Kasar^ode 1 I 1 1 1 1 1 1 1

4 Chetiuva. Thrissur 2 2 1 2 2 I 2 1 4

5 Chinnar. Idukki 29 24 22 18 24 20 36 21 28

6 Choolanur, Palakkad 2 2 1 2 2 1 2 1 3

7 Fort St.Angelo,
Kanniir

3 2 2 3 2 2 3 3 3

8 Muthanga. Wavanad 4 3 3
•>

J 4 3 4 3 5

9 Palode.

Thiruvaiianthapuram

14 1 1 10 10 12 9 15 9 16

10 Parambikiilam,

Palakkad

22 19 16 13 22 14 26 14 28

11 Shendumev. Kollam 2 2 2 2 2 1 3

12 Thattekkad bird

sanctuary, Idukki

3 3 2 3 2 2 4 2 6

13 Thavanoor.

Malanpiiram

25 21 18 19 24 20 30 15 39

!4 Veil.

Thiruvananthapuram

18 14 14 12 19 12 20 12 22

15 Vellanikkara.

Thrissur

1 1 1 1 1 1 I I 2

All Kerala average 6 5 5 4 6 4 7 4 8

-c
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Ir Precipitation of warmest quarter (bio 18) in mm

SI. Place 1950 2050 2070

No . RCP RCP RCP RCP RCP RCP RCP RCP

2000 2.6 4.5 6 8.5 2.6 4.5 6 8.5

1 Achankovil, Kollam 347 661 204 451 333 643 530 438 295

2 Adal, Thrissur 207 217 146 170 130 182 242 146 164

3 Bekal, Kasarcode 314 315 314 315 314 312 316 313 314

4 Chettuva. Thrissur 255 243 193 216 176 223 272 191 222

5 Chinnar. Idukki 293 312 170 200 150 328 271 151 152

6 Choolanur, Palakkad 380 445 260 297 224 390 524 264 265

7 Fort St.Angelo,
Kanniir

362 358 328 346 320 351 389 232 348

8 Mulhanca, Wayanad 280 328 186 223 164 265 370 187 194

9 Palode.

Thiruvananthapuram

283 354 186 227 165 280 408 188 190

10 Parambikulam.

Palakkad

386 420 239 263 210 480 359 214 221

11 Shendumey, Kollam 374 443 255 294 220 380 520 257 260

12 Tlialtekkad bird

sanctuary." Idukki

282 266 218 241 206 249 291 217 250

13 Thavanoor,

Malappuram

542 675 330 378 294 643 723 329 314

14 Veil.
Thiruvananihapuram

738 823 402 611 415 778 709 581 394

15 Vellanikkara,

Thrissur

353 392 251 284 219 342 450 252 261

All Kerala average 338 385 236 273 210 342 433 241 244
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Isothermality (bio3) (tbio2/bio7] xlOO)

SI. Place 1950 2050 2070

No - RCF RCP RCP RCP RCP RCP RCP RCP

2000 2.6 4.5 660 8.5 2.6 4.5 6 8.5

1 Achankovil. Kollam 65 61 61 64 64 59 65 61 64

-) Adal, Thrissur 61 58 56 60 58 56 61 57 58

3 Bekal. Kasamode 62 61 63 64 63 61 65 63 63

4 Chelluva. Thrissur 59 56 55 58 57 55 59 56 56

5 Chinnar. Idukki 65 60 63 65 65 60 66 63 64

6 Choolanur. Palakkad 63 61 60 63 63 60 65 61 62

7 Fort Sl.Angelo,
Kannur

61 59 60 61 61 59 63 61 60

8 Mulhanaa. Wayanad 61 60 58 61 61 57 63 58 59

9 Palode.

Thiruvananthapuram

63 60 60 63 62 58 64 60 62

10 Parambikulam,

Palakkad

65 63 65 67 66 60 68 64 66

1 1 Shendurney, Kollam 62 61 60 63 62 59 64 61 62

12 Thatlekkad bird

sanctuary, Idukki

59 56 56 58 56 55 59 56 56

13 Thavanoor,

Matappuram

67 65 66 68 69 63 69 67 69

14 Veil,

Thiruvananthapuram

62 58 5959 61 60 57 63 58 60

15 Vellanikkara,

Thrissur

61 61 60 62 61 59 63 60 60

All Kerala average 62 60 60 62 61 59 64 60 61
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Maximum temperature of warmest month (bio 13) in "C

SI. Place 1950 2050 2070

No _ RCP RCP RCP RCP RCP RCP RCP RCP

2000 2.6 4.5 6 8.5 2.6 4.5 6 8.5

1 Achankovll, Kollam I I.O 12.2 1 1.4 1 1.0 1 1.0 12.4 10.7 1 1.4 11.0

2 Adat, Thrissur 13.3 14,1 14.5 13.4 13.9 14.8 13.3 13.9 13.8

3 Bekal. Kasaraode 11.1 10.9 10.8 10.3 10.4 II.l 10.8 10.5 10.1

4 Chetluva. Thrissur 13.3 14.1 14.3 13.4 13.9 14.6 13.3 13.8 13.6

5 Chinnar. Idukki 10.3 10.9 10.2 9.9 9.9 11.5 9.7 10.2 9.9 ,

6 Choolanur. Palakkad 13.2 13.4 13.5 12.7 13.4 13.5 13.1 13.1 12.5

7 Fort St.Angelo,
Kannur

12.2 12.4 12.3 11.6 1 1.9 12.6 1 1.8 11.8 11.6

8 Muthanua, Wavanad 14.5 14.7 15.4 14.4 14.9 15-1 14.5 14.7 14.4

9 Palode.

Thiruvananlhapuram

11.7 12.4 12.7 11.6 12.0 13.1 11.7 12.1 11.7

10 Parambikiilam,

Palakkad

8.7 9.8 8.7 8.5 8.5 9.8 8.5 8.6 8.1

n Shendurney. Kollain 13.2 13.4 13.6 12.8 13.4 13.6 13.2 13.2 12.8

12 Thattekkad bird

sanctuarv'. Idukki

13.5 13.9 14.1 13.1 13.9 14.3 13.2 13.6 13.5

13 Thavanoor,

Malappuram

9.4 9.7 9.6 9.4 9.5 10.2 9.5 9.4 8.6

14 Veli,

Thiruvananlhapuram

11.5 12.8 12.6 12.1 11.8 13.4 11.3 12.3 12.0

15 Vellanikkara.

Thrissur

13.9 13.9 14.3 13.5 14.4 14.2 13.8 14.2 13.6

All Kerala average 13.0 13.4 13.4 12.7 13.2 13.7 12.9 13.1 12.7
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Table.6 Minimum temperature of coldest month (bio6) in "C

SI. Place 1950 2050 2070

No - RCP RCP RCP RCP RCP RCP RCP RCP

2000 2.6 4.5 6 8.5 2.6 4.5 6 8.5

1 Achankovil, Kollam 16.5 17.6 18.5 18.4 19.2 17.2 19.7 19.0 20.6

•) Adat, Thrissur 18.0 19.3 19.9 29.8 21.0 18.5 21.3 20.5 22.8

3 Bekaf Kasareode 21.4 22.5 23.4 22.9 23.4 22.5 24.3 23.5 24.6

4 Chcltuva, Thrissur 15.7 17.0 17.7 17.5 18.6 16.3 18.9 18.2 20.2

5 Chinnar. Idukki 21.6 22.6 23.5 23.3 24.0 22.3 24.5 23.9 25.3

6 Choolanur. Palakkad 22.2 23.4 24.1 23.9 24.8 22.9 25.2 24.5 26.3

7 1-orl St.Angelo.
Kannur

21.3 22.5 23.3 22.9 23.6 22.2 24.2 23.6 24.9

8 Mulhantia, Wayanad 22.0 23.2 23.9 23.8 24.9 22.6 25.2 24.4 26.5

9 Palode.

Thiruvananthapuram

18.8 20.0 20.7 20.7 21.7 19.4 22.0 21.2 23.3

10 Parambikulam,
Palakkad

22.5 23.5 24.4 24.2 24.9 23.2 25.4 24.8 26.1

M Shendurney. Kollam 22.2 23.4 24.1 24.0 24.9 22.9 25.2 24.5 26.4

12 Thaitekkad bird

sanctuar>'. Idukki

16.6 17.9 18.6 18.4 19.3 17.3 19.8 I9.I 20.9

13 Thavanoor,

Malappuram

22.5 23.6 24.4 24.3 25.0 23.3 25.5 24.8 26.3

14 Veil,

Thiruvananthapuram

12.9 14.0 14.9 14.9 15.7 13.6 16.2 15.4 17.3

15 Velianikkara,

Thrissur

22.1 23.3 24.0 23.8 24.8 22.7 25.1 24.4 26.3

All Kerala avera.ee 20.7 21.9 22.6 22.5 23.4 21.4 23.8 23.1 24.9

128



151

APPENDIX-III

The prediction of distribution of the Indian Peafowl for the year 2050 under RCP 2.6 prediction

when variables a) bio3 b) bio4 c) bio6 d) biol3 e) biol4 f) biol8
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The prediction of distribution of the Indian Peafowl for the year 2050 under RCP 4.5 prediction

when variables a) bio3 b) bio4 c) bio6 d) bio 13 e) bio 14 f) bio 18

i
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The prediction of distribution of the Indian Peafowl for the year 2050 under RCP6 prediction when

variables a) bio3 b) bio4 c) bio6 d) biol3 e) biol4 f) biol8

T
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The prediction of distribution of the Indian Peafowl for the year 2050 under RCP8.5 prediction
when variables a) bio3 b) bio4 c) bio6 d) biol3 e) biol4 f) biolS

1
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4.

The prediction of distribution of the Indian Peafowl for the year 2070 under RCP2.6 prediction

when variables a) bio3 b) bio4 c) bio6 d) biol 3 e) biol4 f) biol 8
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The prediction of distribution of the Indian Peafowl for the year 2070 under RCP4.5 prediction
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The prediction of distribution of the Indian Peafowl for the year 2070 under RCP6 prediction when

variables a) bio3 b) bio4 c) bio6 d) bio 13 e) bio 14 f) bio 18
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The effects of climate change on humans and other living ecosystems is an area

of on-going research. The ruminant livestock sector is considered to be one of the
most significant contributors to the existing greenhouse gas (GHG) pool. However,
there are opportunities to combat climate change by reducing the emission of GHGs
from ruminants. Methane (GH4) and nitrous oxide (N2O) are emitted by ruminants via

anaerobic digestion of organic matter in the rumen and manure, and by denitrification
and nitrification processes which occur in manure. The quantification of these emissions

by experimental methods is difficult and takes considerable time for analysis of the
implications of the outputs from empirical studies, and for adaptation and mitigation
strategies to be developed. To overcome these problems, computer simulation models
offer substantial scope for predicting GHG emissions. These models often include all
farm activities while accurately predicting the GHG emissions, including both direct as

well as indirect sources. The models are fast and efficient in predicting emissions and

provide valuable information on implementing the appropriate GHG mitigation strategies
on farms. Further, these models help in testing the efficacy of various mitigation strategies

that are employed to reduce GHG emissions. These models can lie used to determine

future adaptation and mitigation strategies, to reduce GHG emissions thereby combating

livestock induced climate change.
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INTRODUCTION

Global warming, the rise in the average surface temperature of Earth has been attributed to
greenhouse gases (GHGs) like carbon dioxide (CO2), methane (CH4), water vapor (H2O). nitrous
oxide (N2O) and hydroflurocarbons (HFCs) through the "greenhouse effect" and is an alarming
issue worldwide (Sinit et aL 2014; I,i et .iL. 2016). The increasing atmospheric concenlrallons
of GHGs in recent years are primarily due to the anthropogenic activities involving fossil fuel
burning, application of nitrogen fertili2ers in farming and the rearing and breeding of large
ruminants. In actuality GHGs are necessary for human survival. Over millennium GHGs have
.stabilized in the atmosphere resulting in an average surface temperature of 15''C. Without the
heal relenlion capacity of GHG the Earth would likely be uninhabitable. Natural processes are
contributing to increasing levels of atmospheric GHG; however, the aforementioned anthropogenic
aclivities are now contributing to additional warming, leading to rapid climate change (iPCC
Intergovernmental Panel on Climate Change, 201 ?; Quaghebeur et al., 2015).

FrontieiB in Ens^roomerital Science | www.lTO!«wa»n.o?g Apnl 2016 i Voitime 4 | Aftide27



liostf L'! aL Mtjddinij 0>-Kj

According to the IPCC-Tntcrgovi'rnmental Panel on ("limalo
Cliange i.2()l.ii, over the period 1880-2012 the average land and
ocean temperature increased by 0.85 C (0.65 to !.06"C), and the
last three decades were warmer than any other decade before

^  1850. The number of cold days and nights have decreased and
warm days and night have increased. In addition, the frequenc)'
of heat waves has increased over Asia, Europe and Australia
(IPCC-tntorgovernmenlal Paiu-l on Climate Change. 2U15). The
sea surface temperature over the Northern Hemisphere increased
compared to the Southern Hemisphere. Over the period 1971
to 2010 the upper ocean (0 to 75 m depth) warmed by 0.1! 'C
(0.09 to 0.13^'C). Increasing temperature has resulted in liie
melting of glaciers and Arctic sea ice. Melting of the Greenland
ice sheet has increased from 34Gl yr~' to 2l5Gt yr~' over the
period 1992 to 2011 and Antarctic ice sheet melting increased
from 30<jt yr~' to l47Gt yr~' (IPCiC Iittcrgovernmcntdl Paiul
on (Climate Change. 2013). Due to the melting of ice the
sea level has increased by 0.19 m (0.017 to 0.21 m) over the
period 1901 to 2010 (IPCC Iniergovcmmeiiiol I'anel uii ClinuU
Cdiangc. 2013). Rainfall distribution has shown high variability
in both the hemispheres. Averaged over the mid-latitudes the
Northern Hemisphere has experienced increased in rainfall.

^  whereas the Southern Hemisphere has experienced decreased
■. rainfall. Furthermore, extreme weather events appear to he

increasing in frequency globally.
Based on data from 2004, COj contributed 77%, CH^ 14%.

NjO 8%, and HFCs 1%> of global GHG emissions (IPt
intergovernmental Panel on Climate Change, 2007). The current
concentrations of CO2, CH4, and NjO are 395.4 ppm, 1893
ppb, and 326 ppb respectively, having a lifetime of 100-300.
12, and 121 years, respectively. Atmospheric concentrations
of CO2 have Increased by 16 times between 1900 and 2008
(I.c Quere et al.. 2014; Bey7avi et al., 201.3), The intensity of
warming for each gas is referred to as the Global Warming
Potential (GWP). The GWP of each gas is determined relative
to the GWP of COi. which is given a value of one. The GWP
of CH4, N2O. and hydrofiurocarbons are 23. 296, and 12000
respectively (CXFP, 2012). These gases are naturally occurring,
but the increasing concentration due to tiie anthropogenic effects
is of concern. GHG emissions have been determined for the
industrial/agricultural sector. Energy generation contributes 26%
of total global emissions, industries 19%. land use, land change
and forestry 17%. agriculture 14%, residential and commercial
buildings 8%. and waste and waslewatcr contribute 3% {!P(X^
Inlcrgovernmenljl Panel on Climate Change. 2007).

The livestock sector is considered to be a major contributor
to climatic change (StcinfelJ et al.. 2006). lv\0 (2006) presented
an aggregated vie\v about the impacts of livestock on climate
change. The direct and indirect etfecls of animal agriculture
on climate change were espoused. The sources of GHG from
livestock production systems were determined to be from land
use and land change, feed production, animal production.

/  manure management, and processing and transportation. A
US Environmental Protection Agency report which was also
published in 2006 suggested that by 2020 global enteric CI'H
emission would be 2344 Mt COi-eq/yT and CH4 emissions
from manure storage to be al 523 Ml COi-eq/yr U P.A I n

Environmental Prolcction Agency. 2006). Emissions of NjO
from cropping practices were estimated to reach 2937 Mt CO2-
eq/yrby 2020 (EPA-US Environmental Protection Agency. 2006).

It is clear that climate change is real and that the forces behind
this change are GHG emi.ssions, It is inevitable that renewable
energy will form a component of, any attempts to reduce GHG
emissions from the livestock sector. However, using renewable
energy in livestock production is not enough. The livestock sector
needs to focus emissions reduction strategies on management
approaches that can be applied to livestock in the field. It has
been estimated that approximately 12.5% of the total global GHG
emission are from the livestock sector (Steinteld el: al., 2013) and
80% of the lota! emission from agriculture is from the livestock
sector. Approximately 9% of CO2, 36% of CH4, and 64% of N2O
is contributed to the livestock production process and 75% of
the CO2 emitted from livestock is from ruminants (Prasad el al..
2(115), Methane and N2O have a GWP of 23 and 296 with a
lifetime of 12 and 1 14 years, respectively, whereas CO2 has a
lifetime of 100-300 years (I.c Qucrc el a!., 2014). Mitigating the
emission of CO2 in the livestock sector will be less effective in
reducing the effects of GI IGs compared to the mitigation of short
living gases like CH4 and NiO which are the major GHG from
the livestock sector. This review is an attempt to highlight the
role of livestock in contributing to climate change through enteric
fermentation and manure management. Special emphasis has
been given to highlighting the difficulties in conducting on farm
mitigation studies and signifying the importance of modeling as
an alternative for finding solution in curtaining livestock related
climate change.

SOURCES OF GHGs IN LIVESTOCK
FARMS

According to Su-inklil el al. (2006), global livestock agriculture
was responsible for 7516Mt per year ofC02 equivalents (CO2 eq)
or 18% of the anthropogenic GHG emissions annually. It is from
the animal and manure emissions that 37% of global agricultural
CH4 and NjO arise and the remainder is associated with
cropping and deforestation (I'PA US Environmcnlal Protection
Agency. 20()d). The various sources of GHGs from livestock
farms arc described in Figure 1. Globally dairy animals,
including cull cows and dual purpose beef cattle account for
approximately 4% of anthropogenic GIIG emissions (FAG-Food
and Agriculture Organizjiinn of tlie I'nited Xation.s. 2010), In
developed countries the GHG emissions from dairy production
are generally lower than in developing countries due to the higher
productirity (H.igein.inn c;i al., 2ftl I), and better feed quality.
According to the EF.A (201 I ). beef and dairy cattle are estimated
to contribute 2.1 and 1.2% respeclively to anthropogenic GHG
inventories in the European Union (EU) whereas in the United
States (US) the contributions are 2.75 and 0.55% respectively
(EPA tX Envirr.imu inal Proieclion Agency. 2uU6). However, in
developed countries where pastoral agriculture Is a significant
portion of the economy, such as Ireland and New Zealand
or developing countries like Brazil and India, the emis.sion
contribution from dairy production to the national inventory
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FIGURE 11 DtffMwit tourem of GHGs from ttvntock farms (Adopted from Sejian et al.. 2015).

will be higher (FAO Food and Agriculture Organization of ihc
United NaiionN, 2010). It is misleading if the CH4 emissions
from the livestock sector are examined only as a proportion
of total anthropogenic GHG emission (Knapp et al . 2014).
Methane emissions are dependent upon the population size of
the ruminants, their productivity, and manure handling system.
Reducing CH4 and N2O emissions from livestock production are
focused on because they are less expensive to mitigate than CO2
emissions (EPA-US Environinental Protection Agency. 2006:
FAO Food and Agriculture Organization of the United Nations,
20IQ; .Shafcr el al . 2011; Gcrbci et al.. 201.^).

Enteric fermentation causes the emission of CH4. which is
a by-product of the breaking down of carbohydrate molecules
into soluble particles by methanogens residing within the rumen.
Thus, formed CH4 is eructated by the animal and becomes a
GHG. Feed quality is a major determinant of CH4 production.
High fiber content (cellulose) in the feed will increase CH4

^  emission. Methane is also produced, as is N^O via the breakdown
_  of manure. When manure is managed in a liquid form the

organic matter contained in it are exposed to anaerobic bacteria
that decompose the manure and in the proce.ss GHGs are
formed and liberated. The formation of N2O is by nitrifying

and denitrifying bacteria which reside in the soil. The emission
of N2O from manure depends upon the nitrogen and carbon
content of manure, and for the duration of the storage and type of
treatment (IPtXMntcrgnvcrDmcnial Panel on Cllimaie Change,
2U06). The oxidation of ammonia nitrogen to nitrate nitrogen
(nitrification) is a necessary prerequisite for the emission of N2O
from stored animal manures. Nitrification happens in aerobic
condition, whereas denitrification occurs In anaerobic conditions

in which the nitrites and nitrates are transformed to N2O and

dinitrogen (Ni). In order for N2O to be produced from manure,
nitrites and nitrates are required (under anaerobic conditions)
which then allow the formation of the oxidized forms under

aerobic conditions (IPC(" Imcigovcniinontal Panel on Climate
(-hangc. 2006).

Nitrogen fertilizer, animal manure applications to land and
urine deposition by grazing animals are the main sources of
emitted N2O (Brown ct al., 2001). Unlike CH4. N2O production
can only take place if specific conditions are met. Le,, the
combined processes of anaerobic and aerobic bacteria: (1)
Nitrification, transformation of ammonium to nitrate (aerobic);

and (2) Denitrification, formation of nitrogen gas from nitrate
reduction (anaerobic). Oxygen content, moisture content and
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soil condilions will influence NiO emission. Normally due to
the anaerobic conditions prevailing in manure, nitrification and
denitrification doesn't occur. But when forced and controlled
aeration of liquid manure or solid manure for removing organic
matter (OM), nitrogen and water (dicing) then denitrification
occurs after aeration (nitrification). A mixture of manure and
straw/Utter, results in partial compaction and this forms favorable
conditions for passive aeration, resulting in uncontrolled
nitrification and denitrification ((itoeneslcin ond Van i-aasstn,
iy9f>). The other sources of GMG emission from livestock farms
are, livestock relaied land use change, feed pruduclion, on farm
fossil fuel use and post-harvest emission (Meintcld 11 a! . 2000).

SIGNIFICANCE OF REDUCING GHG FROM
THE LIVESTOCK SECTOR

From the above di.scussion, it is evident that livestock act as an
important source of GHG emis-sions and any attempt to develop
mitigation strategies to reduce emissions may be beneficial in
slowing climate change. Furthermore. CH4 production through
enteric fermentation also contributes to the dietary energy loss. In
addition, nutrient use elficiency decreases due to CH4 synthesi.s.
Any factor (feed or management) that reduces nutrient use
efficiency will result in greater CHj emissions, Deficiencies
in nutrient requirements for rumen microorganisms reduce
microbial gro\vth efficiency, which further reduces rnicrobial
biomass resulting in reduced digestibility of foodstuffs and
reduced feed intake. In order to combat this, as a consequence
of the inlerspecies hydrogen transfer, the bacteria which are
syntrophic to the methanogens produce J ATP per molecule of
glucose which they utilize for growth and biomass production.
It is important to note that this energy is not utilized by
the anmial. Hence, any attempt to reduce livestock related
GHG emissions, apart from the goal of reducing their inipacl
on climate change, may also improve production efficiency of
livestock by preventing the dietiuy energ)' loss.

DIFFICULTIES ASSOCIATED WITH
^ EXPERIMENTAL REDUCTION

The production of GHG.s through enteric fermentation and
manure management is a complex process. The quantification
of these gases often requires complex and expensive equipment.
Additionally the collection and measurement of GHGs are time
consuming. Further, the mitigation strategies designed for a
particular ecological zone will not necessarily be suitable in
another zone due to the complexities in the rumen microbial
pupulaliun. In addition, the feeding habits of the animals
and the feed resource.s available may not be the .same acro.ss
agru-ecological zones. Furthermore, the climatic conditions
prevailing in a particular locality are a crucial factor influencing

y GHG production. All these factors are involved in livestocks
contribution to GHG emissions and hence climate change. The
complexity of various farming systems makes it dilficuli to
identify appropriate mitigation strategies that can he universally
applied. There is eveiy chance that even if a strategy l.s identified

by conventional experiments, by the time the work is completed
other components of this complex might influence the gas
production in a different way. This means that expensive studies
need to be repeated numerous times. Hence, research efforts are
needed to identify strategies that may be cost effeciive, less time
consuming and with wider applicability.

SIGNIFICANCE OF MODELING

Projections indicate that by 2050 animal production is expected
to increase by 80% compared to 2005 (AlcxanilratOii and
Brninsma. 2012). There is an increasing global demand for
milk and meal, and this demand is being met with increased
production from pasture based systems (Fiala, 2008; Thnmion.
2010). Projections show that the g]ob<il annual growth rate of beef
to 2050 will be 1.2%. which is very close to the annual growth
rate of 1.3% for total meat production to 2050 (Alcxandratos
;nul Tli uiiisma. 2012). Hence there is an urgent need to identify
simpler cost effective technologies to quantif)' GITG emissions
and to fi nd appropriate solutions for climate change. Computer
simulation models are valuable tools for the study of feedback and
feed forward interactions between mitigation of GHG emissions
and adaptation to climate change in ruminant based production
.systems. These models offer substantial scope for identifying
solutions to livestock related climate change. The models will
also provide .strategic direction for Government policies related
to climate change and food security. Il is inevitable thai the
models will have complex interactions among farm components
and climate systems. Tools and models are being developed to
e.stimate GHG emission from livestock systems in the form of
process-based simulation (Schils et aL 2l)t)7b), emission factor
calculations (Amani and Scliicrcr, 2011; Colomb et .iL, 2012), and
life cycle assessments (LCA)-based approaches (De Vrics and de
Boer, 2010: Dc- fkier et jj.. 2011; Ciowie el a!.. 2012). These models
have wide acceptance in the scientific community due to the
efForls made to Improve the understanding of the effect of various
systems and changes in farm performance. Further, these models
may sciwe as an alternative for the expensive, time consuming
and technically difficult experimentation in a field and farm scale
(P'Tv.u^; ,!nJ Si-.inv. r.Oti.s),

MODELING OF GHGs IN LIVESTOCK
FARMS

The primitive models which used the prediction equations
corresponding to the nutrient uptake of the animals and the
subsequent emission of gases were evaluated. These models
are commonly referred lo as Empiricui/Slalistica! models, They
use .simple and uncomplicated regression equations based on
feed characteristics. However, these models were used in very
costly extensive expehmenls. Tlie environmental changes and
the microbial populations residing in the rumen are not
included in these models. No factors other than the feed
characteristics are studied. The interactions of various other
.systems are nut evaluated. Further, the.se models cannot be
used to predict the changes in CH.j emissions outside the
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range they were developed for. Hence, to overcome these
drawbacks, mechanistic/dynamic models which simulate CII4
emissions based on a mathematical description of ruminal
fermentation biochemistry were developed. These models are
not costly and they evaluate the complexities associated with
enteric CH^ emission. Mitigation measures can be asse.ssed for
their effectiveness under varying scenarios of climate and feed
intake at field level. The information pertaining to the climate
of the particular ecological zone and the routine management
practices being followed in livestock farms is also included in
these models (Del Prado cl a!.. 200^; Cullen and i.ckaid, 201 1,

Graux el a!., 201!, 2012; Bell ct al., 2012). These models also lake

into account the information on microbial population and their
efficiency in CH4 production rate. However, the complexity of
the systems involved in a mechanistic model makes it difficult
to operate. The rapid dynamic changes in metabolic flux during
lactation, especially in late pregnancy and early lactation are also
difficult to quantify using these models. The models use empirical
equations derived from statistical analysis to simulate the enteric
CH.t emission. These equations have limitations in their ability
to quantify the characteristics of the animals and diets they use
(I'llis ct .d,, 201U). The success rate tor accurately predicting the
GHG emission using these models relies heavily on the quality

^  of the input data, such as the chemical composition of the diet,
degradation rates of feed components, and passage rates,

Components of Modeling
Input Hows and output (lows in the livestock sector depends upon
the management practices and the environmental conditions
prevailing at the .site. For each gas the emission mechanism is
different. Carbon dioxide emissions depend on C intake and the
fixation processe.s linked wth respiration and the direct energy
use. Methane emission occurs due to the enteric fermentation

in the rumen and the manure management under anaerobic
conditions. Denitrification and nitrification proces.ses in manure
storages and soils, and the leaching of NOt and volatilization
of NH.4 results in N^O emission. Although these are all the
primary pathways by which the models predict the GHGs
that are being produced from livestock farms, emissions from
other sectors beyond the boundaries of the farm have been
considered in few models. The models have used different

approaches to incorporating all of the components into a single
system. The objectives of each model differ: such as GHG
emission estimates. GHG mitigation measures and implications
of various adaptation and mitigation strategies in on the farm.
The various components in the models have to be interrelated
elfectively if the objective (correct output from the model)
is to be achieved. To adequately analyze animal productivity,
emission estimates, feeding practices, and animal type the models
need to be quantified based on metabolic parameters. Manure
management is incorporated into the model by quantilring the
flows transformations of manure on the farm and the emission

are simulated. Further, information pertaining to housing of
the animals, manure .storage facilities, treatment of manure
and application of manure in the field is programmed into
these models. The different livestock related activities and their

contribution to existing GHG pool are descriijed in Figure 2.

In addition, the dry matter (DM) volume and the liquid
content of manure is dynamically tracked for the C and N
fractions (Dlesen el al., 20i)6; (Jhardon el al., 2012; Kotz cl al..

2012). Often CH4 is modeled using the IPCC Tier 2 approach
(IPCC Intergovernnu'nlal Panel on Climate Change. 2006) while
NHj and NiQ emissions are modeled by volatilization and
aerobic condition of manure respectively (Rotz ci al., 2012).

For the estimation of N2O emission and C sequestration
management practices and their interactions between soil,
animal, plant and weather conditions are evaluated. The process
based models look into the various interactions and dynamic
changes happening to the N pathway (l.i ei al., 2012) such as
denitrification and nitrification processes where N inlcrmediates
for NiO and No production (Firestone and Davidson, 1989).
Temporal variability of N2O depends upon the temperature,
rainfall pattern and the amount of N substrate availability and
by proper modeling of climate and management practices it is
evaluated.

For grazing animals the pasture availability is very important
and it can be modeled as the function of soil water. N availabilities

and weather condition. From the empirical equations (Folcy
ct al.. 2011) mechanistic models are developed by incorporating
soil characteristics, ambient temperature and solar radiation
as the driving factors (Dei I'lado et al., 201 1; Kotz et al.,
2012). Different grazing systems can be included in the model
(rotational grazing being the most difficult one to simulate; (kaux
ct al.. 201 I). Spatial variability of the pastures i.s incorporated in
some models, while others assume uniform distribution over the

whole field. The variations in GHG emission with soil properties
can be analyzed accurately using this simulation (I.inn and
r')oi an. 1984; Ruscr ct a! , 200h).

Soil C constitutes the other component in the field. Soil is the
third largest global C pool (l.al, 2008). Improved management of
grasslands for increased forage production has the potential to
increase C stock.s (Fvcihaucr et al.. 2004; Ree.s et al.. 2005). The C

slock and GHG emission arc interrelated, and by modifying the
quality and composition of manure, land use changes, variability
in feed intake and wider variations in the microbial activity will
change the metabolic functions and thereby emission quantity
CVcllitiga and Hoving, 201 1). Natural sources and sinks are not
included in the models as they arc insignificant contributors to
CO2 changes in the atmosphere. During long term analyses C
sequestration is not considered because C assimilated equals C
stored and emitted C from the farm (Del Grosso ct al.. 2002;

.Matthews cl al., 2010).

Many models have been developed to analyze animal
productivity in dilTereni environmental conditions and tite
a.ssociated GHG emission. MITFRRA- (a Europen model) is an
environmental assessnrent model used to assess the effects of

the implementation of NH3 and NOji measures and policies
on the GHG emissions such as CH4, N2O. and CO2. The
MITERRA-Europe model i.s partly based on the models GAINS
(Greenhouse Gas and Air Pollution Interactions and Synergies)
and GAPRI (Common Agricultural Polic)' Regionalised Impact),
complemented with an N leaching module, a soil C module and
a module for mitigation (I cs.-iciion ct al., 2011). It measures the
emission from enteric fermentation, manure management. N2O
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FIGURE 21 Pictonai representation of different livestock related activities and their contribution to QHQ pool.

emission, fertilizer production, organic soil cultivation, liming,
and fossil fuel use. The data for livestock numbers, crop areas, and
animal production are inputted from the databases of FAO and
Eurostat and for emission factors from IPCC, GAINS and spatial
environmental data. This model is able to simulate nitrogen and
GHG emissions however, at the global scale further validation
and model comparisons are needed to increase the confidence
intervals for the model. The feed intake parameter needs to be
further tested and parameterized. Table 1 describes the different
models available and their merits and demerits.

The Integrated Model to Assess the Global Environment
(IMAGE) model studies the long term effects of human activities
on the environment. The regional production of food, animal
production, timber harvest, local climatic conditions and terrain
the evaluation are incorporated within the model. The land use
and cover are efficiently simulated in this model (Kram .and
Siciifvii. 20U^; Niumann ti a!, 201 i). The model evaluates the

efficient population needed in a region and estimates the feed
requirement by the animals (Bt>invm3n a!., 2iX)5-. .Ni-vim.ann
el a!.. 2011). IMAGE distinguishes the pastoral livestock systems
based on the grazing ruminants and mixed and landless
(industrial) production systems, integrating crop and livestock
production where animals are fed with a mixture of crops,
grasses, and fodder and crop residues.

The LEITAP model which is based upon the Global Trade
Analysis Project (GTAP) model was developed to evaluate the
changes associated with GHG emission based on the number

of animals on a national level. It is formulated based on the

neoclassical microcconomic theory multiregional. multisectorial,
static, and the applied general equilibrium model. Projections for
livestock numbers and agricultural land use were calculated for
the EU for 2010. 2020, and 2030 (Neumann el a!,, 20) I). For

the estimation of GHG emissions from livestock farms within

the EU a model named FarmGHG was created. This model

evaluates the emission of CH4 and N2O released from farms
and the CO2, CH4. and N2O emission from feed, fertilizer and

imported energy. This model was developed to quantify the
effects of management practices on emissions of GHGs. The
model proposed that by increasing N use, efficiency the emission
of GHG can be reduced.

The DairyWise model was developed to estimate GHG
emissions from dairy farms. This empirical model integrates
all the major systems in the dairy into a whole farm model.
Inputs such as farm management, herd t)q?e, cropping plan,
soil characteristics, grass and feed management, buildings and
equipment are quantified in this mode) (Schils ci a!., 200Ta). The
CH4 emission is calculated from the enteric fermentation and

N2O is calculated from the manure management. Both direct
and indircci N2O emissions are simulated where direct emissions

for N inputs through fertilizers, manure application, biological
fixation, and urine excreted during grazing, crop residues, and
peat oxidation (Schils ci al., 2i)07b).

The Sustainable and Integrated Management Systems for
Dairy Production (SIMS-Dairy) model simulates biodiversity.
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TABLE 1 I Various types of models, components, merits and demerits.

Model Components Merits Demerits References

MfTERRA- EuJope Ltveslock nirmbfifs. acp areas, animal production,

enteric fermentatian. manure management, N20
emission, fertilizer productKxi, orgarvc sol

cuftivation, Bming arul irissS fuel ii.se

IMAGE Artmal pfoductivtty. Feeti conversion. Livestock

rations. Produelton syslem hfix. Uvestock

production. Managemsnl intensity livestod^. Grass

recprernenl, AnHttal stocks. Feed crop recMrernertt

LETTAP Land allocation, productivity of marginal Isrtd. lanp

supi^y <unr::tion

FarmGHG Feed. fertiO/er. energy irnpcrled

CsiryWtse Farm management, herd type^ cropping plan, soil

chsrsctenstics, grass ana teed maitagemenl,

tx^ngs and equipmertis

SINtS-Dairy Biodiversity, landscape, animal M-etfara. soU qualily
and product quality

FarmSim The area and typo of crop and grassland and herd

types arhl numtso, the grasslands, the aops arid

tf^ feeding and v/aste managanent systems

ir-SM Oop production, feed mtake. mamre amount,

aiiimal resf^irallcin and microbial respiralion

Gi LAM Herd, manure, and feed

EffecLs of mitigaljon measises At a global scale more vaWatlon .tjEschcs- el J., 2r)ii

is needed *

Ertvirotimentai consequvices of values of animal, plant Bfe.iieallh Kiam anci Sliest.

humain aetivittes wofkfwide can be and diversify are difficuH to

evaluated quantify, highly compIeK, large

and chaolic

Pqpuialiori of animalstock can be No cimate module

calculated

Ojanlilytrtg GHG emfsston

Whida fanri model, direct and

tndireci emissions can be calculated

Based on feed

No cBmale module

Emptiasis on management No cBmste module

strategras and sustainflble

devdopmenl

Sot rww inferacling modules,

mtegraied with iPGC lier i and 2

methodology

Ifttegrates btologjcal aid physjcaJ
process of crop and animals

SmSate aiwrxuncnial impiicaliaris No dunak; module
on the production syslem

No dimale module

Meial)olic fluxes are not

considered

IHKS

Naiirnsnr.etaJ., 20n

I Jeaan el al., SOL'S

Sd tils ̂  di.. 21X570

Dti Pi.add and

Stncilefield. 7<X3b

Saleles el at.. 2004

Cnianeseei ar.. 20^19

Ljotbcr (11 :i..?:}}')

IMAQE. Inlegratea Modei to Assess the Glab& Erivcfi'nenl: S'tttS-De'ry. SusfairraOte arid hfegraf&d ManagsnvDt Sysfams for Cany Ffnobcfron Model; /armSan, FAflM SUiMbtion
MfiJel. IhSM. fntsgraltfJ f-arrrt Sy'Sfem GLEAM. Cifofwif Lhie^Iock fcr-wro/rrrierjfaJ AssestitnaiU Model,

landscape, animal welfare, soil quality and product quality (Dc!
Prado and Scholefield, 20U6). It focuses on the management
practices in the livestock sector and aims to obtain a sustainable
system. The possible impacts of mitigation strategics on the
emission of GHG are studied in this model. Emission from

soil, animal excreta as manure, or urine and emissions from the

rumen are analyzed (Schils el a!.. 20n7b).
The FARM SIMulalion (FarmSim) model simulates GIIG

emission from nine interacting modules. The flow of product
among various components oi the farm syslem is included in this
model, PASIM mode! where GHGs exchanged over the ditt'ercnl
grassland types on the farm are integrated with IPCC Tier I
and Tier 2 methodology, where emissions from cropland and
tattle housing are evaluated and included in the FarmSim model.
The structure of the farm, including the area, type of crop(s),
grassland and herd type, the number of herd per type, the area
of grasslands, the crops and the feeding and waste management
.systems are inputted into the model.

The Integrated Farm Syslem Model (IFSM) integrates the
biological and physical processes of a crop, beef or daiiy farm in
order to simulate crop production, feed use and manure output
over a period of time while at the same lime incorporating the
weather parameters (Rt)!/. el ai.. 2009). The crop production
of alfalfa, grass, corn, soybean, and small grain crnp.s can be
predicted based on daily soil and weather conditions. The feed
consumed by an animal and the response (e.g.. average daily
gain) are related to the nutrient content of the Iced. The manure
quality and quantity is based upon the nutrient content of the
feed consurned. When simulating LtHG emission modules for

the balance of C will need to be based upon processes like crop
production, animal respiration and microbial respiration plus
manure management. Certain criteria have been formulated for
the potential evaluation of the models The models should (i)
.simulate the proce.sses by which CO2 emissions uill be affected
when farm management practices change; (ii) represent every
process influencing GHG emis.sions; (iii) predict the observed
data in the past for its accuracy under dilTereni potential
conditions; and (iv) accurate data should be available for the

accurate simulation.

The Global Livestock Environmental Assessment Model

(GLEAM) explores the environmemai implications of on farm
production practices ((lerbcr el a!., 2i)l i). Us development is
based upon five modules which reproduce the main elements of
livestock supply chains: (I) Herd module-, this module evaluate
the number of animals per CIS grid cell, where they have been
managed with ditferenl farming systems; the herd characteristics
and structure of each cell arc studied under this module; (2)

Manure nwdiiic, evaluates the manure production from the
GIS cell from each animal type; (3) Peed module-, calculates
the various components in the feed, nutrient content and the
cmi.ssion.s per kg of feed given; (4) System module-, incorporates

the herd, manure and Iced modules to determine the energy
requirement by each animal t)q5e. the annual production from
each GIS cell, emissions produced from manure management,
enteric fermentation and feed production, and (5) Allocution
module-, calculaies ihe total GHG emission from the farm

incorporating all the direct, indirect and post farm emissions.
GLEAM uses geo-referenced data lo calculate the GHG emissions
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from the farm. The information regarding the productivity and
the practices undertaken to increase livestock production is
collected at various levels of aggregation such as at a country
level, agro-ecological zones, or a combination of these. The
main data sources are Gridded Livestock of the World (F.AO-

Food and Agriculture Organization ctf the United Nations. 2007),
National Inventory Reports of Annex 1 countries {UXl-CCC
United Nations Framework Convention on Climate t.."iiange.,
2U(jy), International Food Policy Research Institute (IFPRI),
Life Cycle Inventory data from SIK, International Agricultural
Research (CGIAR) and slati.stics from FAQ (l-.At »S'! .A'l', 2H()4).

ADVANTAGES OF MODELING OVER

CONVENTIONAL EXPERIMENTS

The models outlined ahove are being used tor simulating and
predicting the GHG emission from the livestock sector. However,
further development is required to improve the accuraq' of
the model outputs. Components of (he model must include
modules which are comprised of animal, crop, soil, and climate
data. Models need to be developed ba.sed upon the various
animal characteristics, their feeding habits, metabolic fluxes,
niicrobial population, manure management, farm management,
and climatic conditions. These models should he region specific
rather than global as the components of model may be different
for different regions. Furthermore, the parameters that arc
standardized for one agro-ecological zone may not be the same
for another. In addition, the climatic conditions will al.so differ

between regions. For example the body weight of a cow in
Europe will be different from that of Asia. Any differences will
result in errors if the same standardized values made for another

region are used. The model assumptions have to be changed
according to the condition.s prevailing in respective region.s.
These regionalized models can be effectively used to simulate
and predict the GHG emissions from livestock enterprises.
These models could become an alternative solution for livestock

related climate change hy initiating quick actions to mitigate
such emissions. Doing experiments in the field may take years
to quantify* the emissions and to analyze the implications of
various mitigalion strategies employed for (he reduction of
emis.sion. However, through modeling each variation in any
of the targeted parameters can be Identified real lime. Using
.simulation models we can vary conditions at the farm level that
affect the metabolic mechanism of animals and fermentation

processes. The model outputs can then be u-sed to evaluate
potential nutigation strategies. Projection of emissions from
the animals can be projected into the future. This is not
possible in experimental conditions. Tfrc pi-ojcction.s can be

used to formulate the appropriate mitigation strategies for the
future, thus making management strategics more systematic and
efficient.

CONCLUSION

Livestock undoubtedly need to be a priority focus as the global
community seeks to address the challenge ol climate change. The

magnitude of the discrepancy between the estimates illustrates
the need to provide the climate change community and policy
makers with accurate GHG emission estimates and information

about the link between agriculture and climate. Improving
the global estimates of GHG attributed from livestock systems
is of paramount importance. This is not only to define the
magnitude of the impact of livestock on climate change, but to
understand their contribution relative to other sources of CJHG.

Estimates of GHG emission through experiments under different
production system is practically impossible and with growing
awareness of global warming and its continuous negative impact
on agricultural production systems, attention should be directed
toward immediate mitigation stralegle.s to curtail such emissions.

The complexity of various fanning systems makes it difficult to
identify appropriate mitigalion .strategics that can be universally
applied. Hence simulation models offer huge scope as these
models may serve as an alternative for the expensive, time
consuming and technically difficult experimentation in a field
and farm scale. Such information will enable effective mitigalion
options to be designed to reduce emissions and improve the
sustainabilily of the livestock sector, while continuing to provide
livelihoods and food for a wide range of people.

A synthesis of the available literature suggests that the
mechanistic models are superior to empirical models in
accurately predicting the CH.i emission from farms. The latest
development in prediction model is the IFSM which is a process-
based whole-farm simulation technique. The IFSM takes into

account the entire livestock farm operations, including breed
of animal, production .stage, available feed resources, grazing
information, pasture management, manure handling, and local
weather condition. It i.s possible through these models to evaluate
the variations in GHG emission by altering any of the targeted
parameters in real time mode. Thus, these models could become
an alternative solution for livestock related climate change by
initiating quick actions to mitigate such emis.sions.

FUTURE PERSPECTIVES

Farmers tj'picaJiy adopt tlic most co.st effective and easy-to-adapt

options. The services provided by the models have currently no
market value among the farming community, but may become
valuable in the future. Although many modeling studies are
being undertaken, they do not have the capability to quantify
the potential interactions among ecosystem services. The rapid
dynamic changes in metabolic flux during lactation, especially
in late prcgnanq' and early lactation have to be rectified in
future models. There is also a need to integrate the effects
of climate change on plant protection issues, pollination and
risks from pathogens. Because this can affect the safety of the
f'ccil quality given to the animals and the microbial population
is affected badly b>' the pesticide actions within the rumen.
A balanced systems-ba.sed approach to quantify ,s>Tiergies and
trade-offs is still lacking in current models because of the inherent
complexity of .some of the.se relationships. Multifunctionalit)' in
farms implies greater levels of heterogeneity in farming systems,
and hence increase the complexity of the farm scenarios to be
modeled.
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