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1. INTRODUCTION

Cassava (Manihot esculenta Crantz, 2n=36) is a perennial shrub, found to be
originated in the Amazon Basin (Olsen ef al., 1999) with its centre of diversity in
the Brazilian-Bolivian region (Nassar ef al., 2002). It belongs to Euphorbiaceae
family and Fabid superfamily, in which several plants such as rosids, legumes and
poplars that are distantly related, are included. (Prochnik er al., 2012). Cassava
gains immense importance as a staple food in countries like Africa with a global
production of 277 million tonne. It seems to cover an area of 23 million ha
cultivated land with a yield of 11,800 kg/ha (FAOSTAT, 2016). Genome-wide
association studies for the genetic improvement of cassava has led to sequencing of
158 diverse cassava varieties and identification of 3,49,827 single-nucleotide
polymorphisms (SNPs) and indels (Zhang er al., 2018). Being one of the most
important crops in tropical and sub-tropical countries constituting a major source
of carbohydrates, its productivity is highly threatened by mainly two viral diseases,
Cassava Mosaic Disease (CMD) and Cassava Brown Streak Disease (CBSD).
Resistance to such pathogens in plants is achieved by the action of a well advanced
innate immune system contributed by multiple layered defence protein network
structures. These proteins are involved in the activation of several complex plant
responses like protein interactions, signal transduction pathways and gene
expression changes. The study of their interaction networks would help in the better
understanding of plant immune responses that help in adopting better crop

improvement and management strategies.

The major challenge faced by biologists in the twenty first century to
understand structure and functions of a living cell, is to get a clear picture of the
complex intracellular web of interactions between numerous constituents of the cell
such as DNA, RNA, proteins and small molecules. These convoluted interactions
result in its particular biological activity. Hence there is a demand for the
understanding of the Network Biology of a cell where the biological layers are

represented as network models. A Gene Regulatory Network (GRN) can be defined



[#

as a group of molecular regulators which both interact among themselves and also
with other substances in the cell for accomplishing an objective of governing the
gene expression levels of mRNA and proteins (Karlebach and Shamir, 2008).
Genome wide expression analysis in combination with gene perturbation
experiments provides powerful tool for the construction of plant GRNs (Krouk et
al., 2013).

Introduction of better techniques that could assist in gene expression analysis
in a genome wide scale could be made possible by the introduction of techniques
that could make the systematic characterisation of plant GRNSs effortless. Possible
incorporation of expression microarrays or RNA-seq experiments includes some of
the approaches that could make the process better feasible. GRNs could provide
sufficient information regarding the regulatory interactions that occur between
regulators and their potential targets, gene-gene interactions, and potential protein-
protein interactions could be obtained from GRNs (Simoes ez al., 2012).

GRN construction has been found necessary for the complete elucidation of
disease ontology which could probably reduce the cost of drug development that
could accelerate biomedical research and development. Time series transcriptomic
data that are usually measured by genome-wide DNA microarrays has been
traditionally used for GRN modelling till date. Several novel experimental and
computational approaches like Boolean networks, Bayesian networks, mutual
information-based approaches, correlation-based approaches etc. has made the
characterisation of regulatory networks possible. Integration, interpretation and
evaluation of data from genomic databases could also represent biological
knowledge that are normally represented in the form of gene or protein networks
which shows functional or co-expression relationship or any other structured

representation (Leal e al., 2013).

A difficult issue that we face in evaluation of GRN inference algorithms is in
the precise measurement of direct regulatory relationship between genes and hence
the gold standards scenarios where such interactions are known with high
confidence, are rarely defined. A universally accepted strategy for the assessment
of GRN inference methods is the use of the Area Under the Curve (AUC) as a global
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metric of performance for an algorithm. A Receiver Operating Characteristic
(ROC) curve may be possibly used for the evaluation of a wei ghted network against
a gold standard and hence the best method for GRN reconstruction could be
probably identified. As using expression data for GRN construction makes these
methods less feasible and expensive, the possibility of incorporating gene sequence
information for network construction could be evaluated for exploring large scale

regulatory network that will better elucidate their functional properties.

The current study focuses on the generation of gene regulatory network using
genomic data depicting the immune regulatory network of cassava, which would
potentially identify the top candidate genes related to immune responses in a
quicker and feasible manner, comparison of different computational methods for
the prediction and analysis of regulatory network of genes, and development of an

online visualization tool using these different methods.
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2. REVIEWOF LITERATURE

2.1 CASSAVA

Cassava (Manihot esculenta Crantz), which is a major source of
carbohydrate, that grows throughout the lowland tropics (Nassar ef al., 2008), is
viewed as one of the most important crops and a major energy source (Cock et al.,
1982) in tropical and sub-tropical regions considering their socio-economic
perspectives. Uniquely being the only cultivated species among the genus, cassava
feeds around 800 million people around the world with main focus on countries
where food shortages are common (Nhassico ef al., 2008). Its immense potential as
functional foods and nutraceutical ingredients (Chandrasekhara ef al., 2016) paves
way for a diverse range of application in the industrial sector. Small and medium-
sized industries (SME) mainly in food and agriculture sector, plays a major role in
the enrichment of income source in rural areas by increasing the value of additional
activities of crops like cassava (Unteawati ef al., 2018). This typically diploid
highly heterozygous species seems to play a major role in ensuring food security
across the world due to its drought tolerance and appropriate adaptation to climate
changes. High starch content in cassava, which are cultivated throughout tropical
Africa, Asia and America, make it suitable both for biofuel applications (Jansson ef
al., 2009) and human consumption. It includes about 94 reported species and about
6300 varieties, cultivated in more than 100 countries utilizing its root and leaves as

source of food and feed.

Cassava, although being fourth largest source of calorie in the world, is
severely affected economically in terms of yield loss due to various viral, bacterial
and fungal infections. According to the FAOSTAT (2017) comparison data (Figure
1), there has been a significant reduction in yield of cassava in India from 38,581
kg/ha in 2012 to 22,323 kg/ha in 2016. Similarly, the appearance of two viral
diseases, Cassava Mosaic Disease (CMD) and Cassava Brown Streak Disease
(CBSD) seems to significantly constrain the productivity in East and Central

African countries and is estimated to cause an annual loss of worth US$1 billion
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according to the reports by International Institute of Tropical Agriculture
(IITA),2014. The other pathogens causing infection in cassava includes bacterial
species like Xanthomonas axonopodis pv. manihotis, which causes bacterial blight
(Verdier et al., 1998), Erwinia carotovora subsp. carotovora causing bacterial stem
rot (Lozano ef al., 1978), fungal species like Colletotrichum gleosporioides f. sp.
manihotis causing anthracnose (Fokunang er al., 1997), Fusarium oxysporum
causing Fusarium root rot (Kuldau ez al., 2000) etc. Oomycetes like Pythium spp.
also causes infection in cassava in the form of Pythium root rot (Msikita e al., 2005)
and Phytopythium sp. is reported to cause storage root rot and foliage blight in

cassava (Boari ef al., 2018).

Early identification plays a major role in managing the detection and spread
of cassava diseases. Approaches for identification of diseases traditionally worked
mainly with the support of agricultural extension organizations. But countries with
low human infrastructure and logistical capacity seems to face limitations in
applying this approach and their expensive scale-up also adds up to yet another
disadvantage (Plucknett ef al., 1998). Hence it is very important for us to develop a
better feasible technology that could possibly help in early disease detection. Fofana
et al. (2004), showed that model plants like Arabidopsis thaliana, Nicotiana
benthamiana, N. tabacum, Lycopersicon esculentum and others have well
developed sequence databases and this could be used as a major source of
information for functional genomic analysis in cassava. They constructed a gene
silencing vector based on African cassava mosaic virus (ACMV) that carries a
fragment from the Nicotiana tabacum sulfur gene (su). This was done to induce the
silencing of the cassava orthologous gene that resulted in yellow-white spots, which
is a characteristic of su expression inhibition. Modern technologies like
transcriptome analysis of CBSD-resistant and susceptible cassava varieties
infected with CBSV, based on RNAseq could identify genes involved in disease
resistance (Maruthi er al., 2014). Similarly, time series transcriptome analysis of
cassava has been consucted in varieties challenged with Ugandan cassava brown

streak virus (Amuge ef al., 2017).
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Figure 1. Comparison of Cassava Productivity in India (FAOSTAT, 2017)
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A high dense genetic map of cassava was constructed by Soto ez al. (2015),
that contained 2,141 SNPs from which genes for 569 proteins related to immunity
were localized. This was done based on the physical mapping data of the
corresponding sequencing scaffolds. As a result of the in- silico screening for

conserved domain, 1061 immune related protein coding genes were annotated.

This could provide data regarding the total number of genes that are currently
annotated related to immunity in cassava as well as their organization and
distribution in the cassava genome. Latest approaches for disease resistance and
detection in cassava includes producing artificial microRNAs (amiRNAs) that
could impart resistance to Cassava Brown Streak Disease (Wagaba ef al., 2016),
deep learning approaches for image-based cassava disease detection (Ramcharan ef
al., 2017), CRISPR-Cas9 in cassava to engineer resistance to African cassava

mosaic virus (Mehta ez al., 2018) etc.
2.2 IMMUNITY IN CASSAVA

Despite of its defense mechanisms, the plants susceptibility to bacteria
transmitted viral diseases (Boher and Verdier, 1994) and insect transmitted viral
diseases (Hillocks and Jennings 2003: Patil and Fauquet, 2009) are very high.
Cassava produces several compounds like cyanogenic glycosides, flavonoid
glycosides, hydroxycoumarins etc which are seen to be involved in direct defences
(Pinto-Zevallos et al., 2016). Depending on the type of receptor involved in the
plant-pathogen interaction, plant immunity is conferred in mainly two ways: first is
by the microbe-associated molecular patterns (MAMPs) triggered immunity and
second is by Effector triggered immunity imparted through R proteins or resistance
protein. In MAMP or PAMP triggered immunity, Pattern Recognition Receptors
(PRRs) recognize MAMPs and trigger immediate defence responses that lead to
basal and nonhost resistance (Pérez-Quintero ef a/., 2012). In plants, all known
PRRs are plasma membrane resident proteins and hence they allow the perception
of MAMPs at the cell surface. Leucine Rich Repeats (LRRs), LysM, kinases,
WRKY, MAPK etc are examples for conserved domain associated with MAMP
triggered immunity. Effector Triggered Immunity (ETI) acts by utilizing the host
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cells evolutionarily conserved innate immune response, which can sense the
pathogen through the activity of effectors produced by the pathogen and mount a
robust immune response (Rajmohan ef al., 2014). The class of resistance protein
includes TIR (Toll/interleukin-1 receptor), LRR, NB-ARC (Nucleotide-Binding
domain shared by Apaf-1, R gene products, and CED-4) etc. In addition to these,
Lectin Receptor Kinases and one of its major subtypes known as L-type Lectin
Receptor Kinases are known to play major functions in plant development or abiotic

stress tolerance (Wang ef al., 2017).

2.3 IMMUNITY RELTED GENES
2.3.1 ABC Transporters

ABC transporters serve many functions like contributing to plant growth,
nutrition and development in plants, exhibiting proper response to abiotic stress,
resistance against pathogens and also involved in plants interaction with its

environment (Kang ef al., 2011).

They mediate the above ground and below ground secretion of anti-microbial
secondary metabolites in plants, such as phenolics, cyanogenic glycosides,
alkaloids, terpenoids and their derivates and glucosinolates which forms an
important first line of defence against pathogens that both host and non- host
(Osbourn et al., 1996). They are characterized by two nucleotide-binding domains
(NBD) and two transmembrane domains (TMDs) (Wilkens ef al., 2015).

2.3.2 Leucine Rich Repeats (LRRs)

The LRR structural motif consists of a conserved pattern of hydrophobic
leucine residues. It acts as a platform for the mediation of several interactions
between proteins, that are needed for exhibiting the dual role as sentry as well as
activator of defence (Padmanabhan er al., 2009). The LRR domain seems to have
a slender, arc-shaped structure relative to globular proteins, with a high surface to
volume ratio, that makes it suitable for involving in multiple interactions. LRR
proteins serves to either act as resistance protein or proteins that are required for the

functioning of required resistance proteins. It seems to provide resistance to a large



number of pathogens, including bacteria, viruses’ nematodes, and fungi (Jones et
al., 1997). Serine/threonine kinases and polygalacturonase-inhibiting proteins were

among the first LRR proteins to be described.
2.3.3 LysM

LysM is an ancient ubiquitous protein domain of about 40 amino acids in
length and found in most living organisms except Archaea. Its structure contains 2
a-helices stacked onto one side of a double stranded antiparallel B-sheet (Bateman
et al., 2000). Evolution of this domain is closely related to an ancient sensor for N-
acetylglucosamine (GIcNAc) (Buister al., 2008). These glycans are believed to
serve as immunogenic patterns activating LysM protein receptor mediated plant
immunity and stopping microbial infection during early plant evolution (Zhang er
al., 2009). Further genetic studies also reveal the role of LysM-type receptor kinases
for the establishment of legume-rhizobium symbiosis and also for plant

mycorrhization.
2.3.4 NB-ARC

NB-ARC is a functional ATPase domain consisting of 3 subdomains: NB,
ARCI and ARC2. The nucleotide binding entity of NB-ARC regulates the activity
of the R protein (van Ooijen ef al., 2008). The Nucleotide Binding subdomain is the
catalytic core, the ARC1 subdomain acts as a scaffold for the intermolecular
interaction with the Leucine Rich Repeats (LRR) and the ARS2b plays a major role
in the regulating the transduction of pathogen perception into the activation of R-
protein by the LRR (Rairdan and Moffett, 2006: Tameling et al., 2006). NB-ARC
domain adopts different conformations depending on the bound nucleotide (ATP or
ADP) which will give a clear picture on the role that it plays as a molecular switch

for the activation of R- protein (Tameling ez al., 2006).
2.3.5 NRAMP

Nramp stands for Natural Resistance- Associated Macrophage Protein gene
seems to play an important role in modulating vertebrate natural resistance to

intracellular pathogens (Jiang ef a/., 2018). Host pathogen interface paves way for
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several different responses and one among these is to withhold metals so that the
growth of the microbes that invade them are retarded. This simple strategy can be
effectively used for limiting infection by starving the invader of an essential
element. Proteins of the Nramp domain are closely associated with conferring this
“nutritional immunity” (Wessling ef al, 2015). Nramp domain proteins are

generally categorized as members of a large family of divalent metal transporters

ho are evolutionarily conserved (Cellier ef al., 2012).
2.3.6 Protein Kinase

Protein Kinases becomes part of Signal transduction pathways by modifying
the protein function by phospsorylation. The two major property that are essential
for pkinases to regulate multiple cellular responses includes its high specificity for
substrates and its sensitive means of regulation. PKinases play a major role in
MAMP triggered immunity with their representation as main PRRs in plasma
membrane. They also have the ability to recognize cell wall signals and secondary
danger-inducible plant peptides. These functions are particularly controlled by two
types of RPKs, ie. calcium-activated PKs and mitogen-activated PK (MAPK)
cascades. Their signalling networks plays major role in controlling the activities
and synthesis of enzymes, peptides, hormones, transcription factors (TF) and
antimicrobial chemicals that contribute to resistance against bacteria, fungi and
oomycetes (Tena ef al., 2011). Measurement of the phosphorylation of preferred
substrate protein containing canonical serine-proline or threonine-proline
phosphorylation sites can help in quantifying the activity of Kinases (Rodriguez et
al., 2010).

A characteristic ‘bean-like’ structure of the catalytic core of protein kinase
domain is attributed by its small lobed N-terminal and large lobed C-terminal. This
N-terminal and C-terminal are usually found as extensions from the catalytic core
of protein kinase domain and often they fold back into the catalytic core leading to

the formation of specific interactions.

6
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ATP binding between the two almost will lead the adenine ring to lie deep in the
cleft between the two lobes so that the y-phosphate will be directed outwards
(Biondi ef al., 2003). Almost one-third of the newly validated drugs that have
emerged in the pharmaceutical industry is contributed by protein kinase targets,

which contributes to its advancing applications in drug development.
2.3.7 TIR

The Toll/interleukin-1 receptor/resistance protein (TIR) domain refers to a
protein-protein interaction domain, which consists of 125-200 residues in animals,
plants and bacteria and absent in fungi, archaea and viruses (Jones et al., 2017). TIR
is an intracellular that is responsible for triggering immunity in plants when they
perceive pathogen-associated molecular patterns (PAMPs) extracellularly. TIR
domains are usually used by Plant Resistance proteins for pathogen detection and
expression of genes involved in defense response inside the nucleus. They also
seem to have a scaffold function in defense signalling. In plants, the TIR domains
associated with intracellular immunity receptors are generally known as
Nucleotide-binding oligomerization domain-Like Receptors (NLRs). General
structure of plant TIR domain consists of a flavodoxin-like fold containing a central
parallel B-sheet surrounded by an extended aD-helical region (Zhang ez al., 2017).
The interaction of plant TIR domain with other TIR domain molecules acts as a key
to the activation and hence the interface between these domains plays a key role in

understanding its mechanism. (Thomas ef al., 2014).
2.3.8 WRKY

The WRKY transcription factor family is constituted by a large family of
several plant transcription factors, acting both as repressors as well as activators.
On the basis of the number of WRKY domain and certain zinc finger-like motif
features, it is divided into three groups (Ishihama et al., 2012). The members of the
family play role in both repression and depression of important plant processes.
DNA binding domain contributes to the most distinguishing feature of WRKY
domain. It is called WRKY domain due to the presence of WRKY amino acid
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sequence at the N-terminus. Several other amino acid sequences like WRRY,
WSKY, WVKY, WKKY etc also seems to replace the WRKY proteins. The
domain is about 60 residues in length containing a typical zinc-finger structure at
the C-terminus (Eulgem ef a/., 2000). The structure seen at the C-terminus is either
Cx4-5Cx22-23HxH or Cx7Cx23HxC.

The typical structure of the WRKY domain consists of a four-stranded B-sheet
forming a zinc-binding pocket with the zinc coordinating Cys/His residues. There
is no existence of crystal structure in WRKY domain associated with its DNA-
binding sites or for a full-length WRKY protein. The WRKY TFs are global
regulators of host responses that help in regulates the defense gene expression at
various levels, which seems to interact with key chromatin-remodelling factors,
which together forms the WRKY network. MAP kinases in the nucleus, which are
the key components of plant defense signalling are also associated with WRKY
(Pandey et al., 2009).

2.3.9 NBS-LRR

Plant proteins belonging to nucleotide-binding site (NBS) and leucine-rich
repeats (LRRs) family, mostly encoded by R genes, are thought to be involved in
pathogen detection. They recognize specialized pathogen effectors called
avirulence (Avr) proteins, which provides virulence function in the absence of the
cognate R gene (DeYoung and Innes ef al., 2006). They can be categorized into
non-TIR and TIR classes based on the identity of the sequence preceding the NBS
domain. The difference between TIR and non-TIR classes is contributed by the a-
helical coiled-coil-like sequences at the amino terminal end of non-TIR and the
amino terminal of TIR class seems to be homologous to the Toll and interleukin 1

receptors.
2.3.10 LECTIN

Lectins constitute an abundant multivalent group of proteins and/or
glycoproteins, which are of non-immune origin that can reversibly bind to specific

monosaccharides, oligosaccharides and  glycoconjugates.  Carbohydrate
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Recognition Domain (CRD), which are the lectin binding sites on the carbohydrate, ?
seems to be highly conserved in each type of lectin (Ni ef al., 1996). Lectins play a
major role in endocytosis (Yi er al., 2001) and intracellular transport of vector
glycoprotein mechanisms (Yamamoto er al., 2014), induction of apoptosis in
tumoral cell (Kim ez al., 1993), blocking of HIV infection (Tanaka ef al., 2009),
regulation of bacterial cell adhesion and migration (Tanne e a/., 2010) and control
of protein levels in the blood. Lectins arrives as major contributors to the immune
system by the recognition of carbohydrates that are found exclusively in pathogens,

or that are inaccessible in host cells (Dias ef al., 2015).
2.4 GENE REGULATORY NETWORK (GRN)

A Gene-Regulatory Network (GRN) contributes to group of regulatory protein
and their regulatory interactions that are involved in control and coordination of
certain biological processes. The entire system consists of genes, cis-elements, and
regulators. The regulation is mainly carried out by proteins, called transcription
factors, and small molecules, like RNAs and metabolites. The level of gene
expression during transcription is controlled by the interaction and binding of the
regulators to cis-elements present on the cis-regions of the genes. The regulators
mediate the aggregation of input signals which paves way for the specific gene
expression signal. The gene network is constituted by the genes, regulators and the
regulatory connections between them along with an interpretation scheme. GRN
provides important information useful for drug design or medical-related fields
hence the construction of GRN is a major focus in biological research. The
generated network or module can serve as a working model for the formation of

novel research hypotheses and assistance in experimental design.

2.5 METHODS FOR THE CONSTRUCTION OF GENE REGULATORY
NETWORK

2.5.1 Probabilistic Boolean
They have been developed with an objective to study the logical interactions

of genes without knowing specific details. Here the target gene is predicted by other
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genes through a Boolean function. This method originally introduced by Kauffman
(Shmulevich ez al., 2002) seems to be very useful to infer gene regulatory networks
as it is able monitor the dynamic behaviour in complicated systems. This is achieved
using large amounts of gene expression data. A stochastic extension of Boolean
network, called Probabilistic Boolean Network (PBN), is made up of a family of
networks corresponds to a contextual condition which is determined by variables
outside the model. A structure-based method for fast simulation of PBNs was
developed by Mizera er al. (2016), which initially performs a network reduction
operation and then the nodes are divided into groups for parallel simulation (Mizera
ef al., 2016). Probabilistic Boolean network (PBN) based on a network structure
and desired steady-state properties have recently arisen to overcome the
shortcomings of the earlier approach by using a matrix-based representation of PBN
(Kobayashi and Hiraishi, 2017).

2.5.2 Dynamic Bayesian

Bayesian networks represent a general class of graphical models in which
nodes are constituted by random variables and the lack of arcs amounts for
conditional independence assumptions. The probabilistic nature of Bayesian
network approaches paves way for its use in modeling genetic regulatory networks
(Li ef al., 2007). Although Bayesian networks works well with static version of
gene expression data, it faces a disadvantage in failing to capture temporal
information and model cyclic networks. Zou ef al., 2018 presented an important
approach for predicting the gene regulatory networks from time course expression
data called DBN based approach. It seems to have several advantages like ability
to model stochasticity, incorporation of prior knowledge and principled way of
handling hidden variables and missing data. Here the number of potential regulators
is limited to reduce search space.

As the quantities of biological data is limited, scientists are developing
simulation approaches to improve DBN inference algorithms (Yu er al., 2004).
Even though likelihood maximization algorithms such as the Expectation-
Maximization (EM) algorithm have been used to infer hidden parameters and deal

with missing data, the effectiveness of current DBN methods is greatly reduced due
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to low accuracy of prediction and excessive computational time.
2.5.3 Machine learning approach

This refers to a technique in the machines are programmed to learn patterns
from data. Machine learning refers to a technique where the machines are
programmed to learn patterns from data. The learning aims to develop a predictive
model from a given dataset which is based on a set of mathematical rules and
statistical assumptions. The above model could possibly predict any range of
outputs like binary responses, categorical labels or continuous variables.

Machine learning methods are categorized into two, unsupervised learning
and supervised learning (James ef al., 2013). The approaches are classified based
on the availability of labels for the input data. Unsupervised methods are used if the
labels on the input data are unknown. Here the learning takes place from the patterns
in the features of the input data. The commonly used methods are principal
components analysis (PCA) and hierarchical clustering. When the labels are
available for the input data, supervised methods are applied. Here the labels are
used for training the machine-learning model to recognize patterns that are able to
predict the data labels.

Camacho ef al. (2018) have discussed the opportunities and challenges
faced at the intersection of machine learning and network biology. He also could
possibly introduce a new approach for regulatory network construction based on
deep learning. This seems to have drastic impact in disease biology, drug discovery,
microbiome research, and synthetic biology. Ni ef al. (2016) reports a machine
learning approach to predict GRNs specific to developing Arabidopsis thaliana
embryos. They developed the Beacon GRN inference tool which could predict
GRNs occurring during seed development in Arabidopsis based on a support vector
machine (SVM) model. Onik ef al. (2018) have predicted a cancer-specific gene
regulatory network using a simple and novel machine learning approach with linear
regression and Pearson correlation coefficient.

2.5.4 Correlation based methods
Correlation based approach works based on the assumption that the

interacting genes have correlated expression and methods like WGCNA (Weighted
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Gene Correlation Network Analysis) which implements this methodology have
proved to be consistently reliable and is widely adopted. Batushansky ef al. (2016)
introduces a series of methods for correlation-based network generation and
analysis. This used freely available software that would allow the user to control
each step of the network generation. It also provides an additional advantage in
providing the flexibility in selection of correlation methods and thresholds.
2.5.5 Mutual Information based

Several information-theoretic approaches used in methods like as ARACNE
(Margolin er al., 2006b), CLR (Faith ef al., 2007) and minet (Meyer ef al., 2008)
have found to be very successful in GRN construction. They compute the pairwise
MIs between all possible pairs of genes, resulting in an MI matrix, which is then
manipulated to identify the regulatory relationships (Altay and Emmert-Streib,
2010). Xing ef al., 2017 proposed a Candidate Auto Selection algorithm (CAS)
based on mutual information. This algorithm automatically selects the neighbour
candidates of each node before searching the best structure of GRN. It detects the
breakpoint that can restrict the search space, that help in accelerating the learning
process of Bayesian network.
2.6 TOOLS USED FOR GRN CONSTRUCTION
2.6.1.1 R packages

2.6.1.1 parmigene version 1.0.2

PARMIGENE, which stands for PARallel Mutual Information estimation
for GEne NEtwork reconstruction, is used to infer large transcriptional networks
using mutual information. It is an R package that implements a mutual information
estimator based on k-nearest neighbour distances. This method is minimally biased
compared to other methods and uses a parallel computing paradigm to reconstruct
gene regulatory networks (Sales and Romuladi er al., 2011). Parmigene seems to
give more precise results compared to existing softwares with less computational

costs.
The package along with reference manual is available at:

https://cran.r-project.org/web/packages/parmigene/index. himl
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2.6.1.2 wgcna version 1.63 3 3

The Weighted correlation network analysis (WGCNA) (Langfelder et al.,
2008), an R software package is a comprehensive collection of R functions that
could perform various aspects of weighted correlation network analysis. This
package includes functions for data simulation, network construction, gene
selection, calculations of topological properties, module detection, visualization,
and interfacing with external software. The package along with reference manual is

available at:

https://cran.r-project.org/web/vackages/WGCNA/index. html

2.6.1.3 GeneNet version 1.2.13

GeneNet is a package that analyses gene expression (time series) data with
focus on the inference of gene networks with high accuracy (Opgen-Rhein et al.,
2006). It is computationally efficient and is appropriate for large scale data sets.
The approach is based on dynamical correlation and covariance and it provides a

similarity score for pairs of groups of randomly sampled curves.
The package along with reference manual is available at:

htips://cran.r-project.org/web/vackages/GeneNet/index.html

2.6.1.4 CoDiNA version 1.1

Co-expression Differential Network Analysis (CoDiNA) distinguishes
between links that are common to all networks, links that are specific to only one
of the compared networks, and links that are different in that their sign changes
between networks. Basically, the package works based on a statistical framework
that normalizes these different categories. The method identifies edges and links
that are specific, differentiated or common to all networks, and it also includes an

interactive tool for network visualization (Gysi et al., 2018).
The package along with reference manual is available at:

htips://cran.r-project.org/web/packages/CoDiNA/index. html
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2.7 NETWORK VISUALIZATION TOOLS
2.7.1 Cytoscape 34

Cytoscape is a general-purpose open source software where biomolecular
interaction networks with high-throughput expression data and other molecular
states is integrated into a unified conceptual framework. Basic features such as
network layout and mapping of the data attributes to visual display properties etc,
could be handled by the Cytoscape core facility. The major functions include
integration of the network with expression profiles, phenotypes, and other
molecular states, linking the network to databases of functional annotations, and to
layout and query the network (Shannon er a/., 2003). Cytoscape seems to be more
powerful when used in conjunction with large databases of protein—protein
interaction, protein—-DNA interaction, and genetic interactions that are increasingly

available for humans and model organisms.
2.7.2 VANTED

VANTED is a very important tool for modern biological research and plays
a major role in analysing and interpreting biochemical data. Its functions include
network loading and editing, importing any type of biochemical data (e. g.
transcript, protein, metabolite) from different growth conditions and time-points,
mapping of the data on the corresponding dynamic networks etc. A wide range of
tasks including data visualization, network reconstruction, integration of various
data types, network simulation, data exploration that serves to set the systems
biology standards for visualization and data exchange (Rohn er al., 2012).
VANTED is a Java Web Start application that is platform-independent and
available free of charge. It provides tremendous opportunities for visual
exploration, statistical calculations (r-test, outlier identification, correlation
analysis) (David ez al., 2014), data clustering with self-organizing maps, and much
more. The various file formats supported by VANTED includes native formats like
GML, GraphML, DAT (Kamp et al., 2006), SBGN-ML (provided by the SBGN-
ED add-on) and BioPAX. It also computes several topological properties like

shortest paths between node pairs, network cycles and motifs.
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2.7.3 Gephi 35

Gephi is an open source visualization module that uses a special 3D render
engine to display large networks in real-time and to speed up the exploration. It
serves to provide easy and broad access to network data allowing for spatializing,
filtering, navigating, manipulating and clustering (Bastian e al., 2009). It is
exclusively used for the purpose of graph and network analysis. It is a network
exploration and manipulation software that can import, visualize, spatialize, filter,
manipulate and export all types of available networks. The technique involves the
use of a computer graphic card, as video games do, and leaves the CPU free for
other computing. As being built on a multi-task model, it makes use of its multi-
core processors and hence deal with large networks (i.e. over 20,000 nodes). The
extra features of Gephi includes that its node design can be personalized i.e. instead
of a attaining a classical shape it can be a texture, a panel or a photo and also the
graph window allows the highly configurable layout algorithms to be run in real-

time.

2.7.4 BisoGenet

BisoGenet, a client server based multi-tier application is used for
visualization and analysis of biomolecular relationships. It creates, visualizes and
analyses biological networks and is designed according to a multi-tier architecture
(Martin et al., 2010). The system is constituted by three tiers: the data, the server
and the client subsystems. It consists of an in-house database that stores genomics
information, protein-DNA interactions, protein-protein interactions, gene ontology
and metabolic pathways. It is a fast and user-friendly application which uses coding
relations to distinguish between genes and their products. It creates, visualizes and
analyses biological networks depending on the biological information provided by
SysBiomics, an in-house database that integrated a wide range of omics information
from multiple public data sources. It works as a Cytoscape plugin, that can be an
easy interface for querying the server along with graph topology analysis and

options for easy visualization and interpretation.
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2.7.5 iDREM 36
The Dynamic Regulatory Events Miner (DREM) software is used to
reconstruct dynamic regulatory network by integrating static protein-DNA
interaction data with time series gene expression data. This would enable the user
to interactively visualize the resulting model (Ding et al., 2018). iDREM
implements its regulatory model prediction part in Java and the interactive
visualization part is implemented in Javascript with D3.js and Google charts. The
users will need to only run the java program idrem jar to get all results including

the interactive visualization.
2.8 NETWORK VALIDATION STRATEGIES

2.8.1 Network Comparison Test (NCT)

Network Comparison Test (NCT) uses permutation tests for the comparison of
network structures from two independent cross-sectional data sets (Borkulo ef al.,
2017). The method is currently implemented for handling networks derived from
continuous and binary data. The empirical dataset used is selected based on
invariance in three parameters- Network structure, edge (connection) strength and
global strength.

The R package for Network Comparison Test (Burkulo er al., 2018) is available at:

https.://cran.r-project. org/web/packages/NetworkComparison Test/index. hitml.

2.8.2 Module Validation Approaches

2.8.2.1 Topology based Approaches (TBA)

In this method, several topological features such as connectivity (Dong e7 al., 2007),
modularity (Newman er al., 2006), clustering coefficient, degree, density (Georgii
et al., 2009), edge betweenness etc are focussed and the presence of modular
structure for the identified modules is determined. The validity of a module is
determined by a single or composite topological index. Uniform distribution of data
will increase the value of entropy hence, a good quality module is expected to have

a low entropy (Rau ez al., 2013).
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The module’s stability, phenotypic correlation or significance of consistency is

2.8.2.2 Statistics- Based Approaches (SBA)

assessed in this approach.A binary or mixed integer linear programming models
can be used for the validation of causal or dependent relations between network
modules and biological phenotypes for module biomarker identification (Shi et al,
2010).



MATERIALS AND
METHODS
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3. MATERIALS AND METHODS -

The study entitled “Comparative evaluation of tools for Gene Regulatory
Network prediction and network reconstruction using genomic data” was carried
out at the Section of Extension and Social Sciences, ICAR-Central Tuber Crops
Research Institute, Sreekariyam, Thiruvananthapuram during 2017-2018. In this
chapter, details regarding experimental materials and methodology used in the

study are elaborated.

3.1 CONSTRUCTION OF GENOMIC DATASETS

3.1.1 Collection of Cassava genome resources

The Cassava genome resource used for the study was obtained from Phytozome,
the Plant Comparative Genomics portal of the Department of Energy's Joint
Genome Institute. In the latest release v12.1.6, Phytozome hosts 93 assembled and
annotated genomes, from 82 Viridiplantae species of which more than half of the
genomes have been sequenced, assembled and/or annotated with JGI Plant Science
program resources. The selected sequence data were generated from a partially
inbred (third generation self, or S3, of MCOL1505) line called AM560-2 which
was generated at CIAT (International Center for Tropical Agriculture) in Cali,
Colombia. The whole genome assembly (approximately 582.25 Mb arranged on 18
chromosomes plus 2,001 scaffolds) and whole genome annotation (33,033 genes)
of AMS560-2 genotype of Manihot esculenta v6.1 (Cassava) were downloaded from
Phytozome v12.1. (https://phytozome.jgi.doe.gov/pz/portal.html) (Bredeson et al.,
2016).

3.1.2 Identification of immunity related genes

Genes coding for canonical immune protein domains which includes WRKY, TIR,
LRR, Kinase, NBS, LysM, Lectin, NB-ARC etc. that are related to MAMP
triggered and ETI triggered immunity in cassava were downloaded from Pfam 30.0
(https://pfam.xfam.org/)(Finn et al., 2016). These domains were searched in
proteomes of cassava (Mesculenta 305 v6.1 protein.fa.gz) using HMMER v3.1b2
(Finn ef al., 2015) by generating Hidden Markov Model (HMM) corresponding to
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the several selected Pfam families. The entire workflow for the reconstruction of

regulatory network using genomic data is depicted in Figure 4.
3.1.3 Protein domain search and analysis- HMMER suite version v3.1b2

HMMER mainly serves the purpose of searching sequence databases for
homologs of protein or DNA sequences, and to make sequence alignments. It is a
free, commonly used software package that carries out Bio sequence analysis by
generating profile Hidden Markov Models. Several programs included in the
HMMER v3.1b2 suite provides the core functionality for protein domain analysis

and annotation pipelines.
Steps for installation:

e Download hmmer-3.1b2.tar.gz from Atp.//hmmer.ore/

e Unpack it

> wgel fip://selab janelia.org/pub/software/hmmer3/3.1b2/hmmer-3.1b2.1ar.oz

> tar xf hmmer-3.1b2.1ar.gz

> cd hmmer-3.1b2

> ./configure

>make install

3.1.3.1 hmmbuild- Building profile HMM

Synopsis: hmmbuild [options]<hmmfile out><msafile>

< hmmfile_out> represents output file name and <msafile> represents multiple
sequence alignment file. A multiple sequence alignment file (msa file) generated

using Clustal omega (htips://www.ebi.ac.uk/Tools/msa/clustalo/) online with *

clustal” extension, is used to create a hmm file.
3.1.3.2 hmmsearch- Searches profile HMM against protein database

Synopsis: hmmsearch [options] <hmmfile><seqdb>
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<seqdb> refers to the sequence database.All sequence hits with an E value < 1 x 10°
2 were selected to acqui re a high-quality cassava protein set conferring immunity

using the raw profile HMM
3.1.3.3 hmmalign- Align sequences to profile HMM
Synopsis: hmmalign [options]<hmmfile><seqfile>

hmmalign performs a multiple sequence alignment by aligning all the sequences
individually to the profile HMM to obtain output in Stockholm format. It creates a
high confidence immunity related gene set in cassava which can be used to build
cassava immunity specific hmm (using hmmbuild). This is further applied into
whole genome annotation to improve the sensitivity of the method by pre-checking
the location of the sequence in cassava genome. This new cassava-specific HMM
was used and proteins with a reporting threshold (E-value) less than 0.01 was
selected and used for further analysis. Several other parameters like gap penalties,

filter etc. were also considered.

3.1.4 Filtering genes for high competence cassava specificity

3.1.4.1 Manual curation

Each set of proteins were separately checked for homology with other plant R genes
and genes unrelated to immunity and less than 250 amino acids were filtered. A
plant R gene database was constructed with already identified immunity related
genes and other plant R genes and BLASTP was performed in the ubuntu terminal
against the duplication removed R gene database. The sequence IDs were sorted

and the output was retrieved in FASTA format.
3.1.4.2 PRGDB 3.0

Online BLASTP was performed against the PR-proteins specific to Manihot
esculenta stored in Pathogen Resistance Genes Database (PRGdb 3.0) (Osuna-Cruz
et al., 2017). Both the results were compared and analysed for obtaining high

confidence immunity related protein dataset in cassava.
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3.1.5 Mapping and functional annotation

Blast2GO 5 is a comprehensive bioinformatics software for the functional
annotation and analysis of genome scale sequence datasets (Conesa and Gotz et al.,

2008). It is meant to provide a user-friendly interface for Gene Ontology annotation.

Blast2GO 5 uses CloudBlast, which is a high-performance, cost-optimized and
secure method for massive sequence alignment tasks. It allows you to execute
standard NCBI Blast+ searches directly from Blast2GO PRO in a dedicated
computing cloud. Gene Ontology Mapping performed retrieves the GO terms
associated to the Hits obtained by the BLAST search. Gene Ontology Annotation
selects the GO terms from the GO pool obtained by the Mapping step and assigns

them to query sequences.

InterPro annotations in Blast2GO 5, functions to retrieve domain/motif information
in a sequence wise manner and also transfers the corresponding GO terms to the

sequences and merges it with already existing GO terms.
3.1.6 Detection of molecular function and pathway mapping

The identified genes were then further annotated in InterPro, Gene Ontology (GO)
(Figure 10), EC (Enzyme Code), and Kyoto Encyclopedia of Genes and Genomes
(KEGG) database with Blast2GO 5.

Blast2GO 5 provides EC annotation in which the sequences with GO annotations
will eventually show EC numbers so that the GO annotation accuracy can be made
extensive to Enzyme annotations. An extensive search of all KEGG maps
containing the EC numbers of the selected sequences will be done, which would
allow the display of enzymatic functions (Figure 11) in the context of the metabolic
pathways in which the particular protein participates.

-
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3.2 PREDICTION AND ANALYSIS OF GRN USING DIFFERENT
COMPUTATIONAL METHODS
3.2.1 Different computational approaches for GRN construction
3.2.1.1 Weighted Gene Co-expression Network Analysis (WGCNA)

Weighted Gene Co-expression Network Analysis (WGCNA) describes the gene
pattern correlations across microarray samples. It is used to find clusters
(modules) of genes that are highly correlated, to summarize such clusters using
the module eigengene or an intramodular hub gene, to relate modules to one
another and to external sample traits (using eigengene network methodology), and
to calculate module membership measures. Correlation networks helps for
network-based gene screening methods that helps us to identify candidate

biomarkers or therapeutic targets.

The construction of correlation networks is on the basis of correlations between

quantitative measurements that can be described by an » x m matrix, X = [x,]

where, the row indices represents network nodes (=1, ...... , n) and the column
indices (=1, ....... , 1) represents sample measurements:
X1
X2
X= [x,-j] =
xn

The i-th row xiis referred to as the i-th node profile across 7 sample measurements.
A quantitative measure, referred to as sample trait, T which is a vector with m
components that correspond to the columns of the data matrix X is used to define a
node significance measure.

T:GS; =|cor (x;, T)|

A p-value based node significance measure can be defined by a correlation test p-
value or a regression-based p-value. It is used for assessing the statistical

significance between x; and the sample trait 7.
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GSi = -logP; 44

The correlation network methodology uses network language to describe the

pairwise relationships (correlations) between the rows of X.
3.2.1.1.1 Tool used for WGCNA

The WGCNA R software package (Langfelder es al., 2008) was used. The package
along with its source code and additional material are freely available at:

https://labs.genetics.ucla.edu/horvath/CoexpressionNetwork/Rpackages/ WGCNA/

The various steps involved in WGCNA using R software is as follows:
1 Cleaning and input of data
i1 Construction of network and detection of module
iii Relating modules and identification of important genes
iv. Network interface analysis with other data such as functional annotation and
gene ontology
v Network visualization using WGCNA functions

vi Export of networks to external software

3.2.1.2 Bayesian K2 Algorithm

Bayesian K2 presents a Bayesian algorithm for the construction of a probabilistic
network from a database (Cooper and Herskovits ef al., 1992). The advantage of
using Bayesian network is that it is capable of dealing with the noise in experimental
measurements and it has the ability to handle the missing data and incomplete
knowledge about the biological system. The algorithm begins by assuming that a
node has no parents, and then starts adding parents to that node, in which the
addition better improves the probability of the resulting network. It reduces the
computational complexity by the requirement of a prior ordering of nodes as an
input, from which the network structure will be constructed. Algorithm K2 uses
greedy search as the search strategy. The ordering of nodes in the algorithm is very
important because this technique only considers the nodes that have already been

filled with parents as the parent nodes. Therefore, the first node to be considered
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will always be empty of parents and the second one will only be able to have the
first node as the parent node. Log metrics such as MDL, AIC and Entropy need to

be minimized instead of maximized. In order to do that, when the algorithm is

applied, the sign of these metrics has to be changed without changing the algorithm.
32.1.2.1 Tool used for Bayesian K2

Cytoscape Network Inference Toolbox (Cyni), a Cytoscape application that
functions in version 3.0 or newer versions and made available in the Cy3 App Store

is used (http://proteomics.fr/Sysbio/CyniProject).
3.2.1.3 Mutual Information based

Algorithm for the Reconstruction of Accurate Cellular Networks (ARACNE) is a
novel algorithm based on information-theory which mainly serves the purpose of
reverse engineering the transcriptional networks from microarray data (Margolin ef
al., 2006). Here the candidate interactions are identified by estimating pairwise
gene expression profile mutual information. Mutual information measures the

degree of statistical dependency between two variables.

For a pair of random variables, x and y, Mutual information could be defined as,

I(x,y)=8(x) +S(¢) - S (x,»)
where S(7) represents the entropy of an arbitrary variable .

For network construction, the mutual information for each pair of elements is
computed and the two nodes representing the two biological elements would get
connected in the network if their mutual information value is above a certain
particular threshold. If the value lies below the threshold, it will remain
unconnected. In this algorithm, discrete data is used to calculate the mutual

information, hence, all the continuous data will have to be discretized before using.
3.2.1.3.1 Tool used for Mutual Information based

Cytoscape Network Inference Toolbox (Cyni), a Cytoscape application that

functions in version 3.0 or newer versions and made available in the Cy3 App Store
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is used (http://proteomics.fr/Sysbio/CyniProject). To calculate mutual information,

the entropy used is joint entropy and the log base is 2.
3.2.1.4 Basic Correlation Algorithm

This algorithm is mainly used to explain the observed correlations between
biological elements such as genes by the presence of other biological elements.
Here, the networks are inferred by computation of similarity measures for each pair
of elements. If the similarity value is above a certain threshold, the two biological
elements represented by two nodes get connected in the network and if the value is

below threshold, it remains unconnected.
3.2.14.1 Tool used for Basic correlation algorithm

Cytoscape Network Inference Toolbox (Cyni), a Cytoscape application that
functions in version 3.0 or newer versions and made available in the Cy3 App Store

is used (http://proteomics.fr/Sysbio/CyniProject). The list of correlation metrics

that are made available in Cyni so far includes:

i Pearson Correlation: Here, the value is obtained by division of the
covariance of the two variables by the product of their standard deviations.

ii Spearman’s rank Correlation: This is a non-parametric measure which
represents the correlation between the two rows of data. In this metric, the
current value row values are replaced by their ranks and then the liner
correlation coefficient is applied to this data.

iii Kendall’s Tau Correlation: This is also a non-parametric measure. Here,
instead of using the numerical difference of ranks, only the relative ordering
of the ranks is used.

3.2.2 Generation of simulated dataset

SynTReN is used for the generation of synthetic gene expression data for the design
and analysis of structure learning algorithm. The benchmark data set for which the
underlying network is known, used for the validation of the constructed networks
is generated using SynTReN (Van den Bulcke er al., 2006).
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3.2.3 Comparison of different methods /f;

Accuracy studies of a particular regulatory network construction strategy addresses
how well they determine the particular interaction. Sensitivity, Specificity,
Predictive values and likelihood ratios (LRs) are all different ways of expression of
the performance of a particular method. Accuracy studies are conducted by
comparing the network generated by each method with a reference standard
consisting of actual interactions. A Table (Table 1) is created with the index results

on one side of the table and those of the reference standard on the other side.

Table 1 Parameters for determining interaction statistics

TEST Present Absent TOTAL

Positive TRUE POSITIVE FALSE POSITIVE | TP+FP
(TP) (FP)

Negative FALSE NEGATIVE TRUE NEGATIVE | FN+TN
(FN) (TN)

TOTAL TP+FN FP+TN

The following values are calculated for measuring the performance:

Sensitivity refers to the probability that the presence of the interaction will give
a positive test result (%).

SENSITIVITY=TP/(TP+FN)

Specificity refers to the probability that the absence of an interaction will give a
negative test result (%).

SPECIFICITY=TN/(FP+TN)

Positive Likelihood Ratio (PLR) is the ratio between the probability of obtaining
a positive test result in the presence of the interaction and the probability of
obtaining positive test result in the absence of the interaction

PLR= True Positive Rate/ False Positive Rate=Sensitivity/1-Specificity
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Negative Likelihood Ratio (NLR) is the ratio between the probability of
obtaining a negative test result in the presence of the interaction and the
probability of obtaining a negative test result in the absence of the interaction
NLR=False Negative Rate/True Negative Rate=1-Sensitivity/Specificity
Positive Predictive Value (PPV) is the probability of getting a positive test result
in the presence of the interaction (%)
PPV=TP/(TP+FP)
Negative Predictive Value (NPV) is the probability of getting a negative test
result in the absence of the interaction (%)
NPV=FN/(FN+TN).

3.3 PROTEIN-PROTEIN INTERACTION NETWORK CONSTRUCTION

The STRING v10.5 (https.://string-db.org/cgi/input.pl) was used to predict the
protein-protein association data of the identified genes. It collects and reassesses
available experimental data on protein—protein interactions available in the
database, and imports the known pathways and protein complexes from other
curated databases. Statistical analysis results are also by default obtained in
STRING v10.5 (Szklarczyk ef al., 2017). The enrichment tests done for a variety
of classification systems (Gene Ontology, KEGG, Pfam and InterPro) seems to
provide functional characterization of the set of protein. They also seem to employ

Fisher’s exact test followed by a correction for multiple testing.

34  DATA INTEGRATION AND VISUALIZATION

3.4.1 Microarray data integration

From a Cassava cDNA microarray dataset constructed based on a large cassava
EST database to study the interaction incompatibility between cassava
and Xanthomonas axonopodis pv. manihotis (Xam) strain CIO151 by Lopez et al.
(2005), a total of 199 genes were found to be differentially expressed (126 up-
regulated and 73 down-regulated). The GenBank accession IDs of all the
upregulated and down regulated genes were collected and a database was
constructed. BLASTX was done using the identified immunity related genes in

cassava as query against the constructed nucleotide database.
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3.4.2 Network Visualization

Cytoscape 3.6.1 (http://www.cytoscape.org/) helps to visualize the molecular

interaction networks and biological pathways, and enables the integration of these
networks with gene expression profiles, annotation and other state data (Shannon
et al., 2003). It also paves way for changing the visual styles upon the application
of algorithm for clustering, enrichment analysis, network layout and network

analysis.

The interaction data is imported into Cytoscape in various formats like CSV
(comma-separated values), TSV (tab-separated values) in Excel, along with
network-specific formats such as SIF (simple interaction file), OpenBEL (Open
Biological Expression Language) XGMML (Extensible Graph Markup and
Modeling Language), BioPAX (Biological Pathway Exchange), GML (Graph
Modelling Language), PSI MI (Proteomics Standards Initiative—Molecular
Interaction format), and SBML (Systems Biology Markup Language). Cytoscape
also provides extended service through its various plugin softwares available at
Cytoscape App store. Various Cytoscape plugins include Metscape plugin which
are used to generate metabolic networks based on information in the Kyoto
Encyclopedia for Genes and Genomes (KEGG), BioCycPlugin, which provides
access to the BioCyc metabolic network database (http://biocyc.org/), and ReConn,

which provides access to Reactome (http://reactome.org/). Cytoscape integration

with STRING v10.5 has paved way for explicit opportunities in analysis and

visualization of large scale networks (Szklarczyk et al., 2017).



RESULTS
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The results of the study “Comparative evaluation of tools for gene regulatory
network prediction and network reconstruction using genomic data” carried out at
the Section of Extension and Social Sciences, ICAR- Central Tuber Crops Research
Institute, Sreekariyam, Thiruvananthapuram during 2017-2018 are presented in this

chapter.
5.1  CONSTRUCTION OF GENOMIC DATASETS

The genomic dataset used for the study was generated by searching the
canonical ~immune  protein  domains  obtained from  Pfam30.0

(https://pfam.xfam.org/) (Figure 3) in the whole genome sequence of AM560-2

genotype of Manihot esculenta v6.1 (Cassava),derived from Phytozomev12.1

(https://phytozome.jgi.doe.gov/pz/portal.html) (Figure 2) by using Hidden Markov

Models (HMM).The Phytozome data was constituted by a whole genome assembly
of cassava made up of 582.25 Mb sequence arranged on 18 chromosomes plus 2001
scaffolds. It consisted a total of 8348 alternatively spliced transcripts with 35.9%
GC content. The cassava proteome sequence was taken from the Whole genome
annotation of cassava composed of 33,033 total loci containing protein coding

transcripts.

The main protein domains involved in conferring Microbe-Associated
Molecular Patterns (MAMPs) triggered immunityand Effector Triggered Immunity
(ETT) in plants were identified from literature. These particular domains and other
selected domains related to immunity in plants were selectively downloaded from
Pfam. The selected protein domains were those of ABC Transporters (PF00005),
Lectin-c (PF00059), LRR1 (PF00560), LRR3 (PF07725), LRR9 (PF14580), LRR4
(PF12799), LRRS5 (PF13306), LRR6 (PF13516), LRR8 (PF13855), LysM
(PF01476), NB-ARC (PF00931), Nramp (PF01566), PKinase (PF00069), TIR
(PFO1582), and WRKY (PF03106). Table 2. gives details regarding the total
number of genes present in each domain and the identified number of genes that

specifically confers resistance in cassava.
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Table 2. Screening of Immunity related genes from Immune protein domains

Immune protein Total No. of No. of genes No. of predicted
domains Pfam ID genes identified interactions

ABC Trans PF00005 36973 104 57
Lectin-C PF00059 17879 Nil 0
LRR1 PF00560 16878 Nil 0
LRR3 PF07725 1274 Nil 0
LRR9 PF14580 5476 2 0
LRR4 PF12799 6525 221 89
LRRS PF13306 17281 Nil 0
LRR6 PF13516 56000 16 10
LRRS8 PF13855 133230 248 97
LysM PF01476 29030 1 0
NB-ARC PF00931 24904 207 28
Nramp PF01566 5393 13 5
Pkinase PF00069 236455 1320 517
TIR PF01582 6950 40 15
WRKY PF03106 6320 109 43
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Figure 6. A model of the hmmsearch result
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transcript=cassava4.1_0026
transcript=cassava4.1_0004
transcript=cassavad4.1_00062
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HMMER v3.1b2 that makes Hidden Markov Model (HMM) corresponding
to the selected Pfam families were used to search the occurrence of selected immune
domains in the cassava proteome. A Hidden Markov model (Figure 8) of the pfam
domain data was created separately for each domains and screening was carried out
using hmmsearch (Figure 6), hmmalign and hmmbuild. The domain annotation
for each sequence as well as the alignments for each domain (Figure 5) was

acquired. The characteristic parameters of the Hidden Markov Model initially

created is given in Table 3.

Domain annotation for each sequence (and alignments):
>> cassavad.l_006823m pacid=17963166 transcript=cassava4.1_006823m
locus=cassava4.1_006823m.g [D=cassavad.l_006823m.v4.

¢ score bias c-Evaluei-Evaluchmmfrom hmmto alifromalito envfrom envito acc
11 952 42 13e-29 4de-27 1 S8[] 191 247 . 191 247 .097
21 942 47 2.6e-29 82e-27 I 38[] 363 420.. 363 420.098

Alignments for each domain:

== domain 1 score: 95.2 bits; conditional E-value: 1.3e-29
wrky 1 dDgyqWrKYGgkkikgskfprsYYrCthqgCpakKqVqrsdedpsvieviYegeHthp 58
dDgy+WrKYGak++kgs+prsYY+Cth++Cp+kK+V+rs d++v+e++Y+g+H+h+

cassavad,l_006823m 191 DDGYNWRKYGQKQVKGSEFPRSYYKCTHPSCPVKKKVERSL-
DGQVTEINYKGQHNHQ 247

FRER kR Rk ook R ROk R R R RROR ROk K (TR R Rk R ARRS PP

wrky 1 dDgyqWrKYGakkikgskfprsY YrCihqeCpakKqVqrsdedpsvlevt YegeHihp 58
dDgy+WrKYGgk +kg+++prsYY+Cur++gC+++K+V+r ++dp+++++Yeg+H+h+

cassava4.1_006823m 363
DDGYRWRKYGQKVVKGNPYPRSYYKCTTSGCTVRKHVERAATDPRAVITTYEGKHNHD
420

THFHKE F AR F A F OO FHOOE R FORE FH RO S 0R 0k ROk B R Rk £ 5 PP

Figure 5. Domain annotation and Alignments in HMMER v3.1b2
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Table 3. Characteristic parameters of Hidden Markov Model generated
DOMAIN NAME | MODEL NSEQ EFFN CKSUM
LENGTH

ABC-Tran 147 55 4273376 2707433464
Lectin-C 111 57 4.783630 8927388
LRR1 16 2407 2407.000000 | 2159447960
LRR3 20 56 56.000000 1928672352
LRR4 45 276 276.000000 4106556335
LRR9 175 8 0.714844 3904491559
LRRS 129 165 5.294724 1114312103
LRR6 24 80 80.000000 2192239453
LRR8 61 63 15.615417 1728073999
LysM 46 155 27931976 2347244879
NB-ARC 289 9 1.937988 3208044688
Nramp 355 92 4.152466 3994122721
PKinase 257 38 2.593018 808671746
TIR 172 24 2.944336 490769738
WRKY 58 305 3.290329 2758810124
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HMMER3/([3.1b2 | February 2015]
NAME LRR3
LENG 20
ALPH amino
RF no
MM no
CONS yes
CS mno
MAP ves
DATE Wed Mar 21 09:33:02 2018
NSEQ 56
EFFN 56.000000
CKSUM 1928672352
STATS LOCALMSY  -6.1661 (.72777
STATS LOCAL VITERBI -6.5033 0.72777
STATS LOCAL FORWARD -4.1027 0.72777
HMM A C D E F G H I K L M N P
Q R S T \% W Y
m->m  m->1 m->d =m0 deem d->d
COMPO  4.07240 4.45323 3.39042 2.35533 4.02443 297498 3.59148 3.36997 2.31458
1.66830 3.43509 290708 3.98677 3.09032 3.35652 271783 336669 2.72852 3.08032 3.61275
2686018 4.42225 277519 2.73123 3.46334 240513 3.72494 3.29354 2.67741 2.69355 4.24690
2.90347 273739 318146 2.89801 237887 2.77519 298518 458477 3.61503
0.04003 7.62288 323038 0.61938 0.77255 0.00000 *

1 468164 312360 2.60234 349204 2.08448 545485 218923 6.02609 2.23450 5.49930
6.23430 1.27135 5.84839 308808 3.20842 4.64358 3.59018 558491 7.62581 2.55583 I n
268618 4.42225 277519 2.73123 3.46354 240513 372494 329354 2.67741 2.69355 4.24690
250347 273739 318146 289801 237887 2.77519 298518 4.58477 3.61503
0.00076 7.58360 830595 0.61938 0,77255 0.462355 099337

2 859541 924832 9.01107 9.02068 792651 S. 11683 946891 7.42265 9.15923 0.00370
778773 937551 B.65187 922207 889497 927028 87411 7.83868 9.53767 9.07040 2L
2.68618 4.42225 277519 2.73123 3.46354 2.40513 3.72494 3.29354 2.67741 2.69355 4.24690
290347 273739 318146 2.89801 2.37887 2.77519 298518 4.58477 3.61503
0.00074 7.60889 833123 0.61938 0.77235 0.28738 1.3R6G0

3 226483 6.87469 7.63744 7.10661 3.39210 6.97062 744308 2.56632 3.38302 3.77901
6.05469 714002 7.28120 7.13054 7.00821 632391 348573 (.37763 7.88804 6.68966 3V
2.68618 4.42225 277519 2.73123 3406354 2.40513 372494 329354 2.67741 2.69355 4.24690
2.90347 273739 3.1R146 289801 237887 2.77519 298518 4.58477 3.61503
000073 7.62288 8343522 0.619358 0.77235 0.48576 095510

4 471900 7.22807 146011 1.06201 3.29817 5.49218 3.65905 2.63927 2.22181 S.53297
6.26898 3.05042 588598 477628 3.05483 4.68148 3.60428 4.17788 7.66096

I

Figure 8. A Model of the generated HMM file
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Further filtration of the genes for cassava specificity was done by creating
a R gene database manually by incorporating already identified immunity related
genes and R genes from other plants. Blast p was performed against this resistance
database and the sequences with lower E-value as selected and proteins made up of
less than 250 amino acid sequences were omitted. This result as compared with the
results obtained through online Blastp in PRGDB to make a final list of immunity
related genes in cassava. Further the identified genes were again Blasted, Mapped
and Annotated in Blast2go to determine the process or pathway in which the

identified genes are involved.

A total of 1919 immunity related genes were identified (Figure 7) in cassava
out of which 22 of them seems to specifically offer virus resistance in cassava
(Table 4). The identified genes were predicted to be involved in various biological
processes (Figure 9) like intracellular signal transduction, oxidation-reduction
process, transmembrane transport, regulation of catalytic activity etc. Most of the
genes functions to be involved in protein phosphorylation and very few in response
to stress. The sequence distribution data predicted the localisation of the greatest
number of genes in the membrane and a very few in the cytoplasm (Figure 13). The
major metabolic pathways (Figure 12) in which the predicted genes are involved
are purine metabolism, thiamine metabolism, aminobenzoate degradation, Th1 and
Th2 cell differentiation, T cell receptor signalling pathway, biosynthesis of

antibiotics, pentose phosphate pathway and Glutathione metabolism.



Figure 7. Interactions of the predicted genes obtained from STRING v10.5
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Table 4. Genes predicted to confer virus resistance in Cassava

SEQUENCE ID LENGTH SIM MEAN (%)
Cassava4.1_000748m 1049 62.49
Cassava4.1_031760m 861 68.21
Cassava4.1_000507m 1168 68.96
Cassava4.1_031334m 528 69.20
Cassava4.1 _034433m 1036 66.84
Cassava4.1_022519m 824 70.17
Cassava4.1_032178m 1160 66.48
Cassava4.1 033689m 1050 60.24
Cassava4.1_000627m 1101 65.36
Cassava4.1_020952m 992 58.96
Cassava4.1_022344m 443 76.42
Cassava4.1_025806m 972 63.46
Cassava4.1 031978m 941 62.46
Cassava4.1_000798m 1029 66.13
Cassava4.1_032695m 837 70.68
Cassava4.1_001696m 834 62.25
Cassava4.1_028330m 1064 67.65
Cassava4.1_000585m 1119 68.12
Cassava4.1_000944m 991 62.91
Cassava4.1 028973m 1580 82.75
Cassava4.1 022814m 2050 81.62
Cassava4.1_033473m 1008 67.08
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52  PREDICTION AND ANALYSIS OF GRN USING DIFFERENT
COMPUTATIONAL METHODS
5.2.1 WGNCA

Weighted Gene Expression Correlation Network (WGCNA), a network
construction approach based on correlation among genes, was carried out for a
sample microarray dataset. The WGCNA package in R version 3.5.1 was used to
carry out the method. The sample microarray dataset used was obtained from
Ghazalpour er al. (2006) (Integrating Genetics and Network Analysis to
Characterize Genes Related to Mouse). The steps that were used to carryout
WGCNA in R is given below in Figure 14. Separate R code is used for each step
and the program is run in R studio version 1.0.143, which provides an open source
programming environment for R. The final result file obtained is visualized in
cytoscape to view the interaction network. A network consisting of 409 nodes with
a characteristic path length of 1.550 was created with a network density of 0.45. A
network of radius 2 was created with a clustering coefficient of 0.777. The time

taken for analysis was about 0.64 sec.

DATA INPUT AND CLEANING

v
NETWORK RECONSTRUCTION
MODULE DETECTION

+

RELATING MODULES AND
IDENTIFYING IMPORTANT GENES

¥ “
GENE ONTOLOGY NETWORK
T -
FUCTIONAL ENRICEMENT VISUALIZATION

v

EXPORT TO EXTERNAL ANALYSIS
SOFTWARE

Figure 14. Flowchart for WGCNA
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5.2.2 ARACNE

Algorithm for the Reconstruction of Accurate Cellular Networks works on
the basis of a mutual information-based approach and the tool used here is
ARACNE Java reference implementation in Cytoscape. Regulatory network was
created using a sample microarray dataset and the obtained genomic dataset. The
ARACNE tool available in Cytoscape 3.4.2 was used for analysing both the
datasets. The sample microarray dataset was used to construct a network made up
of 405 nodes having a network density of 0.121. The network diameter seems to be
2 and the clustering coefficient was observed to be 0.252. the time taken for analysis

was about 0.094 sec.
5.2.3 Bayesian K2

Bayesian K2 is a probabilistic method-based network construction approach. The
Bayesian K2 Algorithm is carried out using Cynitools, which is a Cytoscape App
available at http://proteomics.fr/Sysbio/CyniProject. The number of parents is set
as default and the analysis is carried out by selecting all data attributes as sources.
The row order options are set as the default Cytoscape order. The result obtained is

shown with different network sizes like 50,100 and 150.
5.2.4 Mutual Information based

Mutual Information method is carried out by Cyni algorithm-based Inference tool.
The threshold to add new edge is set to be 0.6. If the network associated to table
data is used, it is possible to set parameters like selection of nodes so that the data

attributes of the selected nodes are considered as the source for network inference.
5.2.5 Basic Correlation based

The Basic Correlation Inference Algorithm enables to carry out network inference
based on different types of Correlations like positive, negative and absolute value.
Different metric settings can be also given which works based on Pearson’s
Correlation, Kendall Tau Correlation or Spearman Rank Correlation. Cynitool,

which is a Cytoscape v3.3 Plugin was used to carry out the method.
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5.2.6 Generation of simulated dataset 10
SynTRen, implemented in Java 5 is used to generate a synthetic Transcriptional
Regulatory Networks (TRN) and the corresponding microarray data sets. In the
network obtained, the nodes corresponds to the genes and the edges is used to
represent the regulatory interactions at transcriptional level between the genes. The
conditions set for generating datasets include Burnin period of 2000, number of
experiments 10, number of nodes 100, experimental noise 0.1, random seed 1300
etc. The simulated dataset generated (Figure 19) is considered as the true interaction
and is used for comparing the networks generated by different approaches. The

synthetic Transcriptional Regulatory Network created is shown in Figure.

5.2.7 Comparison of different methods using network parameters

Different network parameters like Clustering coefficient, network diameter,
network heterogeneity, isolated nodes, network density etc. is compared for
networks of different sizes like 50,100 and 150 (Table 5,6 and 7). The clustering
coefficient seems to be higher for mutual information and basic correlation
approach. Even when the number of genes increases, the clustering coefficient
remains the same. The obtained networks are depicted in Figure 15, 16 and 17
corresponding to Network size, N=50,100 and 150. And networks were also
generated for N=200,500,1000 and 1500 as shown in Figure 18.
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Figure 15. Networks with a size of N=50 constructed using different algorithms
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Table 5. Network Statistics for N=50 F
NETWORK STATISTICS (N=50)
AYESIAN MUTUAL
PARAMETERS [CORRELATION [K2 INFORMATION |(ARACNE
Clustering
Coefficient 1 0 1 0.867
Connetcted
components 1 1 1 =
Network diameter |1 2 1 1
Network radius 1 1 1 1
Network
centralization 0 1 0 0.137
Shortest paths 240 (100%) 240 (100%)  [240 (100%) 23 (50%)
Characteristic path
length 1 1.875 1 1
Avg. number of
neighbours 15 1.875 15 0.333
Number of nodes 16 16 16 15
Network density 1 0.125 1 0.238
Network
heterogeneity 0 1.807 0 0.447
Isolated nodes 0 0 0 0
Number of self-loops 0 0 0 0
ulti-edge node
pairs 0 0 0 0
Analysis time (sec) [0.012 0.01 0.011 0.01
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Figure 16. Networks with a size of N=100 constructed using different algorithms
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Table 6. Network Statistics for N=100

NETWORK STATISTICS (N=100)
BAYESIAN MUTUAL
PARAMETERS CORRELATION K2 INFORMATION ARACNE

Clustering
Coefficient 1 0 1 0
Connected
components 1 1 1 2
Network diameter 1 2 1 8
Network radius 1 1 1 1
Network
centralization 0 1 0) 0.162
Shortest paths 2256 (100%) 2256 (100%) 2256 (100%) 1642 (90%)
Characteristic path
length 1 1.958 1 3.495
Avg. number of
neighbours 47, 1.958 47 2.512
Number of nodes 48 48 48 43
Network density 1 0.042 1 0.06
Network
heterogeneity 0, 3.355 0 0.77
Isolated nodes 0| 0 0 0
Number of self-loops 0| 0 0 0|
Multi-edge node

airs 0) 0 0] 0
Analysis time (sec) 0.04 0.013 0.032 0.019
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Figure 17. Networks with a size of N=150 constructed using different algorithms
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NETWORK STATISTICS (N=150)

BAYESIAN MUTUAL
PARAMETERS (CORRELATION K2 INFORMATION | ARACNE
Clustering
Coefficient 1 0 1 0
Connected
components 1 1 1 1
Network diameter |1 2 1 6
Network radius 1 1 1 4
Network
centralization 0 1 0 0.126
Shortest paths 4692 (100%) 4692 (100%) 4422 (100%) 4556 (100%)
Characteristic path
length 1 1.971 1 3.177
Avg. number of
neighbours 68 1.971 66 3.824
Number of nodes 69 69 67 68
Network density 1 0.029 1 0.057
Network
heterogeneity 0 4.062 0 0.562
Isolated nodes 0 0 0 0
Number of self-loops|0 0 0 0
ulti-edge node
pairs 0 0 0 0
Analysis time (sec) [0.033 0.016 0.031 0.01




Figure 18. Networks constructed with ARACNE having different network sizes
N=500, 1000, 1500
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5.2.8 Network Analysis

78

The analysis of the constructed network was carried out by calculating the

parameters like sensitivity, specificity, PLR (Positive Likelihood Ratio), NLR
(Negative Likelihood Ratio), PPV (Positive Predicted Value) and NPV (Negative

Predicted Value) as shown in Table 9 using certain other parameters used for

interaction studies (Table 8). Specificity and Sensitivity seems to be highest for

Mutual information-based method and lowest for Bayesian K2, which is indicates

that Mutual Information based method is of more efficiency. ROC curve was

plotted and AUC determined to correctly evaluate the efficiency of the selected

methods. The accuracy measurements are calculated (Figure 20) and plotted as

shown in Figure 21.

Table 8. Parameters for Interaction Statistics

TRUE FALSE TRUE FALSE
POSITIVE (TP) | POSITIVE (FP) | NEGATIVE NEGATIVE
(TN) (FN)
ARACNE 22 6 20 9
Mutual 25 7 27 8
Information
Correlation 16 6 17 7
Bayesian K2 20 12 22 9




Figure 19. Synthetic Transcriptional Regulatory Network Constructed using SynTRen
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Table 9. Parameters for comparing the performance of the methods

g/

Specificity | Sensitivity | PLR NLR PPV NPV
(%) (%) (%) (%)
ARACNE 76 52 2.16 0.63 78.5 31
Mutual 79.4 75.7 3.60 0.30 78 23
Information
Correlation 73 73 2.70 0.36 76 20
Bayesian K2 | 68.9 64.7 1.96 0.48 62.5 26

5.3  MICROARRAY DATA INTEGRATION

Cassava ¢cDNA microarray dataset of genes related to Xanthomonas
axonopodis pv. manihotis (Xam) infection in Cassava causing CBB (Cassava
Bacterial Blight), obtained from ArrayExpress (E-GEOD-29379) was used to
screen the genes for resistance to CBB. The corresponding sequences of dataset
consisting of 199 genes obtained from GEO (GSE 29379) were used to search for
homology with sequences of the identifies genes which gave a resulting 727 genes

which are proved to have specific resistance to Bacterial Blight in Cassava.
54  PROTEIN-PROTEIN INTERACTION NETWORK CONSTRUCTION

String v10.5 was used to determine the protein protein interaction of the
obtained genes (Figure 22). Out of the total 727 genes identified to be specific to
Bacterial blight resistance in cassava, 324 of them were identified to have predicted
interactions. The obtained result predicts the network statistics to be constituted by
324 nodes, 3140 edges, average node degree 19.4, PPI enrichment value < 1.0e-16
and average local clustering coefficient is estimated to be 0.495. Gene

Neighbourhood data was also plotted in STRING as shown in Figure 23.




Figure 12. Protein- Protein interactions predicted from STRING v10.5
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5.5  VISUALIZATION AND VALIDATION

Visualization tool used was Cytoscape v3.6.1. The reconstructed regulatory
network was validated by comparing with the Synthetic Transcriptional Regulatory
Network created by SynTRen (Appendix II) and several network parameters were

compared to evaluate the accuracy of the generated network depicted in Figure 24.
5.6 DEVELOPMENT OF ONLINE VISUALIZATION TOOL

We have tried to develop an interactive web app directly from R using Shiny
in RStudio. A comparative evaluation of different tools as shown in Table 10, could
help in adapting the better feasible strategy for GRN prediction. Shiny is an open
source R package which provides an elegant frame work for web applications.
Shiny applications seem to have two components, a user interface and a server
function that creates a Shiny app object from server pair. The application is made
only with a few lines of code, without the requirement of JavaScript. Other
packages used along with Shiny were reshape, reldist etc. Reactive Programming
is an important feature of Shiny. It has a reactive programming library that can be
used to structure the application logic. googleViz is incorporated for visualization.
The complete structure of the tool is not yet elucidated and the full R code is yet to

be constructed.



R

Figure 24. The reconstructed pathway as visualized in Cytoscape v3.6.1.
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S. DISCUSSION

The study entitled “Comparative evaluation of tools for Gene Regulatory
Network prediction and Network reconstruction using genomic data” was
conducted to develop a better feasible methodology for the construction of gene
regulatory network using genomic data and hence identify the immunity related
genes and their interactions in cassava for better understanding of the defence
mechanism of the crop. The study also includes a comparison of different network
construction approaches and the evaluation of their performance which could
specifically screen the best available method. The results of this study presented in

chapter 4 are discussed here.

Cassava production although being economically feasible and industrially
profitable is severely affected by several infectious pathogens. Depending on the
locality, the infection and the infectious agent will vary. When Cassava Mosaic
Geminiviruses (CMGs) and Cassava Brown Streak Virus (CBSV) infects sub-
Saharan Africa (Legg ef al., 2003), phytoplasmal disease called Cassava witches
broom (CWB) is reported to infect 64% of study plots in South-east Asian countries
(Graziosi ef al., 2016). In such a situation where the infection and the infectious
agent becomes less predictable by a single defence strategy, it becomes important
to develop more feasible and less time-consuming strategies for the identifying the

defence mechanisms associated with disease infection.

Developing regulatory network of genes controlling traits which are of
importance economically, commercially and academically are gaining much
importance in present times. GRN’s provide an insight into the transcriptional
mechanisms that regulate the robust and stochastic gene expression and their
relationship with the phenotypic variability that can be utilized for better crop
improvement strategies. For example, when we take the case of Maize, in 2012,
Dong et al developed a gene regulatory model for the floral transition of the shoot
apex in maize which proposed the genetic control of flowering time in maize that

could facilitate maize breeding and transgenic product development. Similarly,
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Wils ef al., 2017 developed gene regulatory network controlling inflorescence and
flower development in Arabidopsis thaliana. Jiang et al., 2018 analyses Gene
Regulatory Network of Maize in response to nitrogen Artificial Neural Network

Analysis.

Here, we have tried to develop the gene regulatory network related to
Xanthomonas axonopodis pv. manihotis (Xam) infection causing Bacterial Blight
in cassava. The mechanism of CBB resistance is analysed and checked for
homology with the total defence mechanism in Cassava. From the total 1919
immunity related genes identified, 727 of them were selectively predicted to infer
CBB resistance, out of which 324 of them had predicted interactions in STRING
v10.5. Earlier methods for screening cassava genotypes for bacterial blight disease
were based on approaches like stem inoculation methods (Banito ef al., 2010).
Bioinformatics approaches for gene identification could improve the efficiency and
economic feasibility and hence is better adopted. Bioinformatic identification of
miRNAs differentially expressed in cassava in response to infection by
Xanthomonas axonopodis pv. manihotis could prove the critical role played by

miRNAs in defense against Xam. (Perez-Quintero ef al., 2012).

The genomic dataset used for the study consists of 1919 immunity related
genes in cassava, identified by a simple and effective strategy developed by a
combination of two methods. Leal LG ef al., 2013 used a holistic approach to
combine their own microarray and RNA-seq data with public genome data from
Arabidopsis and cassava in order to acquire biological knowledge about the proteins
encoded by immunity related genes and other genes. They constructed a network
of immunity related genes in Arabidopsis using a kemel-based correlation
approach. Lozano ef al., 2015 identified NBS-LRR type genes in cassava by
searching for Pfam domains in the cassava genome and manual curation of the
cassava gene annotations. They identified 228 NBS-LRR type genes and 99 partial
NBS genes. A combination of both these approaches was tried to develop the
immunity related genes network in cassava by converting the protein-protein

interaction parameters into network parameters. This approach could develop a less
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time consuming and feasible approach for gene regulatory network construction

using genomic data.

The genes identified separately in different canonical immune protein
domains were combined in later stages for network reconstruction. Effective
annotation obtained from Blast2GO could provide several valuable data regarding
the identified genes. Among the total genes identified, 22 of them were specifically
found to confer virus resistance. Most of the genes identified were found to be
involved in imparting immunity by altering the metabolic pathway of purines. Upon
mapping with the KEGG pathways, it was observed that certain genes that plays
role in providing immunity in cassava are part of the sulfur metabolic pathway.
Sulfur metabolism in plants offers several ways to combat fungal attack. Haneklaus
et al. (2007) presents a model that reflects the synthesis of sulfur metabolites and
related biochemical pathways which are putatively triggered by Sulfur Induced
Resistance (SIR) in oilseed rape in a chronological manner. Sulfur Induced
Resistance (SIR) is the mechanism of stimulation of metabolic processes involving
sulfur by targeted sulfate-based and soil-applied fertilizer strategies which could
reinforce the natural resistance of plants against fungal pathogens. The identified
genes could be probably part of a Sulfur Induced Resistance Mechanism (SIR) in
cassava. Unravelling the mechanism causing SIR in plants is significant for
sustainable agricultural production as the input of fungicides can be minimized by
crop specific Sulfur fertilization and a higher resistance due to Sulfur will not be
rapidly broken by new pathotypes (Bloem e al., 2015). Rausch er al., 2005 also
discusses the crucial role of Sulfur-containing Defence Compounds (SDCs) for the

survival of plants under biotic and abiotic stress.

The various approaches used for gene regulatory network construction was
mutual information based, correlation based, probabilistic method, coexpression
based methods using various tools like ARACNE, cynitools, WGCNA package in
R etc. The network developed by these methods were evaluated by visualizing in
Cytoscape. Although numerous methods have been developed for inferring gene

regulatory networks from expression data. Both their absolute and comparative
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performance remains poorly understood. Current inference methods seem to be
affected to various degrees by different types of systematic prediction errors. Hence
the performance of community-wide challenge within the context of DREAM
(Dialogue on Reverse Engineering Assessment and Methods) project has been
proved more reliable than individual inference methods (Marbach ef al., 2010).
Here, they systematically form communities composed of the top two methods, the
top three methods, the top four methods, etc., until the last community, which

contains all applied methods of a particular subchallenge.

The present research focusses on exploring the relatively unexplored fourth
dimension of gene regulatory networks i.e. time. Varala ef al., 2018 applied a time-
based machine leaming method to learn the temporal transcriptional logic
underlying dynamic nitrogen (N) signalling in plants. A dynamic regulatory
network of N-responsive genes was constructed to identify 155 candidate TFs that
could improve nitrogen use efficiency with potential agricultural applications. One
of the recent approaches in investigating biological networks is based on the
network modules like communities, clusters, and subnetworks etc. (Wang ef al.,
2010). Several algorithms like network clustering (Ihmels ef al., 2005), heuristic
search (Dittrich er al., 2008), seed extension (Ulitsky ef al., 2009), topology
network (Chin ef al., 2010), and matrix decomposition (Li ef al., 2006) have been
proposed to for the identification of modules. In contradiction to the large number
of methods for module detection, only few methods have been developed for
module evaluation and validation. Topology based approach for module validation
has been incorporated in the study which includes detection of modularity,

connectivit, density, clustering coefficient, degree, and edge betweenness.

9
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6. SUMMARY q:

The study entitled “Comparative evaluation of tools for Gene Regulatory
Network prediction and Network reconstruction using genomic data” was carried
out at the Section of Extension and Social Sciences, ICAR-Central Tuber Crops
Research Institute, Sreekariyam, Thiruvananthapuram during 2017-2018. The
objectives of the study were to reconstruct the regulatory network of immunity
related genes in cassava using genomic data, to compare different computational
methods for Gene Regulatory Network prediction and analysis and to develop an

online visualization tool using the appropriate method.

The study had mainly two objectives, GRN prediction tool evaluation and
network reconstruction using genomic data. The initial genomic dataset used for
the study was derived by homology search using HMMER. The immune related
protein domains were searched in whole genome resource of cassava available
publicly at Phytozome. Hidden Markov Models corresponding to particular
immune domain was generated and compared. Protein domain search and analysis
carried out using HMMER suite version v3.1b2 resulted in identification of an
initial set of immunity related genes in cassava. These genes were further filtered
for high competence cassava specificity in two ways. Initially by constructing a
plant R gene database with already identified immunity related genes and other
plant R genes, BLASTP was performed and those with E-value less than 0.01,
unrelated to immunity and less than 250 amino acids were filtered. Online BLASTP
in PRGDB 3.0 was also performed and both results were compared to get a dataset
consisting of immune specific genes in cassava. A set of 1919 immunity related
genes were identified in cassava out of which 22 of them were found to confer virus
resistance in specific. Gene Ontology Mapping and Annotation of the identified
genes were carried out using Blast2GO. InterPro annotations in Blast2GO 5 was
also done to retrieve domain/ motif information in a sequence wise manner. Further
annotation with Gene Ontology (GO), Enzyme Code (EC) and Kyoto Encyclopedia
of Genes and Genomes (KEGG) database eventually allowed the display of
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enzymatic functions and the metabolic pathways related to the identified genes.
Most of the genes identified were found to be involved in purine metabolism and
sulfur metabolism which can pave way for a possible Sulfur-Induced Resistance

mechanism in Cassava.

The predicted gene sequences were screened for bacterial blight resistance
by incorporating the sequences of genes identified from a microarray experiment
that listed a set of genes that were upregulated and down regulated in cassava upon
Xanthomonas axonopodis pv. manihotis (Xam) infection (ArrayExpress: E-
GEOD-29379; GEO: GSE 29379). Our identified gene sequences were searched
for homology with these sequences to screen out 727 genes related to bacterial
blight resistance in cassava. The protein-protein interactions of these genes were
predicted using STRING v10.5 which collects and reassesses available
experimental data on protein-protein interactions, and imports known pathways and
complexes from curated databases. 324 predicted interactions were identified and a
network was constructed using the protein- protein interaction parameters as input
source. The network was visualized in Cytoscape v3.6.1 and the network
parameters were determined. Validation was done by Topology based method of
module detection by comparing certain parameters like clustering coefficient,
network density etc. A synthetic Transcriptional Regulatory Network was
constructed using SynTRen implemented in Java 5. The simulated expression

dataset was generated and compared with the reconstructed network.

The latter part of the work consists of comparison of different approaches
for Gene Regulatory Network construction and analysis of the reconstructed
networks using simulated dataset. Different tools for GRN prediction like
WGCNA, ARACNE etc were valued and the network was compared through
statistical analysis by plotting ROC and determining AUC. The different
approaches used were mutual information based, correlation based, ARACNE and
Bayesian K2. Network parameters for each method were determined for different
network sizes like N, number of genes=50, 100 and 150. The corresponding data

was compared and inferred. For a particular method, the clustering coefficient,
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95
which is measure of accuracy doesn’t seem to alter with increase in network size.
As expected the network heterogeneity, number of nodes and network density
increases with increase in network size. The analysis of the constructed networks
was carried out by calculating the parameters like sensitivity, specificity, PLR
(Positive Likelihood Ratio), NLR (Negative Likelihood Ratio), PPV (Positive
Predicted Value) and NPV (Negative Predicted Value). The results of the
calculations show that mutual information-based approaches perform better than all
other methods with a value for specificity as 79.4% and sensitivity as 75.7%. The
plotted ROC and determined AUC also supports the obtained results and hence it
can be concluded that among the several approaches developed for GRN
construction, the tools focusing on mutual information-based method seems to work

with more accuracy for predicting network interactions.

Gene Regulatory Networks provide insight into the transcriptional
mechanisms of genes controlling traits which are of importance economically and
commercially. Hence understanding these mechanisms in plants play major role in
crop improvement and management. GRNs have also proved to be successful in
detecting the pre-diseased state of a disease, that can help in adapting better
prevention strategies. Construction of networks of immunity related genes in
cassava can contribute to better understanding of defence mechanism in cassava
and evaluation of the different tools for GRN construction will help in adapting a

better method with more accuracy.
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9. ABSTRACT

Developing regulatory network of genes controlling traits which are of
importance economically and commercially are gaining much significance in
present times. GRN’s provide an insight into the transcriptional mechanisms that
regulate the robust and stochastic gene expression and their relationship with the
phenotypic variability that can be utilized for better crop improvement strategies.
The former approaches for Gene Regulatory Network construction mainly rely on
using gene expression data as input, but the time consumption and high cost of
expression analysis paved way for developing new methodologies that make GRN

prediction easier.

The integration of genomic information along with gene expression data,
could make the process of Gene Regulatory Network (GRN) construction more
reliable than using expression data alone as input source. Using this approach, we
have tried to develop the regulatory network of genes controlling immunity in
cassava with special context to Bacterial blight resistance. Initially the immunity
related genes in cassava were identified by protein domain search and analysis
using HMMER. Cassava specific genes were further filtered for high competency,
mapped and annotated to determine its biological role and function. A set of 1919
immunity related genes in cassava were identified, out of which 22 of them were
specifically conferring virus resistance, 727 of them were screened for bacterial
blight resistance by microarray data integration and a network was created using
the predicted interactions identified from 324 genes using STRING. The network
obtained was visualized using Cytoscape and cross validated with simulated dataset
generated from SynTReN. The generated network of immunity related genes in
cassava could give more insight into the defence mechanism in cassava that can

help in adapting better crop improvement and management strategies.

A comparison of various approaches used for GRN prediction like
probabilistic method, mutual information-based method, correlation-based

approaches etc was also done and various tools like ARACNE, WGCNA etc were
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evaluated. Networks with different sizes, 50, 100 and 150 was generated and the
network parameters like clustering coefficient, network density etc were compared.
Clustering coefficient does not seem to vary with increase in network size but
network heterogeneity and density were observed to increase. The statistical
analysis of the performance of different methods resulted into a conclusion that the
mutual information-based approaches are better tools for Gene Regulatory Network
construction than the other methods and it performed with a specificity of 75.7%
and a sensitivity of 79.4%.
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