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1. INTRODUCTION

Cassava {Manihot esculenta Crantz) is a perennial shrub that belongs to

Euphorbiaceae family. It is a native of South America and is believed to have

been introduced by Portuguese traders in sub-Saharan Africa during the 16th

century. Cassava is the third most important source of calories in the tropics after

rice and maize (Food Safety Network, 2014).

According to FAG (Food and Agriculture Organization of the United

Nations) Food Outlook Annual Report (2018), cassava plays a leading role in

food security in India, especially in the major growing states of Kerala and Tamil

Nadu. Jointly, both the states account for 98% of national output. Cassava

production output is marginally down from 2017, with total production of about

4.1 million tonnes which is very less than half the record production of the crop

that was harvested in 2014.

Cassava is vulnerable to a wide range of diseases caused by viruses. The

virus is either seed transmitted or vector transmitted by whitefly (Macfadyen et

a/., 2018). Among them. Cassava Mosaic Disease (CMD) is the most severe and

widespread, thereby limiting production of the crop in cassava growing areas.

CMD produces a variety of foliar symptoms such as mosaic, mottling, misshapen

and twisted leaflets, and an overall reduction in size of leaves and plants. In India,

CMD is caused by Indian cassava mosaic virus (ICMV) and Sri Lankan cassava

mosaic virus (SLCMV). It has obtained considerable attention in tlie southern

states of Kerala and Tamil Nadu, which are the main cassava growing areas of

India.

Different interactions are generated between the plant (host) and the virus

(pathogen) during each stage of the viral cycle. Host-pathogen interaction alters

the host physiology. Hence, studies were undertaken to evaluate changes in

physiology of healthy cassava plants as well as cassava mosaic virus infected

cassava plants.



The pathogen-host interactions (PHIs) may be between proteins,

nucleotide sequences, metabolites, and small ligands. The protein-protein

interactions (PPIs) have been identified as the most relevant type in the

functioning of PHI systems and therefore are the most studied type (Stebbins,

2005; Korkin et al., 2011; Zoraghi and Reiner, 2013). A number of experimental

methods have been applied to discover PPIs. Some traditional methods of

determining PPIs are Yeast two Hybrid {Y2H) method. Tandem Affinity

Purification (TAP) tagging, and Mass Speclroscopy (MS). The labour intensive

experimental techniques for the detection of PPIs may not be generally applicable

due to time constraints and high cost of experiments; therefore recently,

computational techniques are preferred for the prediction of PPIs.

In 2002, Kitano mentioned that systems biology is an integrative research

area in life science that mainly focuses on the study of non-linear interactions

between biology entities through the integration and combination of bimolecular

and medical sciences with mathematical, computational, and engineering

disciplines. The different levels of omics data collected fi"om pathogens and

infected cells are critical components that drive bioinformatics analysis. This

promotes the construction and analysis of infection specific gene-regulatory,

metabolic, and protein-protein interaction networks (Westennann et al., 2012 and

Schulze ef al., 2015).

With an increasing amount of experimental PHI data, web-based databases

were developed to derive and provide pathogen-host interactome data that mainly

focuses on specific pathogens or hosts (Wattam el al., 2013; Ako-Adjei et al.,

2014; Calderone et al., 2014; Guirimand et al., 2014).

Although the available databases are promising in data archiving, a large

amount of PHI data is not stored in any of these databases, since these data are

buried within the literature. Therefore, there is an urgent need for novel text

mining methods specific for PHI data retrieval.



The current study focuses on the generation of Protein-Protein Interaction

Network (PPIN) of cassava-Cassava Mosiac Virus (CMV). The objectives of the

study includes data mining of plant-virus interaction through PPI networks,

computational prediction ofPPIs, construction of PPIN of predicted PPIs, analysis

of predicted interactome and validation of predicted proteins.





2. REVIEW OF LITERATURE

2.1 CASSAVA

Cassava {Manihot esculenta Crantz) is grown throughout tropical Africa,

Asia and the America, Its large starchy roots and edible leaves provide food for

800 million people globally, many of whom partly relies on it because it is

drought tolerant and requires little in the way of inputs. Due to the high starch

content (20-40%) cassava is a desirable energy source both for human

consumption and industrial biofuel applications (Ceballos et al.^ 2010).

Sub-Saharan Africa (SSA) is the world's largest cassava growing region.

According to FAOSTAT (2017), cassava production in SSA could reach a record

of 161 million tonnes in 2018 that means around 3.3 million tonnes or 2% more

than the level of 2017. In India, the cultivation of cassava is mainly done in

Kerala, Tamil Nadu, Andhra Pradesh, Nagaland, Meghalaya and Assam. In Tamil

Nadu and Andhra Pradesh, it is grown under open conditions whereas in Kerala,

about 40% of cassava is raised as a mixed crop. The toughness of cassava enables

it to grow profitably under a wide range of agro-ecological zones where cereals

and other crops cannot thrive, making it a suitable crop for poor farmers to

cultivate under marginal environments in Africa. The other interest for farmers to

grow cassava is that it produces higher yields per unit of land than other crops

such as yam, wheat, rice, and maize (Alabi et ciL, 2011).

According to FAO classification, root and tuber crops form staple diet for

3% of the global population. Figure 1 & 2 represents FAOSTAT of cassava

production in world and in India respectively. In the African continent and South

America, cassava is mostly used for human consumption.
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The roots of cassava are the major source of dietary starch. The tubers are

eaten fresh and in various forms of processed food. Cassava leaves are also

consumed as a green vegetable, especially in East Africa, to provide an important

source of proteins, minerals, and vitamins. With increased possibility of starch

from cassava as a source of ethanol for biofuels, its cultivation is transforming

from subsistence to a more commercially-oriented farming enterpri.se (Nassar and

Ortiz, 2010). Cassava is cultivated in about 13 states of India, and its major

production is from the southern states of Kerala and Tamil Nadu.

2.2 CASSAVA MOSAIC DISEASE (CMD)

CMD is mainly caused by Cassava Mosaic Virus (CMV). They are

members of the family Geminiviridae and the Genus Begomovirus. CMD

produces different foliar symptoms like mosaic, mottling, misshapen and twisted

leaflets. CMD-affected cassava plants produce few or no tubers, depending on the

intensity of the disease and the age of the plant at the time of infection.

Nine distinct cassava mosaic viruses have been characterized worldwide

from CMD-affected cassava plants and seven of them are from sub-Saharan

Africa. Tv/o other viruses, Indian cassava mosaic virus (ICMV) and Sri Lankan

cassava mosaic virus (SLCMV), were reported from the Indian sub-continent.

Currently, the International Committee on Taxonomy of Viruses (ICTV) has

placed all of these viruses in the genus Begomovirus^ the largest genus in the

family Geminiviridae, and collectively, they arc also called the Cassava Mosaic

Begomoviruses (CMBs) or Cassava Mosaic Geminiviruses (CMGs) (Alabi et al.,

2011).

Both ICMV and SLCMV possess bipartite ssDNA genomes and are

transmitted by whiteflies. Cassava is the primary host plant of ICMV and SLCMV

but both viruses can experimentally infect Nicotiana spp. In addition, an

infectious clone of SLCMV was infective in Arabidopsis thaliana inducing

symptoms similar to those described on cassava including stunting, leaf

deformation and developmental abnormalities (Mittal el al., 2008).



CMBs (Cassava Mosaic Begomoviruses) induces several morphological

and cytological modifications in cassava and the experimental host Nicotiana

benthamiana (Atiri et al.y 2004). Bemisia (abaci, the whitefly vector, is mainly

responsible for the secondary spread of CMBs, although other species of whitefly,

such as B. afer can also transmit cassava mosaic disease (Dubem, 1994).

CMV has two circular DNA molecules, designated DNA-A and DNA-B,

of approximately 2.8 kb, both of which are required for systemic infection of

plants. DNA-A encodes six genes whereas DNA-B encodes two genes. DNA-A

viral strand encodes for the coat protein (CP) (AVI ORF), and AV2 which

functions as a suppressor of host RNA silencing, thereby modulating symptoms,

or may also be involved in host specificity. The minus strand of DNA-A has four

open reading frames (ORFs) that encode for the Rep associated protein (ACl), a

transcriptional activator (TrAP/AC2), a replication enhancer (Ren/AC3), and the

AC4 protein. The AC4 ORF is completely embedded within the coding region of

the Rep protein, and it is the least conserved of all the geminiviral proteins, both

in sequence and in function (Bisaro, 2006).

2.2.1 Impact of CMD on Cassava

Atiri e( al., 2004 reported that CMBs induce several morphological and

cytological modifications in cassava and the experimental host Nicotiana

benthamiana. The symptoms and accompanying cellular modifications depends

on whether cassava is infected with a single virus, or if there is a concurrent

infection of two or more CMBs resulting in synergistic interactions. The

morphological alterations in cassava often result in loss of tuber and storage root

yield that can occur even in resistant genotypes which shows only mild or no

foliar symptoms. Overall, storage root yield loss across sub-Saharan Africa were

estimated between 15-24% annually, which is equivalent to 12-23 million tons or

an annual lossofUSS 1.2-2.3 billion (Alabi e/a/., 2011).



2.3 PATHOGENICITY FN CASSAVA

In response to pathogens, plants have developed a sophisticated

mechanism of action, which depends on the ability to recognize pathogen-specific

and foreign molecules for the plant, both in quantitative and qualitative resistance

(Boiler and He et aL, 2009, Vasquez et ai, 2018).

At the level of the plasma membrane, the recognition of pathogens

depends on Pattern Recognition Receptors (PRRs) which recognize Microbe

Associated Molecular Patterns (MAMPs). On the other hand, at the intracellular

level, the recognition depends on the proteins encoded by the R (resistance) genes,

which recognize effector proteins injected by the pathogens (Monaghan and

Zipfel, 2012; Jones et a/., 2016). Once the recognition of the pathogen by the

plant occurs, a series of defence responses is triggered. These defences include the

strengthening of the cell wall through the synthesis of callose and Hgnin (Hauck et

al, 2003), the production of secondary antimicrobial metabolites such as

phytoalexins (Almargo et al., 2008) and the activation of the cascades of

signalling by Mitogen-Activated Protein Kinases (MAPK) (Meng and Zhang,

2013)..

All these responses together with the induction of gene expression code

for proteins related to pathogenicity (PR) (van Loon et al., 2006).

2.4 PLANT-VIRUS (PLANT-PATHOGEN) INTERACTIONS

Plant viruses are obligate intracellular parasites that are infectious, which

mostly consist of positive ssRNA (single-stranded ribonucleic acid) and only in a

few cases by single-stranded or double-stranded deoxyribonucleic acid.

Viruses can enter the plant cell passively only through wounds caused by

physical injuries due to environmental factors or by vectors. Among vectors,

several species of insects, mites, nematodes and some soil inhabitant fungi can

transmit specific viruses. Viruses use energy and proteins from the host cell to

perform its processes.
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Different interactions are generated between the plant and the virus during

each stage of the viral cycle. If the viral particle is not recognized by the host

plant, a compatible interaction between the plant and the virus is established. This

interaction may be favourable for the virus. However, if the plant recognizes the

viral particle, an incompatible interaction that is unfavourable for the virus is

established. It is known that plants can recognize the virus, limiting it to the site of

the infection. A series of complex cascade defence reactions can be induced

thereby limiting virus replication and virus movement within the host plant

(Hammond-Kosack and Jones, 2000).

Flor in 1971 described that plants have developed defence mechanism at

the molecular level based on the gene for gene theory. This model is defined by

the expression of a resistance gene (/?) in the plant, which can bind directly or

indirectly to the product of the avirulence gene {avr) of the pathogen (Bent, 1996;

Ellis et a/., 2000b).

For over 20 years, Arabidopsis thaliana has been developed as a model

organism for molecular plant genetics. Arabidopsis is widely used as a model for

the study of Plant-Pathogen co-evolution (Pagan et aL, 2010). In 2017, Arena et

ai evaluated A. thaliana as an alternative host for Brevipalpus-transmitted viruses

(BTV). They reported that CILV-C (Citrus leprosis virus) is able to infect

Arabidopsis inducing localized chlorotic symptoms upon infestation with

Brevipalpus viruliferous mites. Interaction between A. thaliana NAC domain

protein ATAF2 (AT5g08790) and Tobacco Mosaic Virus (TMV) replicase protein

is reported by Wang et al. (2009). Sahu et al. (2014) predicted the interactions

between Arabidopsis and Pseudomonas syringae pathovar tomato strain DC3000

(PstDC3000) in genome scale. Psuedomonas syringae^ a major bacterial leaf

pathogen is asserted to infect the plant host Arabidopsis thaliana and has been

accepted as a model system for experimental characterization of the molecular

dynamics of plant-pathogen interactions. They predicted 868645 Protein-Protein

Interactions (PPIs) between 14043 Arabidopsis proteins andl337 P. syringae

proteins. PPI prediction between R. solanacearum and Arabidopsis thaliana was

3^
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done by Li et al. (2011). They predicted 3,074 potential PPIs between 119 i?.

solanacearum and 1,442 A. thaliana proteins.

2.5 PROTEIN-PROTEIN INTERACTION

Protein-Protein Interaction (PPl) refers to physical contacts build between

two or more proteins resulting from the biochemical events or electrostatic forces.

Therefore, PPIs and their associated networks are essential for the understanding

of cellular processes, such as enzymatic activity, immunological recognition,

3^ DNA repair, network pathway, signalling cascades and transcription control. A

study of protein interaction networks is important not only from a theoretical way

but also in terms of potential practical applications.

For the identification of protein interactions, many experimental methods

have been developed. Some of the experimental methods allow screening of a

large number of proteins in a cell. Such methods include yeast two-hybrid (Y2H),

Tandem Affinity Purification (TAP), Mass Spectroscopy (MS). Other methods

focus on examining and characterizing specific biochemical and physiochemical

properties of a protein complex. Despite this, a complete interaction network for

many organisms is not available. Due to the low interaction coverage,

experimental biases toward certain protein types and cellular localizations

reported by most experimental techniques, there is a need for the development of

computational methods to predict whether two proteins interact.

Recently, a number of compatible computational approaches have been

developed for the large-scale prediction of protein-protein interactions based on

protein sequence, structure and evolutionary relationships in complete genomes

(Shoemaker and Panchenko A.R., 2007).
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2.6 COMPUTATIONAL APPROACHES FOR PREDICTING PPI

(PROTEIN-PROTEIN INTERACTION)

Computational methods provide equivalent approach for detecting protein-

protein interactions. Indeed, the broad availability of experimental data has

declined the development of numerous computational methods over the past few

years.

^  In general, all computational approaches to PPI prediction attempt to

leverage knowledge of experimentally determined previously known interactions

in order to predict new PPIs. These methods enable one to discover novel putative

interactions and often provide information required for designing new

experiments for specific protein sets (Pitre et al., 2008). Methods specific for

intra-species interactions are usually used in PPI prediction studies (Nourani et

al., 2015). On the otlier hand, concentrating on the interactions among different

organisms is a young branch of this field.

r

2.6.1 Machine learning and data mining based approach

Machine learning techniques (supervised and semi supervised) have been

aqjplied intensively for interspecics PPI predictions. However, these methods

require template PPI data sets associated with appropriate biological and

biochemical properties as features for training and testing purposes.

Baldi and Brunak, (2001) applied machine learning techniques to

bioinformatics and is a well-accepted idea, which includes early efforts for PPI

predictions. These methods utilize accessible PPI data as features for training and

classifying interacting and non-interacting protein pairs. Support Vector Machine

(SVM) based approaches are successfully applied in PHI prediction studies

(Kshirsagar et al., 2013a; Mei, 2013). Cui et al. (2012) presents a SVM based

approach, which uses a fixed length feature vector, indicating relative frequency

of consecutive amino acids in the protein sequence.
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Machine learning based methods which compose PPI prediction as a
classification task use both interacting and non-interacting protein pairs as
positive and negative classes, respectively.

2.6.2 Homulogy based approaches

The logic behind this type of methods is the assumption of conserved

interactions between a pair of proteins which have interacting homologs in
another species. The conserved interaction is called as "Interolog". The simple

at* method of identifying interologs is as follows:

For example, consider a template PPI pair (a, b) in a source species, find
the homolog 'a' in the host and the homolog 'b' in the pathogen, conclude that (a,
b) interact. Simplicity and clear biological basis are the main advantages of these
methods. However, homology to known interactions is not sufficient for assessing
the biological evidence of the predicted results. Different filtering techniques
should be considered for evaluating the feasibility of the interactions under an in
vivo condition and hence decreasing the false positives. A homology detection
method using template PPI databases, DIP (Salwinski et aL, 2004) and iPfam
(Finn e/ al., 2013), is published in Krishnadev and Srinivasan (2008) for the

prediction of PHI pairs. Searching the sequences of host and pathogen proteins
within two template databases are conducted to find a superset of all interactions
which are physically and structurally compatible. These potential interactions are

refined within two additional fi ltering steps, for the detection of biologically
feasible interactions including integration of expression and sub-cellular
localization data (Tyagi et al., 2009).

In 2011 Krishnadev and Srinivasan have applied the same procedure for
different pathogens in their subsequent works. Another study was done with the
same approach by using sequence similarity enhanced with domain-domain

interaction detection (Schleker et at., 2012a). Tliey have two compressive reviews
of the computational approaches predicting Salmonella-ViosX interactions
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(Schleker et al.^ 2012b, 2015), which include comparing Salmonella-Human and

Salmonella-Plani interaction predictions.

Homolog knowledge can be used indirectly as a remedy for data scarcity

and data unavailability by homolog knowledge transfer. Homolog information

(features) can be used when the information of a protein is unavailable. Mei

(2013) has designed different experiments to show the performance of substituting

homology features. Pessimistic experiment, which uses only homology features

for train and test without incorporating any base proteins (target), has promising

results, indicating that using homolog information is an effective substitute for the

target information to tackle the problem of data unavailability.

Lee et al. (2008) uses high confidence intra-species PPIs to detect

interologs using oitholog information. The hypothesis is that when two

orthologous groups are shared between more than two species, there will be a

possible interolog between those orthologous groups. The possible interactions are

filtered using gene ontology annotations followed by pathogen sequence filtering

based on the presence or absence of translocational signals to clarify the

predictions. The notable point is slight intersection of the predicted interactions

with those of the reported predictions in Dyer et al. (2007) due to applying

different techniques and datasets for same pathogen-host system. Zhou et al.

(2014) introduces the "stringent homology" which does not rely only on intra-

species template PPIs to discover interologs and make use of two different

organisms as the source of template PPIs to predict PHIs. They also claim that it is

not only for the targeted host proteins which tend to be hub in their own PPI

network and this is also true about targeting pathogen proteins. The most

important obstacle for using homology based methods is scarcity of available

homolog information.

2.63 Structure based approaches

A number of studies are based on structural similarities and use template

PPIs to detect similar interacting pairs within host and pathogen proteins. Primary

30
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ideas presented in Davis et al. (2007) called comparative modelling and

based on their prior work (Davis et aL, 2006). Their method starts with a set of

host and pathogen proteins and then sequence matching procedures are used to

decide the similarities between the host or pathogen proteins with known structure

or known interaction protein partners. Sequence similarity score is only used

when structure information is unavailable as a statistical potential evaluation, to

predict interacting partners. The main disadvantage of this method is that finding

high similarity between pathogen proteins and proteins with known structure is

not guaranteed for all pathogen proteins.

ITterefore, lack of the spatial structural information would restrict the

applicability of this method. Furthermore, they have only the ability to collect

limited number of standard PPIs from literature to evaluate their prediction

performance.

2.6.4 Domain and motif based approach

Wojcik and Schachter, (2001) and Pagel et al. (2004) introduced the idea

of utilizing domains as building blocks of proteins for predicting PPIs is well-

studied for single organisms concerning the fact that domains are the mediators of

interactions. The approach presented in Dyer et al (2007) is one of the pioneer

published researches for predicting PHIs. However, small list of interaction is

presented and their biological importance is not strongly evaluated.

To predict interactions between host and pathogen proteins, they present

an algorithm that links protein domain profiles with interactions between proteins

from the same organism. For every pair of functional domains (d, e) which is

present in protein pair (g, h) respectively, the probability of interacting (g, h) is

assessed using Bayesian statistics. To apply this idea to a pathogen-host system,

they identify domains in every host and pathogen proteins and determine the

interaction probability for each pair of host and pathogen proteins that contain at

least one domain. A similar knowledge source is chosen in Kim et al (2007)

which make use of domain information from InterProScan (Quevillon et al.



15

2005). They predict PPIs using PrelD (Kim et al., 2002) and PreSPl (Han et al.,

2004) algorithms based on domain information.

2.7 COMPUTATIONAL METHOD FOR INTER-SPECIES PPI PREDICTION

Many computational methods have been developed to predict PPIs, but

most of them are intended for PPIs within a species rather than PPIs across

different species such as PPIs between virus and host. Methods for predicting

intra-species PPIs do not distinguish interactions between proteins of the same

species from those of different species, and thus are not appropriate for predicting

inter-species PPIs. The knowledge of host pathogen PPIs is crucial for

understanding the pathogenesis of the relevant disease. However, experimental

resources for studying interactions between host and pathogen proteins are scarce.

Several computational methods for predicting interspecies PPIs have been

developed, including methods based on interolog, interacting domain/motif,

structure, and even machine learning (Zhou et al., 2012).

2.7.1 Interolog Based Approach

Interolog based methods composed of the conventional way of predicting

host-pathogen interactions. The methods are based on the hypothesis that pairs of

interacting proteins in one species are expected to be conserved in related species.

The idea behind this approach is that if two proteins interact in one organism,

their interolog in another organism have a higher chance of interacting. This is

based on the hypothesis that sequence and structural similarities between gene

products suggest functional similarities. Sahu et ai (2014) predicted the

interactions between Arahidopsis and Pseudomonas syringae pathovar tomato

strain DC3000 (PstDC3000) using interolog-based method and domain based

method. The interolog-based method predicted ~0.79M PPIs involving around

7700 Arabidopsis and 1068 Pseudomonas proteins in the full genome.

30.
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2.8 PROTEIN-PROTEIN INTERACTION NETWORK

A protein-protein interaction network (PPIN) is a collection of PPIs,

deposited in online databases. PPINs may contribute other datasets, such as

protein structural information, which may lead to understanding the different

subparts that contribute to the function of a whole biological system.

A major issue in using PPINs in practice involves handling with errors in

the form of missing interactions and false signals. In a PPI network, proteins are

represented as nodes. Some nodes interact with many more partners than average;

these proteins are called hubs (Albert, 2005). Barabasi & Oltvai (2004) reported

that loss of hubs may cause the breakdown of the PPIN into isolated clusters.

Protein-Protein Interactions (PPIs) are of interest in biology because they

regulate roughly all cellular processes, including metabolic cycles, DNA

transcription and replication, different signalling cascades and many additional

processes. Proteins carry out their cellular functions through cooperative

interactions with other proteins, so it is important to know the specific nature of

these relationships. Indeed, the importance of understanding these interactions has

prompted the development of various experimental methods used in measuring

them. While the amount of genomic sequence information continues to increase

exponentially, the annotation of protein sequences appears to be somewhat

lagging behind, both in terms of quality and quantity.

Multi-branched, high-throughput functional genomics approaches are

needed to bridge the gap between raw sequence information and the appropriate

biochemical and medical information. Therefore, computational methods are

required for discovering interactions that are not accessible to high throughput

methods. These computational predictions can then be checked by using more

labour-intensive methods. A number of computational approaches for protein

interaction discovery have been developed over recent years. These methods

differ in feature information used for protein interaction prediction. Many studies

3i
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have proved that knowing the tools and being familiar with the databases is

important for new research in protein-protein interaction.

2.9 THE STRUCTURE OF PROTEIN NETWORKS

The structure of protein interaction networks has been examined by recent

studies in several species. These studies have discovered that regardless of

species, the known protein networks are scale-free. It means that some hub

proteins have a huge proportion of the interactions while most proteins (are not

hub and) only contain a small fraction of ones. It is an obvious fact that

understanding the structure of a species' protein interaction network only provides

one dimension of the biochemical machinery controlling a cell's behaviour. Thus,

several groups have integrated dynamics of gene expression with protein

interaction networks in order to uncover how these networks change in different

biological states.

Network topology is also introduced to characterize a network structure.

There are four higher-level topological indices including average degree (K),

clustering coefficientfC), average path length (L), and diameter (D). It is possible

to calculate four topological distributions such as degree distribution P (k), degree

distribution of cluster coefficients C (k), shortest path distribution SP (i), and

topological coefficient distribution TC (k), which take more attentions and are

comprehensively used in cellular networks, such as PPI networks, MNs

(Metabolic Networks), gene co-expression networks (GCEN), and domain

interaction networks. The topological features of cellular networks are efficiently

explained by these criteria which also provide vast insights into cellular evolution,

molecular function, network stability, and dynamic responses.

2.10 FUTURE DIRECTION AND CONCERNS: EVOLUTION OF PROTEIN-

PROTEIN INTERACTION NETWORKS

Protein-protein interaction network is highly dynamic and studying the

evolution of protein-protein interaction networks is one of the central problems of

systems biology, the results of such researches are crucial for a better

3tf
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understanding of the evolution of living systems and could be used for protein

interaction and function prediction.

2.11 PERFORMANCE EVALUATION

The lack of gold standard PHI data and the complexity of PHI mechanisms

lead to a hard assessment phase, in a way that predicted interactions are rarely

supported by a biological basis. Some studies validate their results by measuring

the shared interactions with other published materials (Mukhopadhyay et al.,

2012,2014; Segura-Cabrera et al., 2013).

2.12 VALIDATION USING q-PCR

Genes specific for interacting pairs of proteins possessing specific

fimctions are selected for validation. Validation of identified genes is essential for

further analysis. Different methodologies are available like qPCR, micro-array

analysis for detection and quantilation. Due to high sensitivity and efficiency of

qPCR, it is widely adopted for expression analysis.

Real-time PGR (RT-PCR) is also known as quantitative PGR or qPCR. In

qPGR amplification, cDNA is detected in real time as PGR is in progress by the

use of fluorescent reporter for RNA expression studies. Fluorescent probes mostly

used are sequence-specific TaqMan probe and generic non-sequence-specific

double-stranded DNA binding dye such as SYBR green. The principle behind this

technique is that the intensity of fluorescence emitted by the probe at each cycle is

directly proportional to the template quantity.

35
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3. MATERIALS AND METHODS

The study entitled "Modeling of Cassava-Cassava Mosaic Vims

interactions with computational biology and bioinformatics approach" was carried

out at the Section of Extension and Social Sciences, ICAR-Central Tuber Crops

Research Institute, Sreekariyam, Thlruvananthapuram during 2018-2019. In this

chapter, details regarding experimental materials and methodology used in the

study are elaborated.

3.1 DATA SOURCES, DATABASES AND VISUALIZATION TOOLS USED

IN PPI PIUEDICTION STUDY

The protein sequence data were obtained from a partially inbred line-

AM560-2. The whole genome assembly (approx.221.2 MB arranged on 18

chromosomes) and whole genome armotation (33,033 genes) of AM560-2

genotype of Manihol esculenta v6.I (cassava) were downloaded from Phytozome,

the Plant Comparitive Genomics Portal of the Department of Energy's Joint

Genome Institute, (www.phytozome.jgi.doe.gov) (Bredeson e( a\., 2016). Cassava

Mosaic Virus (CMV) proteome were downloaded from UniProt database

(www.uniprot.org).

3.1.1 STRING

The STRING database (Search Tool for the Retrieval of Interacting

Genes/Proteins) is specific to functional associations (stable physical associations,

transient binding, substrate chaining, and infonnation relay) between proteins, on

a global scale (Szklarczyk et ai^ 2014). Singh and Singh (2019) constructed

interologous PPI network of Tea {Camellia sinensis) leaf from RNA-Seq datasets

using STRING database. In this, a total of 11,208 nodes with 1,97,820

interactions were successfully predicted using this interolog based approach. The

Database URL; (http://string-db.org).

3:7
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3.1.1.1 STRING viruses

'STRING viruses' is an expanded form of STRING, to include intra-virus

and virus-host PPIs. The STRING viruses database provides a single unified

interface to virus-virus and host-virus PPIs from text mining and many

experimental sources. Furthermore, the data can also be directly imported into

Cytoscape (Shannon et al., 2003) using the STRING Cytoscape app (Szaklarczyk

efai., 2016).

3.1.2 APID

APID (Agile Protein Interactomes Data Server) is a bioinformatics web

server developed to provide protein interactomes at different quality levels and

allowing their analysis and visualization as networks. APID contains binary

interactions for 807 organisms, including 19 species with at least 500 reported

binary interactions (AIonso-Lopez et ai, 2019). Database URL:

http://apid.dep.usal.es.

3.1 J HPIDB

HPIDB 3.0 generates a comprehensive set of Host Pathogen Interaction

(HPI) by (i) in-house manual curation of published, experimental HPI data and (ii)

bringing in external HPI data provided by previously known molecular interaction

resources (Ammari et al.^ 2016). Sahu et al. (2014) used HPIDB for the prediction

of Arabidopsis-Pseudomonas syringae interactome. In this, each protein in

Arabidopsis and Pseudomonas is BLASTed against all the protein sequences in

HPIDB database to identify the homologs with E-value, sequence identity and

aligned sequence length coverage.

3.1.4 Prediction tool: VirusHostPP!

Amino acid sequence similarity between different types of viruses or hosts

is relatively low, therefore sequence-based prediction of virus-host PPIs for new

viruses or hosts is quite challenging. Zhou et al. (2018) developed a new

3%
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prediction method of virus-host PPIs which is applicable to new virases or hosts.

The prediction tool is based on SVM (Support Vector Machine) method.

3.1.5 Cytoscape

Cytoscape is a free software package, which is one of the most popular

protein-protein interaction visualization and data integration tools. Cytoscape is a

general purpose modelling environment for integrating biomolecular interaction

networks and stales. Cytoscape is available at (http://www.cytoscape.org/).

Cytoscape is a Java application verified to run on Windows, Mac OS X and

Linux. Steps for installation:

•  Install Java 8

Cytoscape version 3.2 and later requires Java 8. A 64 bit Java Runtime

Environment is necessary (JRE). Using a 64 bit Java allows the largest network to

be loaded and enables the fastest network processing.

• Download Cytoscape v.3.7.1 from http://cytoscape.org

•  Install Cytoscape

(Automatic installation packages exist for windows, Mac OS X, and Linux

platforms. Cytoscape can be installed from a compressed archive distribution and

also it can be built from the source code).

•  Unpack it

•  Laimch the application:

Cytoscape supports the import of networks from delimited text files and excel

workbooks. It also allows importing of networks from public databases.

Cytoscape can read network/pathway files written in Simple Interaction File (SIF

or .sif format), Nested Network Format (NNF or .nnf format). Graph Markup

Language (GML or .gml format), GMML (extensible graph markup and

modelling language), SBML, BioPAX, PSI-MI Level 1 and 2.5, Cytoscape.js
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JSON, Cytoscape CX, GraphML, Delimited text and Excel Workbook (.xls, .xlsx)

format.

3.1.6 Blast2GO

Blast2G0 (Conesa et al.^ 2005) is a comprehensive bioinformatics tool for

the functional annotation and analysis of genome scale sequence datasets (Gotz et

aL, 2008). A typical basic use case of Blast2G0 consists of 5 steps: BLASTing,

mapping, annotation, statistics analysis and visualization.

3.1.7 QuickGO

QuickGO was developed by the GOA (Gene Ontology Annotation) group

in August 2001 as a fast, web-based browser for GO term information (Huntley et

al.^ 2009). All GO annotations were assigned to UniProt Knowledgebase

(UniProtKB) accessions. Using QuickGO, it is very easy to start browsing the GO

and its associated annotations. Database URL: http://www.ebi.ac.uk/QuickGO.

3.2 COLLECTION OF DATA FROM LITERATURES FOR CASSAVA

PROTEIN-PROTEIN INTERACTION

Work flow for the prediction of cassava PPIN is depicted in Figure 3. The

procedure is based on the logic underlying interolog based method (shown in

Figure 4), which implies two proteins (A and B) are predicted to interact if their

relative homologs (A' and B') interacts. The interolog method is inspired by the

hypothesis that the function of protein is retained and passed through their

orthologs in evolution-related organisms.

MO



23

DATA COLLECTION

Protein information

Phytozome, UniProt
PPI information

PAIR, APID, MINT, PRiN, IntAct
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Blastp: id >60%
Cov >80%

e-value < 10
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Inference of known PPIs to cassava

through protein orthology

Predicted interacting protein pairs in cassava

fCSV/TSV/SIF/GML forman

Construction of cassava PPI network using Cytoscape
10.7.1

Figure 3. Work flow for the construction of cassava PPIN
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Protein A
Homologous PPI

Protein B

Homolog Homolog

Protein A' Protein B'

Interaction

Figure 4. Homologous PPI derived from interactions between homologs: Protein

A' and B' are the proteins which have direct interactions, while Protein A and B

are their homologs, respectively. The interaction between A and B is called

homologous protein-protein interaction (Thanasomboon et al., 2017)

The whole proteome of Indian Cassava Mosaic Virus (ICMV) is

downloaded from UniProt database (http://www.uniprot.org/) which contains 53

protein sequences. Similarly, the entire proteome of Manihot esculenta containing

34,468 protein sequences is extracted from the Phytozome vl2 database

(http://www.phytozome .j gidoe. gov).

3.2.1 Collection of template interaction data

The interolog method is generally based on the evidence of PPI

information known to exist in other organisms. In this study, template plant

species, whose PPI information was known, were selected based on one of these

criteria:

(1) Having a close evolution with cassava: Ricinus commmis (castor bean),

Populus trichocarpa (poplar) and Glycine max (soybean).

(2) Being recognized as a starch-storing plant: Solanum luherosum (potato),

Zea mays (maize) and Oryza saiiva (rice).

(3) Having abundant PPI information: Arabidopsis thaliana.
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Tlie protein information of these template plants were obtained from

Phytozome v9 and UniProl databases, and the protein interaction information was

collected from five databases: TntAct, MINT, AtPIN, PAIR, and PRIN.

3.2.2 Inference of known PPIs to cassava through protein orthologous

To find protein orthologs in cassava, BLASTp search is performed against

the cassava genome sequence. The cassava orthologous proteins were identified if

the identity percentage > 60, coverage percentage > 80% and e-value < 10''°.

3.23 Construction of cassava PPI network

Complete cassava PPI network of protein orthologs in cassava is

constructed using Cytoscape v3.7.1. Cytoscape can generate publication quality

images from network views. The network view can be exported in the JPG, PNG,

PS (Post Script), SVG and PDF format.

3.3 DATA MINING OF PLANT-VIRUS INTERACTIONS FOR THE

PREDICTION OF CASSAVA-CMV PPI

Template plant used in the study is Arahidopsis thaliana. A. thaliana is

having abundant PPI information. The main databases containing Arabidopsis

datasets are AtPIN, AtPID, PAIR.

A. thaliana is infected by a vast variety of viruses. Viruses that infect

Arahidopsis are selected on the basis that the infecting virus is closely related to

Cassava Mosaic Virus i.e., with reference to ICTV (International Committee on

Taxonomy of Viruses). The viruses selected for the study are: Cauliflower mosaic

virus (strain Strasbourg), Cucumber mosaic virus (strain FNY), Cabbage leaf Curl

virus. Tobacco mosaic virus and Tomato golden mosaic virus. Bean golden yellow

mosaic virus. The PPI between Arabidopsis and some of the viruses are obtained

h2>
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from APID. The interactome data is manually searched for the corresponding PPl

pair (HPI).

In this study, the probability of interaction between cassava and Cassava

Mosaic Virus (CMV) protein is inferred from interolog-based approach. To infer

the prediction from the interolog, three types of datasets are used in the study:

STRINGviruses consortium 2018 datasel, HPIDB and APID dataset. The

prediction framework is shown in Figure 4.

3.3.1 interaction data of template Plant-Virus PPIN from Viruses.STRING

Viruses.STRING consortium (2018) is a protein-protein interaction

database specifically catering to virus-virus and virus-host interactions. This

database combines evidence from experimental and text-mining channels to

provide combined probabilities for interactions between viral and host proteins.

As of Jan 2019, the database contains 177,425 interactions between 239 viruses

and 319 hosts. The database is publicly available at (viruses.string-db.org). The

Viruses.STRING database interaction data can also be queried from the

Cytoscape STRING app. This requires version 3.6 of Cytoscape or greater and

version 1.4 of the STRING app or greater, which is available for free in the

Cytoscape app store.

The PPIs reported by STRING represent functional associations between

proteins. Experimental data for virus-virus and virus-host PPIs was imported

from BioGrid, MintAct, DIP, HPIDB and VirusMentha.

For the prediction of CMV (virus)-cassava (host) interaction, interaction

between host and virus proteins was manually curated from Viruses.STRING by

searching name of template virus and host. For example, in STRINGviruses

database the name for host name is given as Arabidopsis (template host) and the

name of virus name is selected as Cauliflower Mosaic Virus (CaMV) (template
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virus). PPI network for the template host and its corresponding infecting virus is

analysed in Virus.STRING consortium.

The resulting interacting protein pairs are searched in UniProtKB for

retrieving similar protein in cassava and Cassava Mosaic Virus.

For example. Bean Golden Yellow Mosaic Virus {BGYKfV), which belongs

to begomovirus genus interacts with Arabidopsis thaliana. Nuclear Shuttle Protein

(NSP) of Bean Golden Yellow Mosaic Virus (BGYMV) interacts with Mitogen

Activated Protein Kinase4 (MAPK.4) of Arabidopsis thaliana. Likewise, name of

template virus and host is given separately. The interacting pairs of proteins

between template virus and host were blasted (Blastp) against cassava proteome

and CMV proteome respectively. Resulting highly identical proteins in cassava

and CMV were searched in UniProtKB for its UnLProt ID, UniProt name and gene

name.

33.2 Interaction data of template homologous PPI datasct from HPIDB

Host Pathogen Interaction Database (HPIDB) 3.0 is a resource for HPI

data. As of 2019 Jan, HPIDB contains 69,787 unique protein interactions between

66 host and 668 pathogen species.

Each protein in cassava and CMV is BLASTed against all the protein

sequences in the HPIDB database to identily the homologs with E-value,

sequence identity and aligned sequence length coverage of 1 .OE-4, 50 and 80%

respectively. Each protein pair between CMV and cassava is predicted to interact

if an experimentally verified interaction exists between their respective

homologous proteins in HPIDB database. Resulting highly identical proteins in

cassava and CMV were searched in UniProtKB for its UniProt ID, UniProt name

and gene name.

hS
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33.3 Template Plant-Virus Interactome datasct from APID

APID includes a comprehensive collection of protein interactomes for

more than 400 organisms (25 of which include more than 500 interactions)

produced by integration of only experimentally validated protein-protein physical

interactions. The interactome data for the target organisms can be downloaded

from APID. The APID search allows two categories of interactomes:

1) Organisms with more than 500 interactome (eg: Arahidopsis).

2) Organisms with less than 500 interactions.

As of Jan 2019, APID includes a comprehensive compendium of 90,379

distinct proteins and 678,441 singular interactions. The whole interactome data of

an organism (given in the list of APID) can be downloaded from APID in

delimited text format.

The interacting pairs of proteins between template virus and host were

blasted (Blastp) against cassava proteome and CMV proteome respectively.

Resulting highly identical proteins in cassava and CMV were searched in

UniProtKB for its UniProt TD, UniProt name and gene name.

3.4 PPI PREDICTION TOOL - VirusHoslPPI

VirusHostPPI employs a new prediction method for virus-host PPIs which

is applicable to new viruses or hosts. The tool contains virus-host PPIs from four

databases, APID, IntAct, Mentha and UniProt, which use same protein identifiers.

The sequences of the proteins involved in any of the PPIs were obtained from the

UniProt database. As of December 2016, there are a total of 12,157 PPIs between

29 hosts and 332 viruses (Zhou et a/., 2018). VirusHostPPI uses Support Vector

Machine (SVM) model to predict the interactions between virus and host. Support

Vector Machine (SVM) has been applied to several biological problems such as

prediction of protein-protein interactions, homology detection, and analysis of
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gene expression data (Cui et al., 2012). Information on the viruses involved in the

virus-host PPIs is available at: http://bclab.inha.ac.kr/VirusHostPPI.

3.5 CONSTRUCTION OF PROTEIN-PROTEIN INTERACTION NETWORK

(PPIN) OF PREDICTED PROTEIN PAIRS INVOLVED IN CASSAVA-

CMV INTERACTION

Work flow for the construction of Cassava-CMV is depicted in Figure 5.

3.5.1 Predicted PPI dataset formulation

The predicted protein-pairs of cassava-CMV are formulated into delimited

text and excel format such that the dataset can be imported into Cytoscape. The

host (cassava) is assigned with UniProt id A, UniProt name A and Gene name A.

The pathogen (CMV) is assigned with UniProt id B, UniProt name B and Gene

name B.

3.5.2 Cassava-CMV PPI network construction

The predicted PPI network is constructed using cytoscape version 3.7.1.

The created dataset in text format is imported to Cytoscape. Before completely

importing, source and target column should be selected. The source column is the

gene name of predicted cassava protein and target column is the corresponding

gene name of the predicted CMV protein. The imported interacting pairs of

proteins can be clearly visualized. Cytoscape provides option for merging the

networks, such that two networks can be visualised in a single window.

3.6 FUNCTIONAL ANNOTATION OF PREDICTED PROTEIN PAIRS

Functional annotation is an important assessment for elucidating the

functional relevance of the host and pathogen proteins involved in the PPIs. Gene

ontology (GO) is a comprehensive functional system to annotate the gene

products. The two annotation tools used in this study are: QuickGO and

Blast2G0.

<^7
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Figure 5. Work flow for the construction of Cassava-CMV PPI
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3.6.1 Functional annotation using QuickGO

Functional annotation of interacting virus proteins was done using

QuickGO. QuickGO is a web-based tool that allows easy browsing of the Gene

Ontology (GO) and all associated electronic and manual GO annotations provided

by the GO consortium annotation groups. QuickGO users can view and search

information provided for GO terms (identifiers, words/phrases in the title or

definition, cross-references and synonyms), as well as protein data from

UniProtKB (accession numbers, names and gene symbols). Results are ranked so

that terms most closely matching the query are returned first. Individual words

and combinations of words are scored according to the field in which they occur

and their frequency within GO. QuickGO URL: http://www.ebi.ac.ul/QuickGO.

3.6.2 Functional annotation using OmicsBox/Blast2GO

OmicsBox/Blast2GO is a high-quality functional annotation work station

and it is a platform for analysis of genomic datasets. One can design the required

custom annotation style through the many configurable parameters. Statistical

charts are available to guide users in the annotation process. Blast2G0 is designed

for experimentalists and is user friendly.

OmicsBox/Blast2GO offers two different features to retrieve the

gene/protein sequences as well as corresponding annotations from a list of

identifiers within Blast2GoPRO. Both features can be found under: File > Load >

Load Annotations. The expected input file is a text file with the identifiers in a

single column without a header. Annotation pipeline: Blast, Interproscan,

Mapping and Annotation. It can be queried online at http://www.biobam.com.

3.7 EXPERIMENTAL VALIDATION

The experimental validation of computationally predicted interacting

protein pairs were conducted by randomly choosing a pair of interacting proteins

(Catalase and Transcription activator protein). RT-PCR was performed as
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described below using total RNA isolation from leaf samples of two different

varieties of cassava available at ICAR-CTCRI.

3.7.1 Selected varieties of cassava

• H165: Healthy leaf sample

• HI 65: leaf sample showing CMV infection symptoms

3.7.2 RNA Isolation

RNA was extracted from fresh tender leaves of healthy cassava plant

(variety: H165) and CMD infected cassava plant (variety: H165) using Qiagen

RNeasy Plant Mini Kit, TRlzol method and CTAB method.

100 mg leaf tissue was pulverised in pre-chilled mortar and pestle using

liquid nitrogen and was transferred to a 2 ml sterile tube. 1 ml of CTAB buffer

(pre-warmed at 65°C for 10 min) was added followed by centrifugation at 15000

rpm for 15 minutes. Supernatant is transferred to a fresh tube and equal volume of

chloroform isoamyl alcohol (24:1) is added and centrifuged at 20000 g for 10

minutes at 4®C. After centrifugation, supernatant is transferred to a fresh tube and

0.25 volume ice cold 10 M Lithium chloride is added and thoroughly mixed. This

was kept for overnight incubation at 20°C. After centrifugation at 30,000 g for 30

minutes at 4°C. the pellet is washed with 75% ethanol by centrifngation at 10,000

g at 4°C. Washing step is repeated and RNA pellet was air dried at 37°C for 30

min and dissolved in 50pl DEPC water. After incubation at 37°C for 1 hour and

tapping intermittently, RNA is stored at -80®C.

3.7J Agarose gel electrophoresis

1.2% agarose gel was used to check the quality and integrity of the

extracted RNA. 1.2% agarose solution was prepared by weighing out 1.2 g

agarose in a conical flask and dissolving it using 100 ml IX TBE buffer. Every

reagent was prepared in DEPC treated water. Agarose was dissolved by heating

'  and after that the flask was allowed to cool and when the temperature of the flask

5^
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decreases, about 0.9 m-I (10 mg/ml) of EtBr was added directly to the gel and

gentle mixing was done.

Casting tray was prepared with combs to which gel was poured and

allowed to solidify. 4 pi of isolated RNA sample mixed with 2 pi of IX loading

dye was loaded into the wells of prepared gel. Horizontal gel electrophoresis unit

was used to run the gel. The gel was run for about 30 min at I lOV. The run was

terminated after the dye front reached 3/4^ of the gel. Then it was visualized in
UV light using a gel documentation system.

3.7.4 RNA quantification

The concentration of RNA was determined using a Nano-drop (using 1

OD260=40pgRNA). A260/280 ratios were also calculated for each sample.

3.7.5 cDNA synthesis

cDNA from the isolated RNA was prepared using Revert Aid First strand

c-DNA synthesis kit. The preparation was in accordance with manufacture's

protocol.

3.7.6 Primer designing for Predicted PPI pair - Primer3Plus

A primer is a short strand of RNA or DNA which generally have a size

about 18-22 bases, that serves as a starting point for DNA synthesis. Primer pairs

are designed to amplify the genomic region around each discovered gene.

Sequences are selected for primer designing based on the experimental result of

the predicted PPI pair. Primer pairs are designed using Primer 3 plus tool.

Primer3Plus is a widely used programme for designing PGR primers. PGR

(Polymerase Chain Reaction) is an essential and ubiquitous tool in genetics and

molecular biology. Primer3 can also design hybridization probes and sequencing

primers. Primer3 picks primers for PGR reactions, considering certain important

criteria such as oligonucleotide melting temperature (Tm), size, GC content.

si
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primer-dimer possibilities, PCR product size, positional constraints within the
source/template sequence, possibilities for ectopic priming (amplifying the wrong
sequence) and many other constraints. Good primer design is essential for
successful reactions. The parameters considered in primer designing are described
below:

3.7,6.1 Primer Length

It IS generally accepted that the original length of the PCR primers is
18-22 bp. fhis is long enough for adequate specificity and short enough for
pnmers to bmd easily to the template at the annealing temperature

3,7.6.2 Primer Melting Temperature

Primer melting temperature (Tm) is the temperature at which one half of
the DNA duplex will dissociate to become single stranded and indicated the
duplex stability. Primers with melting temperature in the range of 52-28°C
generally produce the best results.

3.7.6.3 GCcontent

The GC content (the number of G's and C's in the primer as a percentage
of the total bases) of primer should be 40-60%.

3.7.6.4 GC Clamp

The presence of G or C bases within the last five bases fi-om the 3'end of
pnmers (GC clamp) helps promote specific binding at the 3' end due to the
stronger bonding of G and C bases. More than 3 G's or C's should be avoided in
the last 5 bases at the 3 end of the primer.

3.7.7 RT-qPCR validatioD

Real Time quantitative Polymerase Chain Reaction (RT-qPCR) is a tool
used for gene expression studies. The qPCR reaction was performed with forward
and reverse primers (specific to the predicted protein catalase in cassava and
transcription activator protein in Cassava mosaic virus). qPCR analysis for the

5,2
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samples were done at Rajiv Gandhi Centre for Biotechnology (RGCB) Bio

Innovation Centre, Trivandrum. The reaction profile is depicted in Table 1.

Table 1. RT-qPCR reaction profile

Components Volume (pi)

Diluted cDNA 1.5

Forward primer 1

Reverse primer 1

DyNAmo Flash SYBR Green qPCR master mix 5

Double distilled water 1.5

3,7,7.1 Thermal Profile

Initial denaturation: 95°C 5min

Denaluration: 95° 10s

Annealing: 55°C

Extension: 72°C 15-30s

Number of cycles: 35-45 cycles, step 2-4

After the completion of the real time reactions, the threshold cycle (Cj)

was recorded and gene expression level was calculated using comparative Ct

method. The gene expression level of two proteins in Cassava leaves are

represented as

ACt= Ct (target gene) - Ct (reference gene)

AACt= ACt (sample) - ACt (control).
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4. RESULT

The results of the study "'Modeling of Cassava-Cassava Mosaic Virus

interactions with computational biology and bioinformatics approach" carried out

at the Section of Extension and Social Sciences, ICAR-Central Tuber Crops

Research Institute, Sreekariyam, Thiruvananthapuram during 2018-2019 are

presented in this chapter.

The study focuses on the prediction of protein-protein interaction between

cassava and CMV. For this, firstly, Protein-Protein Interaction (PPI) in cassava is

predicted. Secondly, PPI between Cassava-CMV is predicted and the predicted

protein pairs are functionally annotated. The predicted protein pairs in Cassava-

CMV interaction is analysed for the presence of virus resistance proteins. In both

the prediction, interolog-based approach is used.

4.1 COLLECTION OF DATA FROM LITERATURES FOR CASSAVA

PROTEIN-PROTEIN INTERACTION PREDICTION

4.1.1 Construction of cassava PPI netHork using interolog-based method

The proteomic dataset used for the study was generated using the

interolog-based method. Interolog method, relies on existing data, is adopted for

PPI prediction. Upon the homology-based principle of this method, seven plant

species were selected as templates, based on three criteria; Most abundant PPI

information (model plant Arahidopsis); starch-storing crops (potato, rice and

maize); closely related to cassava (castor bean, poplar and soybean). According to

PPI information from various databases:

Arabidopsis thaliana contains: 235,215 interactions of 17,962 proteins.

Oryza saliva (rice) contains; 76,829 interactions of 5,219 proteins

Soianum tuberosiim (potato) contains: 42 interactions of 48 proteins

Zea mays (maize) contains: 25 interactions of 29 proteins

S5
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Glycine max (soybean) contains: 10 interactions of 12 proteins

Ricinus communis (castor bean) contains: 10 interactions of 10 proteins

Populus trichocarpa (poplar) contains: 8 interactions of 10 proteins.

To infer PPI information for cassava from each template plant, BLASTp

search of the cassava genome sequence database was carried out. The cassava

orthologous proteins that showed identity percentage >60, coverage percentage

>80% and e-value < 10""' were identified. Interactions were inferred as

orthologous PPIs in cassava if those orthologous proteins matched the proteins of

template plants that had previously been identified to have protein-protein

interaction. Based on the results obtained, majority of the PPIs were from

Arahidopsis thaliana. Protein-Protein Interactions (PPIs) in plant templates and

cassava is shown in Table 2.

Table 2. Protein-Protein Interactions (PPIs) in plant templates and cassava

Template

Plants

Genome

Information

PPI information cassava interactome

No. of

genes

No. of

proteins

No. of

PPI

No. of

proteins

Inferred

PPIs in

Cassava

Orthologs

in

Cassava

Arabidopsis 27,416 35,386 235,215 17,962 90,069 7,193

Rice 55,986 154,310 76,829 5,219 212 84

Potato 35,119 59,699 42 48 19 15

Maize 32,540 88,383 25 29 5 8

Soybean 54,175 83,795 10 12 7 7

Poplar 41,335 83,796 8 10 5 7

Castor bean 25,878 31,576 10 10 2 2

90,173 7,209

5^
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The resulting interolog-based PPI network of cassava consists of 90,173

interactions interconnecting 7.209 proteins, which accounted for about 21% of

proteins in the whole genome. The predicted interacting pairs of proteins are

represented in the form of a network (interactome). The network is generated

using Cytoscape v3.7.1. Protein-Protein Interaction Network (PPIN) of cassava is

shown in Figure 6.

•  .
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Figure 6. Cassava PPI network derived by interolog based method. The network is

generated using the Cytoscape tool and STRING app.
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4.2 DATA MINING OF PLANT-VIRUS INTERACTIONS FOR THE

PREDICTION OF CASSAVA-CMV PPI

In this study the template plant used is Arahidopsis thaliana and its

corresponding infecting viruses that are similar in taxonomy with CMV is

selected. For the prediction of interacting protein pairs between cassava and

Cassava Mosaic Vims (CMV) three datasets were used; STRINGviruses

consortium 2018, Host Pathogen Interaction Database (HPIDB) and Agile Protein

Interactome DataServer (APID).

STRING Viruses consortium 2018 is employed for the analysis of

template Plant-Virus Interaction (PVI) network. In this study the PVI network of

model plant (template plant) A. thaliana is taken.

Input

Template virus and plant species from which the user wants to predict

putative binding partners can be selected from the list of name given in the

dataset. In this study, Arahidopsis thaliana is selected as the model plant and

corresponding plant virus species are selected. 25 virus species and its different

strain were searched against Arahidopsis thaliana. Out of 25 viruses selected, 7

virus species showed interaction with A. thaliana. The list of the virus species

showing interaction with A.thaliana are given in Table 3.

Output

The output is a network containing protein-protein interaction between

virus and host that can be viewed or downloaded. The user can browse the data

associated with the partner proteins, which redirects to UniProt.

5?
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Table 3. Virus species interacting with Arabidopsis thaliana (obtained from

STRING viruses consortium, 2018)

NCBI Taxon Id STRING type STRING name

10840 Core Beet curly top virus (strain Calitbmia/logan)

12216 Core Potato virus Y

37128 Core Potato mop'top v irus

12167 Core Potato virus M

12305 Core Cucumber mosaic virus

10641 Core Cauliflower mosaic virus

220340 Core Bean golden yellow mosaic virus

HPIDB is a database employed for homolog PPI identification. Cassava

and CMV proteins are BLASTed against plant proteins in HPIDB database. From

this, blast hits for A. thaliana were selected. A model of the blast result of cassava

proteins are depicted in Figure 7.

5°!
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Figure 7. A model of HPIDB blast result
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The dataset can be downloaded in zip file formal. Zip folder contents:

1) The blast tab delimited results file.

2) The homologous HPI results tab delimited file. Records contain the query

id, e-value, query coverage, percentage identity, HPIDB homologous

pathogen hit and the HPIDB interacting partners.

3) Unique interacting protein results tab delimited file contains unique

HPIDB host and HPIDB pathogen proteins.

"f The third database used is Agile Protein Interactome Dataserver (APID).

Interactions were obtained for A. lhaliana with Brome Mosaic Virus (BMV),

Cauliflower Mosaic Virus (CaMV), Rice Dwarf Virus (RDV), Tobacco Mosaic

Virus (TMV), Tomaio Yellow Leaf Curl Virus (TYLCV), Tomato Golden Mosaic

Virus (TGMV), and Tomaio Mosaic Virus (ToMV). From APID, 19 interactions

were predicted for cassava-CMV interaction.

Combining interaction data from three databases, 351 proteins in cassava

is predicted to interact with 11 proteins in CMV.

4.3 PPI PREDICTION TOOL - VirusHostPPI

TTirough the interolog-based method, 351 interacting protein pairs were

obtained for 11 CMV. VirusHostPPI prediction tool enables the confirmation of

the predicted interacting protein pairs between cassava and CMV.

If the host protein sequence and the virus protein sequences are given as

input, the tool detects whether the proteins are interacting or not. The protein pairs

predicted through interolog-based method were filtered through VirusHostPPI

prediction tool and it is found that 114 proteins of cassava are interacting with 10

proteins of CMV. The predicted protein pairs between cassava and Cassava

mosaic virus are shown in Table 4.
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Table 4. Proteins in cassava predicted to interact with CMV

Si

No

Cassava UniProt

Name A

Gene name A CMV UniProt

Name B

Gene name

B

1 A0A2C9U8S7 MANES_16G04I200 H8WR50 ACl

2 A0A2C9U!Q2 MANES_!8G055300 H8WR50 AC!

3 A0A2C9UYQ8 MANES_11G066400 H8WR50 ACl

4 A0A2C9U4V6 MANES_18G137500 H8WR50 ACl

5 A0A2C9UCD6 MANES_16G128800 H8WR50 ACl

6 A0A2C9VKEI MANES_07G055800 H8WR50 ACl

7 A0A2C9U3K5 MAN ES_^ 18G144600 H8WR50 ACl

8 A0A2C9U398 MANES_I8G108400 H8WR50 ACl

9 A0A2C9UNM2 MANES_13G002600 H8WR50 ACl

10 A0A2C9V0P3 MANES_11G119700 HSWR50 ACl

11 A0A2C9V0Q1 MANES_1IG 119700 H8WR50 ACl

12 A0A2C9V4R5 MANES_10G087600 H8WR50 ACl

13 A0A251LK88 MANES_02G205900 H8WR50 ACl

14 A0A25ILK92 MANES_02G205900 H8WR50 ACl

15 A0A2C9WFM4 MANES_02G 199900 H8WR50 ACl

16 A0A251LK.M5 MANES_02G 199800 H8WR50 ACl

17 A0A2C9VX86 MANES_05G 130700 TRAPJCMV AC2, AL2

18 A0A2C9VVT7 MANES_05G 130700 TRAPJCMV AC2, AL2

19 Q9SW99 MANES_18G004500 TRAPJCMV AC2, AL2

20 A0A2C9VVU3 MANES_05G130500 TRAPJCMV AC2, AL2

21 A9YME8 CAT2 TRAPJCMV AC2, AL2

22 A0A2C9WMD1 MANES_01G154400 TRAPJCMV AC2, AL2

23 A0A2C9TZH3 MANES_18G004400 TRAP_ICMV AC2, AL2

24 A0A2C9WLH4 MANES_01G 165500 H8WR48 AC3

25 A0A2C9WD70 MANES_02G 123000 H8WR48 AC3

26 A0A2C9W3T7 MANES_03G016800 H8WR51_9GEMI AC4

27 A0A2C9VUS4 MANES_05G096100 H8WR51JGEM1 AC4

28 A0A2C9WC92 MANES_02G041800 H8WR51_9GEM1 AC4
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29 A0A2C9VPI5 MA?srES_06G096600 H8WR51_9GEM1 AC4

30 A0A2C9WNB8 MANES_01G187900 H8WR51_9GEMI AC4

31 A0A2C9VUV8 MANES_05G096100 H8WR51__9GEMI AC4

32 A0A2C9WI64 MANES_a4G017500 H8WR51_9GEMI AC4

33 A0A2C9U0M9 MANES_I8G02I400 H8WR51_9GEMI AC4

34 A0A2C9W3M2 MANES_03GO 13700 H8WR5!_9GEMI AC4

35 A0A2C9WCA3 MANES_02G089000 CAPSD_ICMV ARK AVI

36 A0A2C9UNR1 MANES^13G041100 CAPSD_ICMV ARK AVI

37 A0A2C9U746 MANES^17G111400 CAPSD_ICMV ARK AVI

38 A0A2C9VIV9 MANES_11G163400 CAPSD_1CMV ARK AVI

39 A0A2C9VPE6 MANES^06G015000 CAPSDJCMV ARK AVI

40 A0A2C9U5Z3 MANES_17G050I00 CAPSD_ICMV ARK AVI

41 A0A2C9VIE7 MANES_07G042200 CAPSD_ICMV ARK AVI

42 A0A2C9V824 MANES_09G052800 CAPSDJCMV ARK AVI

43 A0A2C9VS27 MANES_05G005300 CAPSDJCMV ARK AVI

44 A0A2C9VU82 MANES_05G005300 CAPSDJCMV ARK AVI

45 A0A2C9VS73 MANES_05G005300 CAPSDJCMV ARK AVI

46 A0A2C9UAD5 MANES_I6G 106800 CAPSDJCMV ARK AVI

47 A0A251L698 MANES_03G028900 CAPSDJCMV ARK AVI

48 A0A251L6B6 MANES_03G028900 CAPSDJCMV ARK AVI

49 A0A2C9VNM8 MANES_06G072300 CAPSD_ICMV ARKAVl

50 A0A2C9UPI3 MANES_!3G051400 CAPSDJCMV ARKAVI

51 A0A2C9VTU5 MANES_06G 163000 CAPSDJCMV ARKAVl

52 A0A2C9VRR0 MANES_06G 123900 CAPSDJCMV ARKAVl

53 A0A251KRR0 MANESJSGO14800 CAPSDJCMV ARKAVl

54 A0A2C9W4N0 MANES_03G002200 CAPSD_1CMV ARKAVl

55 A0A2C9WKT2 MANES_01GI43300 CAPSD_ICMV ARKAVl

56 A0A2C9WN37 MANES_0IG143400 CAPSD_ICMV ARKAVl

57 AaA2C9WM25 MANES_01G143800 CAPSD_ICMV ARKAVl

58 A0A2C9WHR8 MANES_01G043900 CAPSD_ICMV ARKAVl

59 A0A2C9WC46 MANES_02GOOI600 CAPSD_1CMV ARKAVl

^3
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60 A0A2C9W5R6 MANES_03G002200 CAPSDJCMV ARE AVI

61 A0A2C9W041 MANES_05G 196000 CAPSDJCMV ARI, AVI

62 A0A2C9VRP8 MANES_06G 172900 CAPSDJCMV ARl, AVI

63 A0A2C9W4Z3 MANES_04G 154400 CAPSD_ICMV ARI, AVI

64 A0A2C9VIE3 MANES_07G042400 CAPSD_ICMV AR], AVI

65 A0A2C9VE39 MANES_08G065000 CAPSDJCMV ARI, AVI

66 A0A2C9VUQ0 MANES_05G09!800 CAPSD_ICMV ARI, AVI

67 AaA2C9UKB8 MANES_14G0974a0 CAPSD_ICMV ARI, AVI

68 A0A199UA28 MANES_S084200 CAPSDJCMV ARI, AVI

69 A0A2C9VSE5 MANES_05G01710a CAPSD_ICMV ARI, AVI

70 A0A2C9UFZ4 MANESJ5G151500 CAPSDJCMV ARI, AVI

71 A0A2C9U024 MANES_i8G002500 CAPSDJCMV ARI, AVI

72 A0A199UA28 MANES_S084200 CAPSDJCMV ARI. AVI

73 A0A2C9WR64 MANES_0IG23810Q CAPSD_1CMV ARI, AVI

74 A0A2C9W4Q2 MANES_03G002200 CAPSD_iCMV ARI, AVI

75 A0A2C9URD4 MANES_13G083400 CAPSDJCMV ARI, AVI

76 A0A2C9UQA8 MANES_13G05I40a CAPSDJCMV ARI. AVI

77 A0A251LEQ3 MANES_02G035400 CAPSDJCMV ARI. AVI

78 A0A2C9U2C3 MANES_18G079600 CAPSDJCMV ARI, AVI

79 A0A25ILCR3 MANES_03G20I400 090282 AVI

80 A0A2C9VFA0 MANES 08G110100 090282 AVI

81 A0A2C9VBR2 MANES_09G 175000 090282 AVI

82 A0A2C9VTEI MANES_05G001300 090282 AVI

83 A0A2C9VBQ4 MANES_09G178100 090282 AVI

84 A0A2C9VFC8 MANES_08G1 13100 090282 AVI

85 A0A2C9VT85 MANES_05G043200 H8WR53 BCI

86 A0A2C9VW90 MANES_05G 145400 H8WR53 BCl

87 A0A2C9W0I7 MANES_04G075000 H8WR53 BCI

88 A0A2C9V4J0 MANES_10G047400 H8WR53 BCl

89 A0A2C9W634 MANBS_03GOI3200 H8WR53 BCI

90 A0A2C9W0F0 MANES_04G075000 H8WR53 BCl
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91 A0A2C9WG65 MANES_02G219700 Q65975 0RF2

92 A0AI99UAY8 PCaPl Q89703 0RF3

93 A0A2C9UXZ5 MANES_1IG028400 IBMP_CSVMV 0RF4

94 A0A2C9W286 MANES_04G 137900 IBMP_CSVMV 0RF4

95 A0A2C9W3E8 MANES_03G006600 IBMP CSVMV 0RF4

96 A0A2C9UCF2 MANES_i6G 132500 IBMP_CSVMV 0RF4

97 A0A251K2XI MANES 09G040700 IBMP_CSVMV 0RF4

98 A0A2C9VFH4 MANES_08G039600 IBMP_CSVMV 0RF4

99 A0A251K7S8 MANES_09G 174300 IBMP CSVMV 0RF4

100 A0A2C9VFE3 MANES_08G 114400 1BMP_CSVMV 0RF4

101 A0A2C9VKP1 MANES_07GI20I00 IBMP_CSVMV ORF4

102 A0A2C9V4Q7 MANES^10G025200 IBMP CSVMV ORF4

103 A0A2C9UAB5 MANES_16G090500 IBMP_CSVMV ORF4

104 A0A2C9WK52 MANES_01G119800 IBMP_CSVMV 0RF4

105 A0A2C9VM01 MANES_06G016I00 IBMP CSVMV 0RF4

106 A0A2C9VMX9 MANES_07G 126300 1BMP_CSVMV 0RF4

107 A0A2C9VKV5 MANES_07G 126300 IBMP CSVMV 0RF4

108 A0A2C9VMB7 MANES_07G 126500 IBMP_CSVMV ORF4

109 A0A2C9UGV6 MANES_!5G 140500 IBMP_CSVMV 0RF4

110 A0A2C9U7A7 MANES_I7G09I600 IBMP^CSVMV 0RF4

111 A0A2C9WCR1 MANES_02G056600 1BMP_CSVMV 0RF4

112 A0A2C9VV50 MANES_05G 107000 IBMP_CSVMV 0RF4

113 A0A2C9VP44 MANES_06G088600 IBMP^CSVMV 0RF4

114 A0A2C9VMR2 MANES_06G036000 IBMP_CSVMV ORF4
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4.4 CONSTRUCTION OF PROTEIN-PROTEIN INTERACTION NETWORK

(PPIN) OF PREDICTED PROTEIN PAIRS INVOLVED IN CASSAVA-

CMV INTERACTION

To predict the genome wide interactions, all proteins of cassava and CMV

are paired up, which constitute 351 protein pairs. A total of 351 probable protein

pairs were predicted from interolog based method. After filtering of 351 protein

pairs in VirusHostPPI prediction tool, 114 protein pairs were found to be

interacting which includes 114 cassava proteins and 10 CMV proteins. Cytoscape

is employed for the construction of PPIN. The interaction network of the

predicted PPI is shown in Figure 8, 9, 10& 11. On an average, one CMV protein

has at least one cassava interacting partner. Predicted genes in CMV are shown in

Table 5.
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Figure 8. Predicted PPFN of Cassava-CMV. White nodes denotes gene name of

cassava and red node denotes gene name of CMV. Red node represents

ACl, AC2, AC3 and AC4 respectively.
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Figure 9. Predicted PPIN of Cassava-CMV. Red node represents 0RF2,

ORF3, BCl, AVI respectively
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Figure 10. Predicted PPIN of Cassava-CMV. Red node represents 0RF4 and ARI
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Table 5. Predicted genes in CMV interacting with cassava

Virus gene name No. of interaction No. of host genes No. of host proteins

ARl, AVI 44 37 44

0RF4 22 21 22

ACl 16 14 16

AC4 9 8 9

AC2, AL2 7 6 7

AVI 6 6 6

BCl 6 5 6

AC3 2 2 2

ORF2 1 1 1

ORF3 1 1 I

Total 114 101 114

Predicted effector hubs:

The effectors of CMV with highest number of edges (hubs) are ARl,

0RF4 and ACT These effectors have more than 10 PPls in the Cassava-CMV

interactome. There are effectors with less than 10 predicted PPIs. These are AC4,

AC2, AVI, BCl, AC3, 0RF2 and 0RF3. These hub proteins play important role

in pathogenesis, hence can be further investigated for deciphering virulence

mechanism.

4.5 FUNCTIONAL ANNOTATION OF PREDICTED PROTEIN PAIRS

The presence of annotated functional categories that are closely related to

host defence and pathogen infection support the validity of the predicted PPIs of

the prediction models. This study used the biological process, molecular process

and cellular components (GO term) to see the relevance of the predicted proteins.
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Functional annotation of predicted proteins in cassava was obtained from

Omicxbox Blast2G0 (http://www.biobam.com). Pipeline of Blast2Go is depicted

in Figure 12.

^ j BLASTp mapping annotation

Vn /fasta / ̂  / goslim

merge GOs

interpro

charts

Figure 12. Blast2G0 pipeline
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GO annotations of 99% of the Manihot esculenta proteins were obtained

from Biast2G0. Out of 114 proteins, 113 proteins sequences showed blast result,

interProScan results, mapping and annotation. Analysis progress of 114 predicted

cassava proteins is shown below (Figure 13).

Analysis Progress [104.ppl raju]

Sequences

0  5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 M 85 90 95 100 105 110 115

Total Sequences

with intefProScan

With Annotation

Figure 13. Analysis progress of predicted cassava proteins
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IntcrProScan family distribution results were obtained from the second

step in Blasl2G0, which showed that majority of the proteins comes under NAC

domain superfamily (IPR036093). The NAC domain is an N-termina! module of

nearly 160 amino acids, which is found in proteins of the NAC family of plant-

specific transcriptional regulators. NAC proteins are involved in developmental

processes, including formation of the shoot apical meristem, floral organs and

lateral shoots, as well as in plant hormonal control and defence. The NAC domain

has been shown to be a DNA-binding domain (DBD) and a dimerization domain.

InterPoScan family distribution and domain distribution are depicted in Figure 14

& 15 respectively. A graph level 5 pie chart showing cellular component of the

predicted proteins in cassava is shown in Figure 16.



56

InterProScan Families Distribution [104_ppi raju]
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Figure 14. InterProScan families distribution of predicted cassava proteins

7^



57

InterProScan Domains Distribution [104 ppi raju]
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Figure 15. InterProScan domains distribution
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Graph Level 5 Pie Chart of #Seqs [Cellular Component]
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Figure 16. Cellular component of the predicted proteins in cassava
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5.1 Subcetlular localization of cassava proteins targeted by the CMV proteins

Pathogens suppress host immunity by directing a range of secreted

proteins or effectors, to the cytoplasm of host cells. Once these effector proteins

traversed the host plasma-membrane, are transported to many subcellular

locations where they subvert the host immune system to enable pathogen growth

and reproduction. The knowledge of cellular compartments of the cassava

proteins targeted by the predicted CMV wall be helpful in deciphering the

mechanism of host-pathogen interactions. If the targeted cassava proteins are

located in cellular compartments that are very relevant to the pathogen's infection

or very likely to be involved in interactions with the pathogen, then the prediction

result supports the host-pathogen predictions.

In this study, to have a clear understanding about the location of the

interactions in host, the subcellular localization of the predicted cassava proteins

were extracted using Localizer tool (http://localizer.sciro.au/). The subcellular

locations of all predicted cassava proteins are listed in Table 6. It is found that

57.9% host proteins are localized in nucleus, 4.4% in chloroplast, and 0.9% in

mitochondrion. It reveals that majority of the interaction occurs in nucleus, and

chloroplast region.
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Table 6. Identified subcellular locations of predicted proteins using Localizer.

('YTepresents yes and '-'represents null)

SI

No

Identifier Chloroplast Mitochondria Nucleus

1 A0A2C9U8S7_MANES - - -

2 A0A2C9UIQ2_MANES - - -

3 A0A2C9U4V6„MANES - - -

4 A0A2C9UYQ8 MANES - -

Y

(FKVK)

5 A0A2C9VKE1 MANES - -

Y

(KiCLELWRGlLKKKGF

R)

6 A0A2C9VX86_MANES - - -

7 A0A2C9VVr7_MANES - - -

S A0A2C9VVU3_MANES - - -

9 Q9SW99 MANES - - -

10 A0A2C9WMDI_MANES - - -

11 A0A2C9TZH3_MANES - - -

12 A9YME8_MANES - - -

13 A0A2C9WLH4_MANES - - -

14 A0A2C9WD70_MANES - - -

15 A0A2C9W3T7_MANES Y (0.996 1 1-24) Y (0.8751 1-22)

Y

(RRLARALKNGRRKTS,

KKVHVATLERVYRRT

KRP,RRRHQNSAISSSS
SKICKKK.RRHQNSAISS

SSSKKK.K.K.K,KRLKKV

HVATLERVYRRTK)

16 A0A2C9VUS4_MANES - -

Y

(PGKKRRL)

17 A0A2C9WC92_MANES - -

Y

(KRCCENLTEENRRLQ

R)

18 AOA2C9VP15_MANES - - Y
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(PEKKRRL)

19 A0A2C9WNB8_MANES - - -

20 A0A2C9VUV8^MANES - -

Y

(PGKKRRL)

21 A0A2C9W164_MANES - -

Y

(KRSR)

22 A0A2C9U0M9_MANES - -

Y

(KKIKLLSMLDEVDRR
YKE)

23 A0A2C9V8V6_MANES

Y

(KKRKXDXKQANKLT
KFKRKETR,KRCCOTL
TEENRRLQK)

24 A0A2C9W3M2_MANES - -

Y

(KRKR,RKRK,RLKAK)

25 A0A2C9VFA0_MANES

Y

(RKNKREDSLLKKRRE
G,RRRREDNLVE1RKN
KRE.RKKAYKTGVDA

DEARRRRE.KKAYKTG
VDADEARRRRED)

26 A0A2C9VFC8_MANES

Y

(RKNRREESLQKKRRE
G,RRRREDNMVE1RKN

RRE,RRNRYKVAVDAE
EGRRRRE)

27 (A0A2C9VBQ4_MANES

Y

(RKNKREDNLLKKRRE
G,RRRREDNLVErRKN

KRE,RKKAYKTGVDA

DEARRRRE,KKAYKTG
VDADEARRRRED)

28 A0A2C9VBR2_MANES

Y

(RKNRREESLQKKRRE
G,RRRREDNMVEIRKN

RRE,RRNRYKVAVDAE
EGRRRRE)

29 A0A2C9VTEI_MANES

Y

(RKNRREESLQKKRRE
G,RRRREDNMVEIRKN

KRERRNKYKVAVDAE

EGRRRRE)

30 A0A251LCR3_MANES - -

Y

(RKSKREESLQKKRRE

90
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G,RRRREDNMVEIRKS

KRE.RRNRYKVAVDA
DEGRRRRE)

31 A0A2C9VT85_MANES - -

Y

(FKVK)

32 A0A2C9VW90_MANES - -

Y

(KRPVGILSVKVLRAM

KLKK)

33 A0A2C9V4J0 MANES - -

V

(KKKTKMIRK)

34 A0A2C9W017_MANES - -

Y

(RKTKH1KK,KKPVGIL

SVKVLRALKLKK)

35 A0A2C9W634_MANES - - -

36 AOA2C9WOFO_MANES - -

Y

(RKTKHIKK.KKPVGIL
SVKVLRALKLKK)

37 A0A2C9WCA3_MANES - - -

38 A0A2C9UNRl_MANES - -

Y

(LGEV)

39 A0A2C9U746_MANES - -

Y

(RRKRRK,KK1MVLYKS

SKKGTK)

40 A0A2C9VIV9_MANES - -

Y

(KKTMVFYKGKAPAG
RKTKW)

41 A0A2C9VPE6_MANES - - -

42 A0A2C9U5Z3_MANES - - -

43 A0A2C9V824_MANES - - -

44 A0A2C9VIE7_MANES - - -

45 A0A2C9VU82_MANES

Y

(KRKR,KISKNKKKASK
KDEKAEPDSKKTRPNK

KSRK)

46 A0A2C9VS27 MANES .

Y

(KRKR,KJSKNKKKASK
KDEKAEPDSKKTRPNK

KSRK)

47 A0A2C9UAD5_MANES - -

Y

(RKRRK,KKILVLYTNF

8i



63

GKNRKPEK)

48 A0A2C9VS73_MANES .

Y

(KRKR,KtSKNKKKASK

KDEKAEPDSKKTRPNK

KSRK)

49 A0A2C9UQA8_MANES .

Y

(KRKR,KISKNKKKASK
KDEKAEPDSKKTRPNK

KSRK)

50 A0A2C9UP13_MANES .

Y

(K.RKR,KISKNKKKASK

KDEKAEPDSKKTRPNK

KSRK)

51 AaA2C9VNM8_MANES - -

Y

(RKRRK)

52 A0A251L6B6_MANES - -

Y

(RKRRK,KKILVLYTNF

GKNRKPEK)

53 A0A251L698_MANES - -

Y

(RKRRK,KKILVLYTNF
GKNRKPEK)

54 A0A2C9VTU5_^MANES Y (0.8381 1-61) -

Y

(RPRR)

55 A0A2C9WM25_MANES - - -

56 A0A2C9WN37_MANES - - -

57 A0A2C9WKT2_MANES - - -

58 A0A2C9W4N0_MANES - - -

59 AOA2C9VRRO_MANES - - -

60 A0A2C9W5R6 MANES - - -

61 A0A2C9WC46_MANES - - -

62 AOA251KRRO MANES - -

Y

(KPTGKPRKVKGIGTK

KPIGTKRT)

63 A0A2C9WHR8_MANES -

Y

(KKSRK)

64 A0A2C9W4Z3_MANES - -

Y

(KQSRSEKKSRKAMLK
LGMK)
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65 A0A2C9W041 _MANES - Y (0.991 1-21) -

66 A0A2C9VRP8 MANES - -

Y

(PKPS)

67 AOA2C9VUQO_MANES - -

Y

(KKRK)

68 A0A2C9VE39_MANES -
-

Y

(PSQKRNR)

69 A0A2C9VIE3_MANES - - -

70 A0A2C9VSE5_MANES - -
-

71 A0A199UA28_MANES - - -

72 A0A2C9UKB8_MANES - -

Y

(RKRRK)

73 AOA2C9U024_MANES - -
-

74 A0A2C9UFZ4_MANES - -

Y

(RKRRK,KKIMVLYKN
TKKGSK)

75 AOA2C9U RD4_MANES - - -

76 A0A2C9W4Q2_MANES - -
•

77 A0A2C9WR64 MANES - -

Y

(KRKR,RKRR)

78 A0A2C9U2C3_MANES - - -

79 A0A251LEQ3_MANES - - -

80 AaA251L5A8_MANES - - -

81 A0A2C9WG65_MAN ES - -

Y

(RKRR)

82 AOA199U AY8_MANES - - -

83 A0A2C9UXZ5_MANES

Y

(RKREAEKERARRDRL,
KPPPRPKFGPKWRFNQ
HRPQLPQRRDEEVEAR
KREAEKERARR)

84 A0A2C9W286_N4ANES

Y

(TRKREAEKERARR,RK

REAEKERARRDRURR

DEEVATRKREAEKERA

R)

93
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85 A0A251K2X1_MANES - -

Y

(KKMSSSNAKALNSMK
QKLK)

86 A0A2C9VFH4_MANES - -

Y

(KKMSSSNAKALNSMK
QKLK)

87 A0A25IK7S8^MANES

Y

(PKPS,REAKRKJCKRLL

ARKSIIEKRKEE,KRKKI

FYVRTEEERLRKL,KRP

EDLMLSYVSGEKGKD

R,KKLQKLAKTMDYLE

RAKRE,RLRKLHEEEE

ARKH EEAERRRKEEAE

RKAKLDEIAEKQRQRE
RELEEKEK)

88 A0A2C9VFE3_MANES

Y

(PKPS,KRLLARKS1IEK
RKEE,KRPEDLMLSYV

TGEKGKDR,KKLQKLA
KTMDYLERAKRE,RKO
EREAKRKKIFYVRSEE

ERLRKLHEEEEARKRE

EAERRRKEEAERKAKL

DEIAEKQRQRERELEE
KERLR)

89 A0A2C9W3E8 MANES - -

Y

(KRTTYTGFELFRIKER)

90 A0A2C9UCF2_MANES - -

Y

(KRLHEEEKLERQKLR,
KRTTYTGFELFRIKER)

91 A0A2C9VKP1_MANES - -

Y

(RKLAKARLSKKA)

92 A0A2C9V4Q7_MANES - -

Y

(RKLAKARLSKRA)

93 A0A2C9UAB5_MANES - - -

94 A0A2C9WK52_MANES - -

Y

(KRRS)

95 AOA2C9VMO1 _MANES - -

Y

(AEKEANSRKKTGGKK

K)

96 A0A2C9VMX9_MANES Y (0.971 11-25) - -
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97 A0A2C9VKV5_MANES Y (0.971 1 1-25) - -

98 A0A2C9VMB7_MANES Y (0.971 1 1-25) - -

99 A0A2C9UGV6_MANES - - -

100 A0A2C9U7A7_MANES - - -

101 A0A2C9 WCR! _MANES - - -

102 AOA2C9VV50_MANES - - -

103 A0A2C9VP44_MANES - - -

104 A0A2C9VMR2_MANES - - -

105 A0A2C9U3K5_MANES - -

Y

(KRSR,KKGVDQAEKE
ERRRRRTEK)

106 A0A2C9U398_MANES

Y

(KRSR,RSSKRIR,1CRKI
NTWTFNANFNVIKRR,

rkintwtfnanfnvik:

RRL)

107 A0A2C9V0P3_MANES - -

Y

(KRSR)

108 A0A2C9V0Q1^MANES - -

Y

(KRSR)

109 A0A2C9V4R5_MANES - -

Y

(KRRR,KVKK,RRDISTE
EYMKLSKR)

110 A0A251LK88_MANES - -

Y

(LGEV)

111 A0A251LK92_MANES - -

Y

(LGEV,RDPKRMK)

112 A0A2C9WFM4_MANES

Y

(KKTCLEIDYLERSKRV

)

113 A0A251 LKM5_M AMES - -

Y

(PFPKRLK)

114 A0A2C9UNM2_MANES - - -

85"
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Functional annotation of predicted 144 proteins of cassava is shown in

Appendices. Sequence name, description, SIM mean are listed. (Tags represents:

Inlerpro [I], Blast [B] Mapping [M] and Annotation [A]).

Among the 114 predicted protein pairs, 10 proteins come under disease

resistance protein family (TIR-NBS-LRR class) in cassava. The resistance

proteins in cassava are listed in Table 7.

Table 7. Disease resistance proteins and its corresponding genes in cassava

SI

no.

Seq name Phytozome protein
id

UniProt Gene name Length

A0A2C9U3K5 cassava4.1000798ra MANES_18G 144600 1029

2 A0A2C9U398 Unknown MANESJ 80108400 1187

3 A0A2C9V0P3 cassava4. l_032695m MANESJIGI19700 1135

4 A0A2C9V4R5 cassava4.1 _023065m MANES_10G087600 1239

5 A0A251LK88 cassava4.1 023606m MANES_02G205900 1158

6 A0A251LK92 cassava4.1 _023606m MANES_02G205900 1284

7 A0A2C9WFM4 cassava4. l_000798m MANES_02G 199900 1133

8 A0A2C9UNM2 cassava4.1 _033689m MANES_03G013700 1100

9 A0A2C9V0Q1 cassava4.1 _032695m MANES_11G119700 967

10 A0A251LKM5 cassava4. l_028330m MANES_02G199800 771

All the gene products of CMV were annotated. GO annotations of the

CMV genome were obtained from QuickGO (http://www.ebi.ac.ul/QuickGO ).

GO of predicted interacting proteins of Cassava Mosaic Virus is shown below

(Table 8).

Sb
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Table 8. GO of predicted interacting proteins in Cassava Mosaic Virus

UniProt id Gene name Function Reference

Q66284 ORF4 Part of host cell cytoplasm, Involved in regulation of translation GO_REF:0000037

GO_REF.0000039

Q085S9 AC2. AL2

Enables in structural molecule activity, DNA binding and metal
ion binding. Part of viral capsid, host cell cytoplasm, host cell
nucleus. Involved In viral process.

GO_REF:0000002

GO_REF:0000037

GO REF:0000039

090282 AVI

Enables in structural molecule activity, DNA binding, metal ion
binding. Part of viral capsid, host cell nucleus, virion.

GO_REF:0000002

GO_REF;0000038

GO_REF:0000040

H8WR53 BCJ

Enables in DNA binding. Part of host cell membrane, integral
component of membrane. Involved in transport of virus in host,
cell to cell.

GO_REF:0000002

GO_REF:0000038

H8WR50 AC!

Involved in nucleic acid phosphordiester bond hydrolysis and
metabolic process. Enables in structural molecule activity , DNA
replication, endodeoxyribonuclease activity, producing 5'-
phosphomonoesters , hydrolase activity metal ion binding,
nucleolide binding catalytic activity , nucleotidyl transferase
activity helicase activity, DNA binding transferase activity, ATP
binding , nuclease activity and endonuclease activity. Part of host
cell nucleus.

GO_REF:0000108

GO^REF:0000002

GO„REF:0000038

GO_REF;0000040

H8WR5I AC4 Protein A4. Enables in DNA binding and metal ion binding.
Involved in viral process.

-

Q89703 0RF3

Involved in RNA-dependent DNA biosynthetic process, nucleic
acid phosphodiester bond hydrolysis, RNA phosphodiester bond
hydrolysis, endonucleolytic proleolysis, DNA recombination and
metabolic process. Enables In RNA-DNA hybrid ribonuclease
activity, DNA binding, nucleotidyl transferase activity , DNA-
directed DNA polymerase activity, peptidase activity, RNA-
directed DNA polymerase activity, catalytic activity, transferase
activity, metal ion binding , RNA binding, aspartic-type
endopeptidase activity, hydrolase activity, endonuclease activity
and nuclease activity.

GO_REF:0000I08

GO_REF:0000002

GO_REF:0000003

GO_REF:0000037

GO_REF:0000002

H8WR48 ACS Involved in viral process. GO_REF;000003S

89-



69

Q65975 ORF2 Enables in ATP binding. GO_REF:0000002

H8WR46 AV2 Part of host cell cytoplasm and host cell perinuclear region of
cytoplasm. Involved in negative regulation of gene silencing by
RNA and viral process.

GO„REF;0000002

GO REF:0000038

The interacting proteins of cassava in Cassava-CMV showed further

interaction with predicted cassava protein, i.e., intraspecies (PPI) interaction. The

first step in this study was to predict PPls in cassava (inter-species interaction)

and the second step was to predict PPIs between Cassava-CMV (Intra-species

interaction). From the results obtained, it is found that the predicted cassava

proteins in cassava-CMV interaction interact with the predicted proteins in

cassava interactome. The results were obtained using STRING.

4.6 EXPERIMENTAL VALIDATION

The m-silico predicted proteins were validated using the designed primers

against healthy and infected varieties of cassava.

4.6.1 Isolation of RNA

RNA isolation of 2 cassava leaf samples were done using CTAB method

and were stored at -20°C.

4.6.2 Analysis of RNA

The RNA samples isolated using the CTAB method were analysed using

1.2% agarose gel electrophoresis (Plate 1). Distinct two bands were observed

which shows no apparent RNA degradation.

4.6.3 Quantification of RNA

Quantification of RNA was done using NanoDrop® ND-100. The

concentration of RNA (ng/pl), A260/230, A260/280, obtained are shown below

(Table 9).
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Table 9. Quantification of RNA

Sample RNA yield (ng/ pi) A260/280 A260/230

H165 (healthy) 1894 2.1 2.05

HI65 (infected) 1925 2.08 1.97

Plate 1: 1.2% EtBr stained agarose gel showing RNA of 2 Cassava leaf

samples after electrophoresis (5pl RNA sample + Ipl I X loading dye).

Lane 1 & 2; HI65 (healthy)

Lane 3 & 4; HI65 (infected)

9^^
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The relative gene expression of predicted proteins (catalase and

Transcription Activator Protein) in healthy cassava variety (HI65) and CMV

infected cassava variety (HI65) were studied using SYBR green PCR assay. Call

gene that codes for catalase is selected in the study because catalase activity is

high in infected leaf samples as compared to healthy leaf samples (Duraisamy et

a!., 2017). AC2 gene is a viral protein that codes for Transcription Activator

Protein (TrAP). It is predicted that the two proteins catalase and TrAP interacts

with each other during a viral infection. Gene expression pattern of comparative

Ci method showed the up-regulation of AC2 gene in CMV infected leaf sample.

Relative gene expression of AC2 and Caf2 in healthy and CMV infected cassava

leaves are shown in Figure 17.

4.6.1 Designed Primer

Primer sets were designed for Cal2 gene and AC2 gene

• Cassava Cat2 gene (catalase): Product size-95bp

Forward Primer: 5'CAGCGTGTTGTCCATGCTAG3'

Reverse Primer: 5TATGAATAACAGTGGAGAAACGGAC3'

• CMV AC2 gene (TrAP: Transcription Activator Protein): Product size-95bp

Forward Primer: 5'CCCAAAAGCCAACAGAGAGA3'

Reverse Primer: 5'CATCACCGAGTCCAACACAAT3

Reference gene: Actin (Product size-95bp)

Forward Primer: CCCAAAAGCCAACAGAGAGA

Reverse Primer: CATCACCGAGTCCAACACAAT

4.6.2 EXPRESSION STUDY OF PREDICTED PROTEINS IN CASSAVA

The predicted interacting proteins were present in healthy and susceptible

(infected) variety were targeted using designed specific primers and the SYBR

green PCR assay was used for studying gene expression. The relative gene

expression of healthy and susceptible varieties is studied using 2"^^^ method.

^0
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4

Actin (primers ACT F and ACT R) was used as the reference gene for the

expression study.

The standard fluorescent amplification representing exponential growth of

PCR products was observed in each cycle, yielding threshold cycle (Ct) values

that ranged from 15-28 for the target and reference (ACT F and ACT R) primers.

The Ct (Cycle threshold) value is given in the logarithmic scale and inversely

proportional to the quantity of cDNA. Thus the highly expressed gene has low

ACt values and low expressed gene have high ACt values. The fold change (-AACt)

can be calculated by comparing the normalized expression (ACi) of the two

conditions. The fold change, viz. the expression ratio, indicated the up regulation

and down regulation of the gene when it was positive and negative respectively.

01
tuO
c
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JZ
u

1  2

0

AC2 CAT2

Genes

H165

(Healthy)

H165

(Infected)

Figure 17. Relative gene expression of v4C2 and C-t 7'2 in healthy and CMV

infected cassava leaves (Variety: H165).
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5. DISCUSSION

The study entitled "Modeling of Cassava-Cassava Mosaic Virus

interaction with computational biology and bioinformatics approach*' was

conducted to predict interacting pair of proteins between cassava and Cassava

Mosaic Virus (CMV) based on interolog method using genomic data of template

plant. The study also includes confirmation of the predicted interacting pairs using

prediction tool, PPl network construction and functional annotation of the

predicted protein for better understanding of pathogenesis mechanism of the crop.

The results of this study presented in chapter 4 are discussed here.

Cassava Mosaic Virus (CMV) is a ssDNA virus causing economically

important disease in Manihot escidenta thereby leading to severe agricultural

losses in Asian and African countries. There has been a significant reduction in

yield of cassava in India from 38,581 kg/ha in 2012 to 22,323 kg/ha in 2016

(FAOSTAT, 2017). Similarly, the appearance of Cassava Mosaic Disease (major

pathogen involved is CMV) seems to significantly constrain its productivity.

Viral-host protein-protein interaction plays a vital role in pathogenesis, since it

defines viral infection of the host and regulation of the host proteins. PPIs are

essential process in all living cells and play a crucial role in the infection process,

and initiating a defence response. In this context, understanding the PPI network

(interactome) between plant proteins and pathogen proteins is a critical step for

studying the molecular basis of pathogenesis (Pinzon et a!., 2010 and Kim et al.^

2008). In particular, computational approaches ameliorate the study of host-

pathogen protein interactions in a genome-wide range.

Many computational methods have been developed to predict PPIs, but

most of them are intended for PPIs within same species rather than for PPIs across

different species. Methods for predicting intra-species PPIs do not distinguish

interactions between proteins of the same species from those of different species,

and thus are not appropriate for predicting inter-species PPIs. Motivated by a

^3
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recent increase in data of virus-host PPIs, a few computational methods have been

developed to predict virus-host PPIs using machine learning methods. Zhou et ai

(2018) developed a prediction tool (VirusHostPPI) of virus-host PPIs, which is

applicable to new viruses and hosts. Tlte predicted PPIs using interolog based

method are confirmed by the prediction tool (VirusHostPPI), which identifies

whether a protein pair interacts or not (http://bclab.inha.ac.krA^irusHostPPI). The

prediction tool works on the principle of SVM based approach.

In this study, a systematic attempt has been made to predict cassava-CMV

PPIs by interolog-based method. From the proteomic datasels used for the study,

351 cassava proteins and 11 CMV proteins were predicted to interact by a simple

and effective method: interolog based approach. After filtering of the predicted

protein pairs using VirusHostPPI (prediction tool), 114 cassava proteins were

found to be interacting with 10 CMV proteins. The reported results are coherent

with the previous studies in which it is demonstrated that a few pathogen proteins

involved in interaction with the host interactome (Kim et at., 2008). Li et at.

(2012) predicted protein-protein interactions between Ralstonia solanacearum

and Arahidopsis thaliana. They predicted 3,074 potential PPIs between 119 R.

solanacearum and 1,442 A. thaliana proteins. Sahu et ai, 2014 used two different

methods for the prediction of PPl (Interolog based method and domain based

method) between Arabidopsi thaliana and Psuedomonas syringae pathovar

tomato strain DC3000 (PstDC3000). They reported that interolog-based method

predicted nearly 0.79 Million PPIs involving around 7700 Arahidopsis and 1068

Pseudomonas proteins in the full genome while the domain-based method

predicted 85650 PPIs comprising 11432 Arahidopsis and 887 Pseudomonas

proteins.

The predicted cassava proteins in Cassava-CMV interaction were

combined for functional annotation using Blast2GO. Effective annotation

obtained from BIast2G0 could provide several valuable data regarding the
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identified interacting proteins. Among the total (114) proteins identified, 113

proteins showed blast hit (with Arabidopsis thaliana% interProScan results,

mapping and annotation. InterProScan result showed that majority of poteins

comes under NAC containing domain protein superfamily. NAC TPs are one of

one of the largest families of transcription factors (TPs) in plants and they play

vital roles in regulating plant growth and development processes including abiotic

stress responses. Hu et al. (2015) reported 96 NAC genes in cassava. In their

study, 96 predicted NAC proteins ranged from 82 to 656 amino acid residues with

an average of 342 amino acid. They also studied the evolutionary relationships

between cassava NAC proteins and known NACs from Arabidopsis.

Subcellular locations of the predicted proteins were found using localizer.

It is found that 57.9% host proteins are localized in nucleus, 4.4% in chloroplast,

and 0.9% in mitochondrion. It reveals that major of the interactions occur in

nucleus, and chloroplast region. Also the localizations for a large number of

proteins are still unknown which need a special attention for experimental

characterization.

Functional annotation revealed the presence of 10 disease resistance

proteins in the predicted Cassava-CMV interaction proteins. In 2015, Lozano et

al. identified 228 NBS-LRR type genes and 99 partial NBS genes among the

30,666 annotated protein-coding genes. They reported that these represent almost

1% of the total predicted genes and show high sequence similarity to proteins

from other plant species.

Understanding the Protein-Protein Interaction (PPI) network (i.e.,

interactome) between plant proteins and pathogen proteins is a critical step for

studying the molecular basis of pathogenesis (Pinzon et al.., 2010; He et al., 2008;

Kim et al., 2008). However, it is still a challenging task to identity the plant

proteins targeted by a pathogen protein through existing experimental techniques.
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Currently, only a few pairs of such interactions have been identified,

which is far from being enough to systematically decipher the molecular

mechanism of pathogenicity. Due to internal limitations of the computational

methods, the predicted data may still suffer from two drawbacks. First, the

predicted PPI network is still far from complete. Second, the predicted data may

inevitably contain a lot of false positives. To quantitatively assess the reliability of

the predicted PPIs, experimentally determined PPI data are required. Even so, the

predicted PPI data have allowed us to catch a glimpse of the overall picture of the

PPI network between CMV and cassava {Manihot esculenta). We hope that the

current work can shed light for further research into the molecular pathogenesis of

CMV. For instance, the predicted data may inspire a path to the discovery of new

anti-viral drug targets.

It has been established that a pathogen mutates its genes extensively to

infect a host, whereas a plant defends the attacks by expanding its gene families

(Stahl and Bishop, 2000). Therefore, to some extent, the ratio of proteins involved

in the predicted PPI network may reflect the plant-pathogen arms race at the

molecular level.

%
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6. SUMMARY

The study entitled ''Modeling of Cassava-Cassava Mosaic Virus

interaction with computational biology and bioinformatics approach" was carried

out at the Section of Extension and Social Sciences, ICAR-Central Tuber Crops

Research Institute, Sreekariyam, Thiruvananthapuram during 2018-2019. The

objectives of the study were to predict interacting pairs of proteins between

Cassava and CMV, construction of Protein-Protein Interaction Network (PPIN)

and validation of predicted protein pairs.

The study had mainly three objectives, PPl prediction between cassava

and Cassava Mosaic Virus, predicted PPI network construction and validation of

the predicted pairs. PPI prediction was done using interolog-based method and the

template plant used is Arabidopsis thaliana. The preliminary datasets of PPIs for

the prediction of cassava-CMV interaction were obtained mainly from three

databases (STRING Viruses, APID, HPIDB). A total of 351 PPIs between 351

proteins in cassava and 11 proteins in CMV were predicted. These proteins were

filtered using VirusHostPPI prediction tool. After filtering 114 PPIs between 114

cassava proteins and 10 CMV proteins were obtained. Using Functional

annotation tools, the predicted proteins were functionally annotated. Predicted

cassava proteins were annotated using Blast2Go and CMV proteins were

annotated using QuickGO. The results showed the presence of 10 disease

resistance proteins in predicted cassava proteins. These disease resistance proteins

were predicted to interact with ACI gene of CMV which codes for replication

associated proteins in CMV. Moreover, InterProScan results showed that majority

of the proteins comes under NAC containing domain superfamily. NAC TPs are

one of the largest families of transcription factors (TFs) in plants and they play

vital roles in regulating plant growth and development processes including abiotic

stress responses.
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From the predicted PPI pair, one pair {Cat2 gene of cassava and AC2 gene

of CMV) of interacting proteins of cassava and CMV interaction is validated

using q-PCR. Primers were designed for both the proteins. These primers were

validated using a healthy and CMV infected varieties.

6.1 SCOPE OF FUTURE WORK

As the resources were limited, only one predicted PPI pair was validated

for differentiating expression of genes in healthy and infected cassava varieties.

Further study can be done for the identification of interaction between predicted

Cassava-CMV proteins and intraspecies PPI in cassava.



100



79

7. REFERENCES

Ako-Adjei, D., Fu, W., Waliin, C., Katz, K.S., Song, G., Daiji, D., Brister, J.R.,

Plak, R.G. and Pruitt, K.D. 2014. HIV-1, human interaction database:

current status and new features. Nucleic acids res. 4i(Dl): 566-570.

Alabi, O.J., Kumar, P.L. and Naidu, R.A. 2011. Cassava mosaic disease: a curse

to food security in subSaharan Africa.

Albert, R. 2005. Scale-free networks in cell biology. J of cell sci. 775(21): 4947-

4957.

Almagro, L., Gomez Ros, L.V., Belchi-Navarro, S., Bru, R., Ros Barcelo, A. and

Pedreno, M.A. 2008. Class III peroxidases in plant defense reactions. J.

ofExp. Bat. 60{2): 377-390.

Alonso-Lopez, D., Campos-Laborie, F.J., Gutierrez, M.A., Lamboume, L.,

Caiderwood, M.A., Vidal, M. and De Las Rivas, J. 2019. APID database:

redefining protein-protein interaction experimental evidences and binary

interactomes. Database, 2019.

Amraari, M.G., Gresham, C.R., McCarthy, F.M. and Nanduri, B. 2016. HPIDB

2.0: a curated database for host-pathogen interactions. Database, 2016.

Arena, G.D., Ramos-Gonzalez, P.L., Nunes, M.A., Jesus, C.C., Calegario, R.F.,

Kitajima, E.W., Novelli, V.M. and Freitas-Astua, J. 2017. Arabidopsis

thaliana as a model host for Brevipalpus mite-transmitted

viruses. Scientia Agricola. 74(1): 85-89.

/PI



80

Atiri, G.L, Ogbe, F.O., Dixon, A.G.O., Winter, S. and Ariyo, O., 2004. Status of

cassava mosaic virus diseases and cassava begomoviruses in sub-Saharan

Africa. / ofSustAgric. 24(3): 5-35.

Baldi, P., Brunak, S. and Bach, F. 2001. Bioinformatics: the machine learning

approach. MIT press.

Barabasi, A.L. and Oltvai, Z.N. 2004. Network biology: understanding the cell's

functional organization. Nat. rev. genet. 5(2): 101.

Bent, A.F. 1996. Plant disease resistance genes: Function meets structure. The

Plant Cell8{\Qi): 1757p.

Bisaro, D.M. 2006. Silencing suppression by geminivirus proteins. Virol. 544(1):

158-168.

Boiler, T. and He, S.Y. 2009. Innate immunity in plants: an arms race between

pattern recognition receptors in plants and effectors in microbial

pathogens. Sci. 524(5928): 742-744.

Bredeson, J.V., Lyons, J.B., Prochnik, S.E., Wu, G.A., Ha, C.M., Edsinger-

Gonzales, E., Grimwood, J., Schmutz, J., Rabbi, I.Y., Egesi, C. and

Nauluvula, P. 2016. Sequencing wild and cultivated cassava and related

species reveals extensive interspecific hybridization and genetic

diversity. Nat. biotechnolo. 54(5): 562p.

Calderone, A., Licata, L. and Cesareni, G. 2014. VirusMentha: a new resource for

virus-host protein interactions. Nucleic acids res. 45(D1): 588-592.

>01



81

Cassava plays a leading role in food security in India, especially in the major

growing states of Tamil Nadu and Kerala. Annual Report. FAO(2018).

Ceballos, H., Okogbenin, E., Perez, J.C., Lopez-Valle, L.A.B. and Debouck, D.

2010. Cassava. In Root and tuber crops pp. 53-96

Chatr-Aryamontri, A., Oughtred, R., Boucher, L., Rust, J., Chang, C., Kolas,

N.K., O'Donnell, L., Oster, S., Theesfeld, C., Sellara, A. and Stark, C.,

2017. The BioGRID interaction database: 2017 update. Nucleic acids res.

45{D\): 369-379.

Conesa, A., Gotz, S., Garcia-Gomez, J.M., Terol, J., Talon, M. and Robles, M.

2005. Blast2G0; a universal tool for annotation, visualization and

analysis in functional genomics resQaich. Bioinforma. 2/(18): 3674-

3676.

Cui, G., Fang, C. and Han, K. 2012, December. Prediction of protein-protein

interactions between viruses and human by an SVM model. In BMC

hioinforma. (Vol. 13, No. 7, p. S5). BioMed Central.

Davis, F.P., Barkan, D.T., Eswar, N., McKerrow, J.H. and Sali, A. 2007. Host-

pathogen protein interactions predicted by comparative modeling.

Protein Sci. 16{\2): 2585-2596.

Davis, F.P., Braberg, H., Shen, M.Y., Pieper, U., Sali, A. and Madhusudhan, M.S.

2006. Protein complex compositions predicted by structural similarity.

Nucleic acids res. 34(10): 2943-2952.

Dubern, J. 1994. Transmission of African cassava mosaic geminivirus by the

whitefly (Bemisia tabaci). Trop. Sci. 34(1): 82-91.

103



82

Duraisaray, R., Arumugam, C., Natesan, S., Muthurajan, R., Gandhi, K.,

Lakshmanan, P., Janavi, G.J., Karuppusamy, N. and Chokkappan, M.

2017. Host-Pathogen Interaction of Cassava (Manihot esculenta Crantz)

and Cassava Mosaic Viruses (ICMV and SLCMV). Int. J. Curr.

Microbioi. App. Sci^ 6(7): 1305-1317.

Dyer, M.D., Murali, T.M. and Sobral, B.W. 2007. Computational prediction of

host-pathogen protein-protein interactions. Bioinforma. 25(13): 159-166,

Edison, S., 2000, February. Present situation and future potential of cassava in

India. In Cassava's Potential in Asia in the 21st Century: Present

Situation and Future Research and Development Needs. Proc. 6th

Regional Workshop, held in Ho Chi Minh city, Vietnam (pp. 61-70).

Ellis, J., Dodds, P. and Pryor, T. 2000. The generation of plant disease resistance

gene specificities. Trends in plant sci. 5(9): 373-379.

FAOSTAT 2009. FAOSTAT, Available at http://faostat.fao.org (accessed 26 May

2009; verified 24 May 2011). Food and Agriculture Organization (FAO)

of the United Nations, Rome, Italy.

Finn, R.D., Miller, B.L., Clements, J. and Baleman, A. 2013. iPfam: a database of

protein family and domain interactions found in the Protein Data Bank.

Nucleic acids res. 42(D1): 364-373.

Flor, H.H., 1971. Current status of the gene-for-gene concept. y4«/7. Rev. of

phytopathol. 9(1): 275-296.

Food Safety Network. (2014). Cassava Nutritional Network. 1-866-50-FSNET:

University of Guelph, March 14, 2005; 2 p.

wh



83

Gotz, S., Garci'a-Gomez, J.M., Terol, J., Williams, T.D., Nagaraj, S.H., Nueda,

MJ., Robles, M., Talon, M., Dopazo, J. and Conesa, A. 2008. High-

throughput fiinctional annotation and data mining with the Blast2GO

suite. Nucleic acids res. i(5(10); 3420-3435.

Guirimand, T., Delmotte, S. and Navratil, V. 2014. VirHostNet 2.0; surfing on the

web of virus/host molecular interactions data. Nucleic acids res. ̂ 5(D1):

583-587.

Hammond-Kosack, fC.E., 2000. Responses to Plant Pathogens In "Biochemistry

and Molecular Biology of Plants" p 1102-1156 Ed BB Buchanan, W

Gruissem and RL Jones. 7 Am. Soc. ofPlant Physio. PI 36.

Han, D.S., Kim, H.S., Jang, W.H., Lee, S.D. and Suh, J.K. 2004. PreSPI: a

domain combination based prediction system for protein-protein

interaction. Nucleic acids res. 32(21): 6312-6320.

Hauck, P., Thilmony, R. and He, S.Y. 2003. A Pseudomonas syringae type III

effector suppresses cell wall-based extracellular defense in susceptible

Arabidopsis plants. Proc. ofthe Natl. Acad. ofSci. !00{\A): 8577-8582.

He, F., Zhang, Y., Chen, H., Zhang, Z. and Peng, Y.L. 2008. The prediction of

protein-protein interaction networks in rice blast fimgus. BMC

genomics, P(l); 519.

Hu, W., Wei, Y., Xia, Z., Yan, Y., Hou, X., Zou, M., Lu, C., Wang, W. and Peng,

M. 2015. Genome-wide identification and expression analysis of the

NAC transcription factor family in cassava. PLoS One. 70(8):

p.eO 136993.

IDS



84

Huntley, R.P., Binns, D., Dimmer, E., Barrell, D., O'Donovaji, C. and Apweiler,

R. 2009. QuickGO: a user tutorial for the web-based Gene Ontology

browser. Database, 2009.

Jones, J.D., Vance, R.E. and Dangl, J.L. 2016. Intracellular innate immune

surveillance devices in plants and animals. Sci. ii4(6316): p.aaf6395.

Kim, W.K., Park, J. and Suh, J.K. 2002. Database of interacting proteins large

scale statistical prediction of protein-protein interaction by potentially

interacting domain (PID) pair. In Genome Inform (13): 42-50.

Kim, J.G., Park, D., Kim, B.C., Cho, S.W., Kim, Y.T., Park, Y.J., Cho, H.J., Park,

H., Kim, K.B., Yoon, K.O. and Park, S.J. 2008. Predicting the

interactome of Xanthomonas oryzae pathovar oryzae for target selection

and DB service. BMC hioinforma. 9(1): 41 p.

Kim, W.K., Kim, K., Lee, E., Marcotte, E.M., Kim, H. and Suh, J. 2007.

Identification of disease specific protein interactions between the gastric

cancer causing pathogen, H. pylori, and Human Hosts using protein

network modeling and gene chip analysis. Gastric Cancer, 1: 179-187.

Kitano, H. 2002. Systems biology: a brief overview. Set 29J(5560): 1662-1664.

Korkin, D., Thieu, T., Joshi, S. and Warren, S. 2011. Mining hostpathogen

interactions. Sysl. and Computational Biol-Mol and Cell. Exp. Sys.

pp. 163-184.

}06



85

Kxishnadev, O. and Srinivasan, N. 2008. A data integration approach to predict

host-pathogen protein-protein interactions: application to recognize

protein interactions between human and a malarial parasite. In silico Biol

(?(3, 4): 235-250.

Krishnadev, O. and Srinivasan, N. 2011. Prediction of protein-protein interactions

between human host and a pathogen and its application to three

pathogenic bacteria. Int.j. ofbiol macromolecules. 48(4): 613-619.

Kshirsagar, M., Carbonell, J. and Klein-Seetharaman, J. 2013. Multisource

transfer learning for host-pathogen protein interaction prediction in

unlabeled tasks. In NIPS Workshop on Machine Learning for

Computational Biol (Vol. 2012).

Lee, S.A., Chan, C.H., Tsai, C.H., Lai, J.M., Wang, F.S., Kao, C.Y. and Huang,

C.Y.F. 2008. Ortholog-based protein-protein interaction prediction and

its application to inter-species interactions. BMC bioinforma. 9( 12): S11.

Li, Z.G., He, F., Zhang, Z. and Peng, Y.L. 2012. Prediction of protein-protein

interactions between Ralstonia solanacearum and

Arabidopsisthaliana. Amino Acids, 42(6): 2363-2371.

Lozano, R., Hamblin, M.T., Prochnik, S. and .lannink, J.L. 2015. Identification

and distribution of the NBS-LRR gene family in the Cassava

genome. BMCgenomics, 16(\): 360p.

Macfadyen, S., Paull, C., Boykin, L.M., De Barro, P., Maruthi, M.N., Otim, M.,

Kalyebi, A., Vasslio, D.G., Sseruwagi, P., Tay, W.T. and Delatte, H.

2018. Cassava whitefly, Bemisia tabaci (Gennadius)(Hemiptera:

10^



86

Aleyrodidae) in East African farming landscapes: a review of the factors

determining abundance. Bulletin of Entomol Res. J08(5): 565-582.

Mei, S. 2013. Probability weighted ensemble transfer learning for predicting

interactions between HlV-l and human proteins. PLoS One, 5(11):

79606.

Meng, X. and Zhang, S. 2013. MAPK cascades in plant disease resistance

signaling. Annu. Rev. of phytopathoL 51: 245-266.

Mittal, D., Borah, B.K. and Dasgupta, I. 2008. Agroinfection of cloned Sri

Lankan cassava mosaic virus DNA to Arabidopsis thaliana, Nicotiana

tabacum and cassava. Arch, ofviro. /5i(ll): 2149-2155.

Monaghan, J. and Zipfel, C. 2012. Plant pattern recognition receptor complexes at

the plasma membrane. Curr. opinion in plant boil. /5(4): 349-357.

Mukhopadhyay, A. and Maulik, U. 2014. Network-based study reveals potential

infection pathways of hepatitis-C leading to various diseases. PloS

one, 9(4): p.94029.

Mukhopadhyay, A., Maulik, U. and Bandyopadhyay, S. 2012. A novel

biclustering approach to association rule mining for predicting HIV-1-

human protein interactions. PLoS One, 7(4): p.e32289.

Nassar, N. and Ortiz, R. 2010. Breeding cassava to feed the poor. Set American,

302(5): 78-85.

/o^



87

Nourani, E., FGiunjush, F. and Durmu§, S. 2015. Computational approaches for

prediction of pathogen-host protein-protein interactions. Frontiers in

microbial. 6: 94p.

Pagan, I., Fraile, A., Femandez-Fueyo, E., Monies, N., Alonso-Blanco, C. and

Garcia-Arenal, F. 2010. Arabidopsis thaliana as a model for the study of

plant-virus co-evolution. PAI/oi'. Trans, of the R. Soc. B: Biolo.

-5a. id5(1548): 1983-1995.

Page!, P., Wong, P. and Frishman, D. 2004. A domain interaction map based on

phylogenetic profiling. J. ofmol Boil. 344(5): 1331-1346.

Pinzon, A., Rodriguez-R, L.M., Gonzalez, A., Bemal, A. and Restrepo, S. 2010.

Targeted metabolic reconstruction: a novel approach for the

characterization of plant-pathogen interactions. Briefings in

bioinforma. 72(2): 151-162.

Pitre, S., Aiamgir, M., Green, J.R., Dumonlier, M., Dehne, F. and Golshani, A.

2008. Computational methods for predicting protein-protein interactions.

In Protein-Protein Interaction (pp. 247-267). Springer, Berlin,

Heidelberg.

Quevillon, E., Silventoinen, V., Pillai, S., Harte, N., Mulder, N., Apweiler, R. and

Lopez, R. 2005, InterProScan: protein domains identifier. Nucleic acids

res. 5i(suppl_2): 116-120.

Sahu, S.S., Weirick, T. and Kaundal, R. 2014, December. Predicting genome-

scale Arabidopsis-Pseudomonas syringae interactome using domain and

interolog-based approaches. In BMC bioinforma. (No\. 15, No. 11, p.

SI3). BioMed Central.

/o'=i



88

Salwinski, L., Miller, C.S., Smith, AJ., Pettit, F.K.., Bowie, J.U. and Eisenberg, D.

2004. The database of interacting proteins: 2004 update. Nucleic acids

res. J2(suppl_l): 449-451.

Schleker, S., Garcia-Garcia, J., Klein-Seetharaman, J. and Oliva, B. 2012.

Prediction and Comparison of SalmonellaC' Human and SalmonellaD

Arabidopsis Intcraclomes. Chem. & hiodivers. P(5): 991-1018.

Schleker, S., Kshirsagar, M. and Klein-Seetharaman, J. 2015. Comparing human-

Salmonella with plant-Salmonella protein-protein interaction

predictions. Frontiers in microbial. 6\ 45p.

Schulze, S., Henkel, S.G., Driesch, D., Guthke, R. and Linde, J. 2015.

Computational prediction of molecular pathogen-host interactions based

on dual transcriptome data. Frontiers in microbial 6: 65p.

Segura-Cabrera, A., Garcia-Perez, C.A., Guo, X. and Rodriguez-Perez, M.A.

2013. A viral-human interactome based on structural motif-domain

interactions captures the human infeclome. PloSone, 5(8): p.e71526.

Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin,

N., Schwikowski, B. and Ideker, T. 2003. Cyloscape: a software

environment for integrated models of biomolecular interaction networks.

Genome res. 75(11): 2498-2504.

Shoemaker, B.A. and Panchenko, A.R. 2007. Deciphering protein-protein

interactions. Part 11. Computational methods to predict protein and

domain interaction partners. PLoS computational boil i(4): 43.

I/O



89

Singh, G. and Singh, V. 2019. Construction and analysis of an interologous

protein-protein interaction network of Camellia sinensis leaf (TeaLIPIN)

from RNA-Seq data sets. Plant cell rep. : 1 -14.

Stahl, E.A. and Bishop, J.G. 2000. Plant-pathogen amis races at the molecular

level. Curr. opinion in plant boil. 5(4): 299-304.

Stebbins, C.E. 2005. Structural microbiology at the pathogen-host interface.

Cellular microhial. 7(9): 1227-1236.

Szklarczyk, D., Franceschini, A., Wyder, S., Forslund, K., Heller, D., Huerta-

Cepas, J., Simonovic, M., Roth, A., Santos, A., Tsafou, K.P. and Kuhn,

M., 2014. STRING vlO: protein-protein interaction networks, integrated

over the tree of Wfe. Nucleic acids res. 45(D1): D447-D452.

Szklarc2yk, D., Morris, J.H., Cook, H., Kuhn, M., Wyder, S., Simonovic, M.,

Santos, A., Doncheva, N.T., Roth, A., Bork, P. and Jensen, L.J. 2016.

The STRING database in 2017: quality-controlled protein-protein

association networks, made broadly accessible. Nucleic acids res. \ 937,

Thanasomboon, R., Kalapanulak, S., Netrphan, S. and Saithong, T. 2017.

Prediction of cassava protein interactome based on interolog method. 5c/,

rep. 7(1): 17206.

Tyagi, N., Krishnadev, O. and Srinivasan, N. 2009. Prediction of protein-protein

interactions between Helicobacter pylori and a human host. Mol. hioSys.

5(12): 1630-1635.

///



90

Van Loon, L.C. and Van Strien, E.A. 1999. The families of pathogenesis-related

proteins, their activities, and comparative analysis of PR-1 type proteins.

Physiolo. and molecular plant pathol. 55(2): 85-97,

Van Loon, L.C., Rep, M. and Pieterse, C.M. 2006. Significance of inducible

defense-related proteins in infected plants. Annu. Rev. PhytopathoL, 44:

135-162.

V^qucz, A.X., Soto Sedano, J.C. and Lopez CarrascaJ, C.E. 2018. Unraveling the

molecules hidden in the gray shadows of quantitative disease resistance

to pathogens. Acta Biologica Colomhiana, 25(1): 5-16.

Wang, X., Goregaoker, S.P. and Culver, J.N. 2009. Interaction of the Tobacco

mosaic virus replicase protein with a NAG domain transcription factor is

associated with the suppression of systemic host defenses. J. of

viral. 55(19): 9720-9730.

Wattam, A.R., Abraham, D., Dalay, 0., Disz, T.L., DriscoU, T., Gabbard, J.L.,

Gillespie, J.J., Gough, R., Hix, D., Kenyon, R. and Machi, D. 2013.

PATRIC, the bacterial bioinformatics database and analysis resource.

Nucleic acids res. ¥2(D1): D581-D591.

Westermann, A.J., Gorski, S.A. and Vogel, J., 2012. Dual RNA-seq of pathogen

and host. Nat. Rev. Microbiol. J0(9): 618.

Wojcik, J. and Schachter, V. 2001. Protein-protein interaction map inference

using interacting domain profile pairs. Bioinforma. //(suppl l): S296-

S305.



91

Zhou, H., Jin, J., Zhang, H., Yi, B., Wozniak, M. and Wong, L. 2012, December

IntPath~an integrated pathway gene relationship database for model

organisms and important pathogens. In BMC bioi6 (2): S2p. BioMed

Central.

Zhou, H., Gao, S., Nguyen, N.N., Fan, M., Jin, J., Liu, B., Zhao, L., Xiong, G.,

Tan, M., Li, S. and Wong, L., 2014. Stringent homology-based

prediction of H. sapiens-M. tuberculosis H37Rv protein-protein

interactions. Biol. direct, 9(1): 5.

Zhou, X., Park, B., Choi, D. and Han, K. 2018. A generalized approach to

predicting protein-protein interactions between virus and host. BMC

genomics, 19(6): 165p.

Zoraghi, R. and Reiner, N.E. 2013. Protein interaction networks as starting points

to identify novel antimicrobial drug targets. Current opinion in

microbiol. 16(5): 566-572.



h If



92

8. APPENDIX I

Appendix I. Functional annotation result of the predicted PPIs in cassava

(Tags represents: Interpro [I], Blast [B] Mapping [M] and Annotation [A]).

SI no. Seq name Tags Description Length Sim

mean

I

tr|A0A251K7S8|
A0A251K7S8 M

ANES

I3,m,a
Eukaryotic translation initiation
factor 3A 1013 85.79

2

lr|A0A2C9VFE31
A0A2C9VFE3

MANES

i,b,m,a

Eukaryotic translation initiation
factor 3 A 1003 92.12

3

tr[A0A2C9WHR8
IA0A2C9WHR8
MANES

i,b»m,a Nascent polypeptide-associated
complex (NAC), alpha subunit
family protein 221 89.63

4

trlA0A2C9W4Z31
A0A2C9W4Z3

MANES

I3,M.A Nascent polypeptide-associated
complex (NAC), alpha subunit
family protein 206 87.29

5

tr|A0A2C9W0411
A0A2C9W041

MANES

I3,m,a Nascent polypeptide-associated
complex (NAC), alpha subunit
family protein 268 89.93

6

tr|A0A199UAY8|
A0A199UAY8

MANES

I,B.M,A

Plasma-membrane associated

cation-binding protein 1 205 86,49

7

tr|A0A2C9W3E8|
A0A2C9W3E8

MANES

IBMA

Translation initiation factor 3B1 720 68.1

8

tr|A0A2C9UCF2|
A0A2C9UCF2

MANES

i,b,m,a

Translation initiation factor 3B1 720 68.41

9

tr|A0A2C9VKPl|
A0A2C9VKP1

MANES

I,B,M,A

RNA-binding (RRM/RBD/RNP
motifs) family protein 294 60.12

10
tr|A0A2C9V4Q7|
A0A2C9V4O7

i,b.m^ RNA-binding (RRM/RBD/RNP
motifs) family protein 295 59.63
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MANES

n

tr|A0A2C9WG65|
A0A2C9WG65

MANES

I,B,M,A

Argonaute family protein 1070 64.07

12

tr|A0A2C9W3T7|
A0A2C9W3T7

MANES

I,B,M,A

Overexpressor of cationic
peroxidase 3 353 80.46

13

trlA0A2C9W3M2
IA0A2C9W3M2
MANES

I, No-

Blast —NA— 951

14

tr|A0A2C9WC92|
A0A2C9WC92

MANES

I,B,M,A

Homeobox-Ieucine zipper protein
family 288 68.04

15

tr|A0A2C9V8V6|
A0A2C9V8V6

MANES

i,b,m,a

Homeobox-Ieucine zipper protein
family 472 63.03

16

triA0A2C9VUS4|
A0A2C9VUS4

MANES

i,b,m,a

Homeobox protein 5 303 80.98

17

tr|A0A2C9VPI5|
A0A2C9VPI5 M

ANES

i,b,m,a

Homeobox protein 5 319 71.42

18

tr|A0A2C9WNB8
IA0A2C9WNB8
MANES

i,b,m,a

Homeobox-Ieucine zipper protein
family 291 67.66

19

tr|A0A2C9VUV8|
A0A2C9VUV8

MANES

I,B,M,A

Homeobox protein 5 296 79.59

20

tr|A0A2C9WLH4
IA0A2C9WLH4
MANES

13,M,A

Proliferating cell nuclear antigen
2 266 97.35

21

tr|A0A2C9WD70j
A0A2C9WD70

MANES

I,B,M,A

Proliferating cell nuclear antigen
2 264 97.35

22

tr|A0A2C9W164[
A0A2C9W164

MANES

I,B,M,A

BEL I-like homeodomain 1 806 58.28
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23

tr|A0A2C9U0M9|
A0A2C9U0M9

MANKS

I3,M,A

BEL 1-like homeodomain 1 665 62.89

24

tr|A0A2C9WCA3
iA0A2C9WCA3
MANES

I3,M,A NAC (No Apical Meristem)
domain transcriptional regulator
superfamily protein 288 61.35

25

tr|A0A2C9UNRI|
A0A2C9UNR1

MANES

I3,M3

NAC transcription factor-like 9 623 67.59

26

tr|A0A2C9U746|
A0A2C9U746 M

ANBS

I3,M,A NAC (No Apical Meristem)
domain transcriptional regulator
superfamily protein 450 50.63

27

tr|A0A2C9VlV9|
A0A2C9V1V9

MANES

I3,m,a

NAC domain containing protein
35 244 62.9

28

tr|A0A2C9VPE61
A0A2C9VPE6

MANES

I3,M,A NAC (No Apical Meristem)
domain transcriptional regulator
superfamily protein 400 72.55

29

tr|A0A2C9U5Z3|
A0A2C9U5Z3 M

ANES

I3,M,A NAC (No Apical Meristem)
domain transcriptional regulator
superfamily protein 319 71.09

30

trlA0A2C9V824|
A0A2C9V824 M

ANES

13,M,A

NAC domain containing protein
35 286 61.06

31

tr|A0A2C9VIE7|
A0A2C9VIE7 M

ANES

I3,M3 NAC (No Apical Meristem)
domain transcriptional regulator
superfamily protein 440 58.99

32

tr|A0A2C9VU82|
A0A2C9VU82

MANES

IBMA
NAC domain containing protein
82 494 57.02

33

tr|A0A2C9VS27|
A0A2C9VS27 M

ANES

I3.m,a

NAC domain containing protein
82 486 56.7

34

tr|A0A2C9UAD5|
A0A2C9UAD5

MANES

r3,M,A NAC (No Apical Meristem)
domain transcriptional regulator
superfamily protein 455 54.38

35
tr|A0A2C9VS731
A0A2C9VS73 M

I3,M,A
NAC domain containing protein

484 57.06

//?



95

ANES 82

36

tr|A0A2C9UQA8|
A0A2C9UQA8
MANES

I,B,M,A

NAC domain containing protein
50 349 55.88

37

tr|A0A2C9UP13|
A0A2C9UP13 M

ANES

i,b,m,a

NAC domain containing protein
50 341 55.95

38

tr|A0A2C9VNM8
[A0A2C9VNM8
MANES

I,B,M,A NAC (No Apical Meristem)
domain transcriptional regulator
superfamily protein 456 52.62

39

tr|A0A251L6B6!
A0A251L6B6 M

ANES

r,B,M,A NAC (No Apical Meristem)
domain transcriptional regulator
superfamily protein 464 54.18

40

tr|A0A25IL698|A
0A251L698 MA

NES

i,b,m,a NAC (No Apical Meristem)
domain transcriptional regulator
superfamily protein 463 54.19

41

triA0A2C9VTU5|
A0A2C9VTU5

MANES

EB,M,A NAC (No Apical Meristem)
domain transcriptional regulator
superfamily protein 421 63.42

42

triA0A2C9WM25
jA0A2C9WM25
MANES

i,b,m,a NAC (No Apical Meristem)
domain transcriptional regulator
superfamily protein 354 48.56

43

tr|A0A2C9WN37|
A0A2C9WN37

MANES

i,b,m,a

NAC domain containing protein
52 348 44.32

44

tr|A0A2C9WKT2
IA0A2C9WKT2
MANES

i,b,m,a NAC (No Apical Meristem)
domain transcriptional regulator
superfamily protein 354 48.09

45

tr|A0A2C9W4N0|
AOA2C9W4NO

MANES

i,b,m,a NAC (No Apical Meristem)
domain transcriptional regulator
superfamily protein 337 72.21

46

tr|A0A2C9VRR01
A0A2C9VRR0

MANES

i,b,m,a NAC (No Apical Meristem)
domain transcriptional regulator
superfamily protein 247 66.1

47

tr|A0A2C9W5R6|
A0A2C9W5R6

MANES

i,b,m,a NAC (No Apical Meristem)
domain transcriptional regulator
superfamily protein 336 72.44
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48

tr|A0A2C9WC46I
A0A2C9WC46

MANES

I,B,M,A NAC (No Apical Meristem)
domain transcriptional regulator
superfamily protein 401 72.86

49

tr|A0A25IKRR0|
A0A251KRR0

MANES

NAC domain containing protein
82 373 60.01

50

tr|A0A2C9VRP8|
A0A2C9VRP8

MANES

13,M,A NAC (No Apical Meristem)
domain transcriptional regulator
superfamily protein 298 64.92

51

tr|A0A2C9VUQ0|
A0A2C9VUQ0
MANES

i,b,ma

NAC domain containing protein
50 319 49.03

52

tr|A0A2C9VE39|
A0A2C9VE39 M

ANES

lb,ma

NAC with transmcmbrane motifl 231 52.63

53

tr|A0A2C9VIE3|
A0A2C9VIE3 M

ANES

i,b,m,a NAC (No Apical Meristem)
domain transcriptional regulator
superfamily protein 173 65.87

54

lrlA0A2C9VSE5[
A0A2C9VSE5

MANES

i,b,m,a NAC (No Apical Meristem)
domain transcriptional regulator
superfamily protein 393 69.26

55

trlA0A199UA28|
A0A199UA28 M

ANES

i,b,m,a NAC (No Apical Meristem)
domain transcriptional regulator
superfamily protein 383 57.81

56

tr[A0A2C9UKB8|
A0A2C9UICB8

MANES

i,b,m,a NAC (No Apical Meristem)
domain transcriptional regulator
superfamily protein 429 52.36

57

trlA0A2C9U024|
A0A2C9U024 M

ANES

I3,M,A NAC (No Apical Meristem)
domain transcriptional regulator
superfamily protein 329 80.71

58

tr|A0A2C9UFZ4|
A0A2C9UFZ4

MANES

I3,M,A NAC (No Apical Meristem)
domain transcriptional regulator
superfamily protein 411 51.26

59

tr|A0A2C9URD41
AQA2C9URD4

MANES

I3,M,A

NAC domain containing protein
82 315 74.26

60
tr|A0A2C9W4Q2|
A0A2C9W4O2

I3,MA NAC (No Apical Meristem)
domain transcriptional regulator

323 72.25
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MANES superfamily protein

61

tr|A0A2C9WR64|
A0A2C9WR64

MANES

i,b,m,a

NAC domain containing protein
41 68 68.57

62

trlA0A2C9U2C3I
A0A2C9U2C3

MANES

I,B,M,A NAC (No Apical Meristem)
domain transcriptional regulator
superfamily protein 288 71.66

63

tr|A0A251LEQ3|
A0A251LEQ3 M
ANES

i,b,m,a NAC (No apical meristem)
domain transcriptional regulator
superfamily protein 357 70.04

64

tr[A0A251L5A8|
A0A251L5A8 M

ANES

I,B,M,A NAC (No Apical Meristem)
domain transcriptional regulator
superfamily protein 322 71.95

65

tr|A0A251IC2Xl|
A0A251K2X1 M

ANES

13,m,a

Eukaryotic translation initiation
factor 3C 929 83.45

66

tr|A0A2C9VFH41
A0A2C9VFH4

MANES

I,B,M,A

Eukaryotic translation initiation
factor 3C 930 79.53

67

tr|A0A2C9VV50|
A0A2C9VV50

MANES

eb,m,a

Eukaryotic translation initiation
factor 5A-1 (eIF-5A 1) protein 159 92.58

68

tr|A0A2C9VP44|
A0A2C9VP44 M

ANES

t,B,M,A

Eukaryotic translation initiation
factor 5A-1 (eIF-5A 1) protein 159 92.26

69

triA0A2C9VMR2
IA0A2C9VMR2
MANES

1,B,M,A

Eukaryotic translation initiation
factor 5A-1 (eIF-5A 1) protein 160 92.31

70

tr|A0A2C9UXZ5|
A0A2C9UXZ5

MANES

13,M^

Eukaryotic translation initiation
factor 3 subunit 7 (eIF-3) 572 86.09

71

triA0A2C9W286|
A0A2C9W286

MANES

I3,M,A

Eukaryotic translation initiation
factor 3 subunit 7 (eIF-3) 557 81.91

72

tr|A0A2C9VM01|
A0A2C9VM01

MANES

r3,M,A

Translation initiation factor eIF3

subunit 223 73.17
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73

tr|A0A2C9WCRl
IA0A2C9WCR1
MANES

1,B,M,A

Proteasome component (PCI)
domain protein 412 79.1

74

tr|A0A2C9UAB51
A0A2C9UAB5

MANES

I3,m,a

Eukaryotic translation initiation
factor 3K 239 90.41

75

triA0A2C9WK52|
A0A2C9WK52

MANES

I3,M,A

Translation initiation factor 3

subunit HI 340 57.45

76

lrlA0A2C9UGV6|
A0A2C9UGV6

MANES

i,b.m,a

Transducin/WD40 repeat-like
superfamily protein 326 50.89 ,

77

triA0A2C9U7A7|
A0A2C9U7A7

MANES

I3,M,A

Transducin/WD40 repeat-like
superfamily protein 326 51.23

78

tr|A0A2C9VMX9
IA0A2C9VMX9
MANES

Eukaryotic translation initiation
factor 2 287 55.23

79

tr|A0A2C9VKV5|
A0A2C9VKV5

MANES

I3,M,A

Eukaryotic translation initiation
factor 2 289 54.91

80

tr|A0A2C9VMB7
IA0A2C9VMB7
MANES

13,M,A

Eukaryotic translation initiation
factor 2 315 53.8

81

tr|A0A2C9VX86i
A0A2C9VX86

MANES

13,M,A

catalase 3 492 90.84

82

tr|A0A2C9VVT7|
A0A2C9VVT7

MANES

I3,M,A

catalase 3 461 91.34

83

trjA0A2C9VVU31
A0A2C9VVU3

MANES

I3,M,A

catalase 3 492 88.4

84

triQ9SW99|Q9S
W99_MANES

13,M3.
catalase 3 492 89.22

85
tr|A0A2C9WMD
1IA0A2C9WMD

I3,M,A
catalase 3 344 91.35
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]_MANES

86

tr|A0A2C9TZH3|
A0A2C9TZH3

MANBS

i,b,m,a

catalase 3 358 89.27

87

tr|A9YME8|A9Y
ME8_MANES

I3,M,A

catalase 3 261 87.02

88

triA0A2C9U8S7|
A0A2C9U8S7 M

ANES

I,B>MA

CBL-interacting protein klnase 9 499 74.2

89

tr|A0A2C9UlQ2|
A0A2C9U1Q2
MANES

i,b,m,a

CBL-interacting protein kinase 3 415 73.78

90

tr|A0A2C9U4V6|
A0A2C9U4V6

MANES

I3,m,a

CBL-interacting protein kinase 9 459 73.82

91

tr|A0A2C9UYQ8|
A0A2C9UYQ8
MANES

I3,M,A

CBL-interacting protein kinase 9 457 70.73

92

triA0A2C9VFA0|
A0A2C9VFA0

MANES

I3,M,A

ARM repeat superfamily protein 533 63.14

93

trlA0A2C9VFC8|
A0A2C9VFC8

MANES

I3,M,A

ARM repeat superfamily protein 530 64.04

94

tr[A0A2C9VBQ4|
A0A2C9VBQ4
MANES

I3.M,A

Importin alpha isoform 4 534 69.72

95

tr|A0A2C9VBR2|
A0A2C9VBR2

MANES

I3,M,A

ARM repeat superfamily protein 530 64.23

96

lr|A0A2C9VTEl|
A0A2C9VTE1

MANES

I3,M,A

ARM repeat superfamily protein 533 63.67

97

tr|A0A25ILCR3|
A0A251LCR3 M

ANES

13,M,A

ARM repeat superfamily protein 529 64.54

98
tr|A0A2C9U3K5|

I3,M,A
Disease resistance protein (TIR-

1029 51.22
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A0A2C9U3K5

MANES

NBS-LRR class) family

99

tr|A0A2C9U398|
A0A2C9U398 M

ANES

i,b,m,a

Disease resistance protein (TIR-
NBS-LRR class) family 1187 56.13

ICQ

tr|A0A2C9V0P3|
A0A2C9V0P3 M

ANES

i,b,m,a

Disease resistance protein (TIR-
NBS-LRR class) family 1135 54.78

101

lr!A0A2C9V4R5|
A0A2C9V4R5

MANES

i,b,m,a

Disease resistance protein (TIR-
NBS-LRR class) family 1239 56.35

102

tr|A0A251LK881
A0A251LK88 M

ANES

I3,M,A

Disease resistance protein (TIR-
NBS-LRR class) family 1158 55.79

103

tr|A0A251LK92|
A0A251LK92 M

ANES

I3,M,A

Disease resistance protein (TIR-
NBS-LRR class) family 1284 53.94

104

tr|A0A2C9WFM4
IA0A2C9WFM4
MANES

I3,M,A

Disease resistance protein (TIR-
NBS-LRR class) family 1133 55.35

105

lr|A0A2C9UNM2
IA0A2C9UNM2
MANES

I3,M,A

Disease resistance protein (TIR-
NBS-LRR class) family 1100 53.58

106

tr[A0A2C9VW901
A0A2C9VW90

MANES

I3,m,a

Calcium-dependent lipid-binding
(CaLB domain) family protein 538 60.86

107

trlA0A2C9V4J0|
A0A2C9V4J0 M

ANES

I3,m,a

Calcium-dependent lipid-binding
(CaLB domain) family protein 539 58.48

108

tr|A0A2C9W0I7|
A0A2C9W017 M

ANES

I3,m,a

Calcium-dependent lipid-binding
(CaLB domain) family protein 540 60.42

109

tr|A0A2C9W634|
A0A2C9W634

MANES

I3,M,A

Calcium-dependent lipid-binding
(CaLB domain) family protein 534 53.66

110
lrlA0A2C9W0F0|
A0A2C9W0F0

I3,m,a Calcium-dependent lipid-binding
(CaLB domain) family protein 429 62.24
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MANES

111

tr|A0A2C9V0Ql|
A0A2C9V0Q1
MANES

I,B.M,A

Disease resistance protein (TIR-
NBS-LRR class) family 967 53.27

112

tr|A0A251LICM5|
A0A251LKM5

MANES

I,B,M,A

Disease resistance protein (TIR-
NBS-LRR class) family 771 54.93

113

tr|A0A2C9VKEl|
A0A2C9VICEI

MANES

i,b,m,a

Target of rapamycin 991 89.67

114

trlA0A2C9VT85|
A0A2C9VT85 M

ANES

13,M,A
Calcium-dependent lipid-binding
(CaLB domain) family protein 511 54.03
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9. ABSTRACT

Every year pathogenic organisms cause billions of dollars' worth damage

to crops and livestock. In agriculture, study of plant-microbe interactions is

demanding a special attention to develop management strategies for the

destructive pathogen induced diseases that cause huge crop losses every year

worldwide. Cassava Mosaic Virus (CMV) is a major viral leaf pathogen that

causes disease in cassava. Protein-Protein Interactions (PPls) play a critical role in

initiating pathogenesis and maintaining infection. Understanding the PPI network

between a host and pathogen is a critical step for studying the molecular basis of

pathogenesis. The experimental study of PPIs at a large scale is very scarce and

also the high throughput experimental results show high false positive rate.

Hence, there is a need for developing efficient computational models to predict

the interaction between host and pathogen in a genome scale, and llnd novel

candidate effectors and/or their targets.

In this study, interacting proteins in cassava-CMV interaction is predicted

using interolog-based method. The interolog method relies on protein sequence

similarity to conduct the PPI prediction. Using this method, 114 PPIs have been

predicted between 114 proteins of cassava and 10 proteins of CMV. Functional

annotation of the predicted proteins showed the presence of 10 disease resistance

protein in cassava that interacts with CMV. The subcellular location of the

predicted proteins was found and it showed that major interactions occur in

nucleus and chloroplast region. This can be a useful resource to the plant

community to characterize the host-pathogen interaction in cassava and CMV.

Further, these prediction models can be applied to the agriculturally relevant

crops.
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