MODELING OF CASSAVA-CASSAVA MOSAIC VIRUS
INTERACTIONS WITH COMPUTATIONAL BIOLOGY AND
BIOINFORMATICS APPROACH

By
RAJANI K. R.
(2014-09-105)

THESIS

Submitted in partial fulfilment of the

requirement for the degree of

B. Se. - M. Se. (INTEGRATED) BIOTECHNOLOGY
Faculty of Agriculture

Kerala Agricultural University, Thrissur

vTU
O an e

ALISHIMND

DEPARTMENT OF PLANT BIOTECHNOLOGY
COLLEGE OF AGRICULTURE
VELLAYANI, THIRUVANANTHAPURAM-695 522
KERALA, INDIA

2019



I, hereby declare that this thesis entitled “Modeling of Cassava-Cassava Mosaic
Virus interactions with computational biology and bioinformatics approach” is a
bonafide record of research work done by me during the course of research and
that the thesis has not previously formed the basis for the award of any degree,

diploma, associateship, fellowship or other similar title, of any other University or

Society.
n
el
Place: Vellayani RAJANI K. R.
Date: 29/11/2019 (2014-09-105)



WI.F. .- HET F8 A JTHT G
(VRETT Y IHE RS, FiE 3R e s daeE, nd 9vEn)
AT, faeaa=T[T-695 017, e, WA
s v ICAR- CENTRAL TUBER CROPS RESEARCH INSTITUTE IS0 9001:2008

) (Indian Council of Agriculture Research, Ministry of Agriculture and Farmers Weifare, Gavt. of !ndia)
Sreekariyam, Thiruvananthapuram-695 017, Kerala, India

3}

(%\ :
> |

AL
TCR

()

CERTIFICATE

Certified that this thesis entitled “MODELING OF CASSAVA-CASSAVA MOSAIC
VIRUS INTERACTIONS WITH COMPUTATIONAL BIOLOGY AND BIOINFORMATICS
APPROACH?” is a record of research work done independently by Ms. RAJANI K. R.
(2014-09-105) under my guidance and supervision and this has not previously formed the

basis for the award of any degree, diploma, fellowship or associateship to her.

c S—="

Place: Sreekariyam Dr.J. Sr eekumar .

(Chairman, Advisory Committee)
Date: 29-11-2019 Principal Scientist (Agrl. Statistics),
Section of Extension and Social Sciences,
ICAR-CTCRI, Sreekariyam
Thiruvanathapuram-695 017

Fax 0 +91-471-2590063
[F;t?ont: (Per) : :3:3;:%23333: todaIeR E-mail : director.ctcri@icar.gov.inb
irector : -471-

&
g - RIGHT 10 ctcritvm@gmail.cpm
Sr. Admn“:)efﬁ"icer: :g::;:%g?)g;; INFORMATION Web : http://www.ctcri.org



CERTIFICATE

We, the undersigned members of the advisory committee of
Ms. Rajani K. R. (2014-09-105) a candidate for the degree of B. Sc. - M. Sc.
(Integrated) Biotechnology, agree that the thesis entitled “MODELING OF

CASSAVA-CASSAVA  MOSAIC

INTERACTIONS  WITH

COMPUTATIONAL BIOLOGY AND BIOINFORMATICS APPROACH"

may be submitted by Ms. Rajam K. R. in partial fulfillment of the requirement for

the degree.

( J ——

Dr. J. Sreekumar

Chairman, Advisory committee
Principal Scientist (Agrl. Statistics),
Section of Extension and

Social Sciences.

ICAR-CTCRI, Sreekariyam,
Thiruvananthapuram - 695 017

Dr. aakeskkumar T.

Principal Scientist (Plant Pathology)
Division of Crop Protection

ICAR- CTCRI

Sreekariyam,

Thiruvananthapuram- 695 017

o

Dr. K. B. Soni

(Member, Advisory Committee)
Professor and Head

Department of Plant Biotechnology
College of Agriculture, Vellayani
Thiruvananthapuram- 695 552

/ﬁ'c qu
Dr. Swapna‘A/l_ek/

(Member, Advisory Committee)
Professor and Course Director

B. Sc. - M. Sc. (Integrated)
Biotechnology Course

Department of Plant Biotechnology
College of Agriculture, Vellayani
Thiruvananthapuram- 695 552

Dr. M. K. Rajesh

(External Examiner)

Principal Scientist (Biotechnology)
Division of Crop improvement
ICAR- CPCRI

Kasaragod - 671124



ACKNOWLEDGEMENT

In the name of God, the Almighty, for his showers and blessings throughout my research

work to complete my research successfully.

With boundless love and appreciation, | would like to extend my heartfelt gratitude and
appreciation to the people who helped me in bringing this study into reality. It is with
my heartfelt feelings | express my deepest gratitude to my beloved advisor
Dr. J. Sreekumar, Principal Scientist (Section of Extension and Social Sciences, ICAR-
CTCRI, Sreekariyam) for his guidance, patience, and encouragement over the last year. |

am highly indebited for his valuable guidance and patience.

I express my deepest gratitude to the advisory committee members, Dr. K. B. Soni
(Professor and Head, Dept. of Plant Biotechnology, COA), Dr. Swapna Alex (Professor
and Course Director, B. Sc. — M. Sc. (Integrated) Biotechnology, Dept. of Plant
Biotechnology, COA) and Dr. Makeshkumar T. (Principal Scientist , Division of Crop
Protection, ICAR-CTCRI.

| take immense pleasure to express my deep sense of gratitude to my college advisor
Dr. Deepa S Nair (Asst. Professor, Dept. of Plantation, Crops and Spices, COA) and
Dr. M. K. Rajesh (Principl Scientist, ICAR-CPCRI, Kasaragod).

I express my profound gratitude to Dr. A. Anilkumar (Dean, COA), Dr. Archana
Mukherjee (Director, ICAR-CTCRI) for providing me all the facilities during the course of
my work. | would like to express my sincere thanks and gratitude to Dr. M. N. Sheela,
(Head Section of Extension and Social Sciences, ICAR-CTCRI) for permitting me and

extending all the facilities to complete my work.

I would like to thank Jayakrishnan chettan, Merlin chechi, Divya chechi and other
members of virology lab for helping me while doing the validation part of the work. |
would like to put on record my sincere thanks to Sumayya chechi for her support and

help during the final stages of research work.

I am pleased to place my etiquette to Dr. C Mohan (Principal scientist, Division of Crop

Improvement, ICAR-CTCRI), Dr. Senthil Kumar K. M. (Scientist, Division of Crop



Improvement, ICAR-CTCRI), Prakash chettan, Ammu chechi and Tom chettan for helping

me during the work.

This thesis becomes a reality with the support of my friends Jo, Reshu, Pattu, Paru, Hasmi,
Adi, Vishnu, Alif, Amal and Rahul. | also express my thanks and appreciation to my beloved

classmates who have willingly helped me out with their abilities

My special and wholehearted thanks to Athulettan for his exemplary support,
monitoring and guidance during credit seminar and research work. | thank lJithu for

supporting me during the work through enjoyable discussions.

I am deeply indebted to Ambu chettan, Sreenath chettan and all the scientists and staff
members of ICAR- CTCRI, teachers in college, my seniors and juniors for their timely
support. | acknowledge the favour of numerous persons who, though not been

individually mentioned here, who have all directly or indirectly contributed to this work.

Last but not least, | can’t forget the support, prayer and encouragement of my parents
and my sister which inspires me all the way throughout my studies. | thank them for all

the support and strength they gave me throughout my life.

Rajani K. R.



DEDICATED TO MY
PARENTS



TABLE OF CONTENTS

Sl No. Title Page No.
LIST OF TABLES i
LIST OF FIGURES iii
LIST OF PLATES v
LIST OF APPENDICES vi
LIST OF ABBREVIATIONS vii
1-3
| INTRODUCTION
4-18
2 REVIEW OF LITERATURE
. 19-35
3 MATERIALS AND METHODS
4 RESULTS 3672
5 DISCUSSION Ll
6 SUMMARY 77-18
7 REFERENCES 73-91
8 | APPENDICES 92-101
9 | ABSTRACT 102

D



LIST OF TABLES

Table . Page No.
No. Title
1 RT-PCR reaction profile 35
2 Protein-protein interaction (PPI) in plant templates and cassava 37
3 Virus species interacting with Arabidopsis thaliana 40
4 Proteins in cassava predicted to interact with CMV 43
5 Predicted genes in CMV interacting with cassava 52
6 Identified subcellular locations of the predicted protein using 60
Localizer.
7 Disease resistance protein and its corresponding genes in 67
cassava
GO of predicted interacting proteins in Cassava mosaic virus 68
Quantification of RNA 70




LIST OF FIGURES

Figure No. Title Page No.
Production of cassava in world (FAOSTAT,
1 5
2019)
Production of cassava in India (FAOSTAT, 5
2 2019)
Work flow for the construction of cassava PPIN 23
3
Homologous PPI derived from interactions 24
4 between homologs
Work flow for the prediction of Cassava-CMV PP1 30
5
Cassava PPI network derived by interolog-based
6 38
method
A model of HPIDB Blast result 41
7
Predicted PPIN of Cassava-CMV 48
8
Predicted PPIN of Cassava-CMV 49
9
Predicted PPIN of Cassava-CMV 50
10
Merged Cassava-CMV PPIN 51
11
Blast2GO pipeline 53
12
Analysis progress of predicted cassava proteins 54
13

rh



Figure No.

Title Page No.
InterProScan families distribution of
14 : . 56
predicted cassava proteins
s InterProScan domain distribution 57
Cellular component of the predicted proteins in 58
16 Cassava
Relative gene expression of AC2 and CAT2 in 72
17

healthy and infected cassava leaves




LIST OF PLATES

Plate No.

Title

Page No.

1.2% Et Br stained agarose gel showing RNA of two
cassava leaf samples after electrophoresis

70




Vi

LIST OF APPENDICES

Sl No.

Title

Page No.

Functional annotation result of the
predicted PPIs in Cassava

92-101




APID
AtPIN
BLAST
BLASTp
BTV
cDNA
CMD
CMGs
CTAB
DEPC
FAO
FAOSTAT

GCENs
GO
GOA
HPI
HPIDB
ICTV
IntAct
MAMPs
MAPK
MINT
MS

0D
PAIR
PCR
PHI

vil

LIST OF ABBREVIATIONS

Agile Protein Interactome Dataserver
Arabidopsis thaliana Protein Interaction Network
Basic Local Alignment Search Tool
Protein BLAST
Brevipalpus-transmitted viruses
complementary DNA

Cassava Mosaic Disease

Cassava Mosaic Geminiviruses
Cetyl Trimethyl Ammonium Bromide
Diethyl pyrocarbonate

Food and Agriculture Organization

Food and Agriculture Organisation Corporate Statistical
Database

Gene Co-expression Networks

Gene Ontology

Gene Ontology Annotation

Host Pathogen Interaction

Host Pathogen Interaction Database
International Committee on Taxonomy of Viruses
Interaction database

Microbe Associated Molecular Patterns
Microbe Associated Protein Kinases
Molecular Interaction Database

Mass Spectroscopy

Optical Density

Predicted Rice Interactome Network
Polymerase Chain Reaction

Pathogen-Host Interaction



PPIs
PPIN
PR
PRIN
PRRs
PVI
gq-PCR
RT-PCR
SVM
TAP
Y2H

viil

Protein-Protein Interactions
Protein-Protein Interaction Network
Pathogenesis Related

Predicted Rice Interactome Network
Pathogen Recognition Receptors
Plant-Virus Interaction

Quantitative PCR

Real Time-Polymerase Chain Reaction
Support Vector Machine

Tandem Affinity Purification

Yeast 2 Hybrid



INTRODUCTION



1. INTRODUCTION

Cassava (Manihot esculenta Crantz) is a perennial shrub that belongs to
Euphorbiaceae family. It is a native of South America and is believed to have
been introduced by Portuguese traders in sub-Saharan Africa during the 16th
century. Cassava is the third most important source of calories in the tropics after

rice and maize (Food Safety Network, 2014).

According to FAO (Food and Agriculture Organization of the United
Nations) Food Outlook Annual Report (2018), cassava plays a leading role in
food security in India, especially in the major growing states of Kerala and Tamil
Nadu. Jointly, both the states account for 98% of national output. Cassava
production output is marginally down from 2017, with total production of about
4.1 million tonnes which is very less than half the record production of the crop

that was harvested in 2014.

Cassava is vulnerable to a wide range of diseases caused by viruses. The
virus is either seed transmitted or vector transmitted by whitefly (Macfadyen er
al., 2018). Among them, Cassava Mosaic Disease (CMD) is the most severe and
widespread, thereby limiting production of the crop in cassava growing areas.
CMD produces a variety of foliar symptoms such as mosaic, mottling, misshapen
and twisted leaflets, and an overall reduction in size of leaves and plants. In India,
CMD is caused by Indian cassava mosaic virus (ICMV) and Sri Lankan cassava
mosaic virus (SLCMV). It has obtained considerable attention in the southern
states of Kerala and Tamil Nadu, which are the main cassava growing areas of

India.

Different interactions are generated between the plant (host) and the virus
(pathogen) during each stage of the viral cycle. Host-pathogen interaction alters
the host physiology. Hence, studies were undertaken to evaluate changes in
physiology of healthy cassava plants as well as cassava mosaic virus infected

cassava plants.
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The pathogen-host interactions (PHIs) may be between proteins,
nucleotide sequences, metabolites, and small ligands. The protein—protein
interactions (PPIs) have been identified as the most relevant type in the
functioning of PHI systems and therefore are the most studied type (Stebbins,
2005; Korkin ef al., 2011; Zoraghi and Reiner, 2013). A number of experimental
methods have been applied to discover PPls. Some traditional methods of
determining PPIs are Yeast two Hybrid (Y2H) method, Tandem Affinity
Purification (TAP) tagging, and Mass Spectroscopy (MS). The labour intensive
experimental techniques for the detection of PPIs may not be generally applicable
due to time constraints and high cost of experiments; therefore recently,

computational techniques are preferred for the prediction of PPIs.

In 2002, Kitano mentioned that systems biology is an integrative research
area in life science that mainly focuses on the study of non-linear interactions
between biology entities through the integration and combination of bimolecular
and medical sciences with mathematical. computational, and engineering
disciplines. The different levels of omics data collected from pathogens and
infected cells are critical components that drive bioinformatics analysis. This
promotes the construction and analysis of infection specific gene-regulatory,
metabolic, and protein—protein interaction networks (Westermann ef al., 2012 and

Schulze et al., 2015).

With an increasing amount of experimental PHI data, web-based databases
were developed to derive and provide pathogen—host interactome data that mainly
focuses on specific pathogens or hosts (Wattam et al., 2013; Ako-Adjei er al.,
2014; Calderone ef al., 2014; Guirimand ef al., 2014).

Although the available databases are promising in data archiving, a large
amount of PHI data is not stored in any of these databases, since these data are
buried within the literature. Therefore, there is an urgent need for novel text

mining methods specific for PHI data retrieval.
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The current study focuses on the generation of Protein-Protein Interaction
Network (PPIN) of cassava-Cassava Mosiac Virus (CMV). The objectives of the
study includes data mining of plant-virus interaction through PPI networks,
computational prediction of PPIs, construction of PPIN of predicted PPIs, analysis

of predicted interactome and validation of predicted proteins.
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2. REVIEW OF LITERATURE
2.1 CASSAVA

Cassava (Manihot esculenta Crantz) is grown throughout tropical Africa,
Asia and the America. Its large starchy roots and edible leaves provide food for
800 million people globally, many of whom partly relies on it because it is
drought tolerant and requires little in the way of inputs. Due to the high starch
content (20-40%) cassava is a desirable energy source both for human

consumption and industrial biofuel applications (Ceballos et al., 2010).

Sub-Saharan Africa (SSA) is the world’s largest cassava growing region.
According to FAOSTAT (2017), cassava production in SSA could reach a record
of 161 million tonnes in 2018 that means around 3.3 million tonnes or 2% more
than the level of 2017. In India, the cultivation of cassava is mainly done in
Kerala, Tamil Nadu, Andhra Pradesh, Nagaland, Meghalaya and Assam. In Tamil
Nadu and Andhra Pradesh, it is grown under open conditions whereas in Kerala,
about 40% of cassava is raised as a mixed crop. The toughness of cassava enables
it to grow profitably under a wide range of agro-ecological zones where cereals
and other crops cannot thrive, making it a suitable crop for poor farmers to
cultivate under marginal environments in Africa. The other interest for farmers to
grow cassava is that it produces higher yields per unit of land than other crops

such as yam, wheat, rice, and maize (Alabi er al., 2011).

According to FAO classification, root and tuber crops form staple diet for
3% of the global population. Figure 1 & 2 represents FAOSTAT of cassava
production in world and in India respectively. In the African continent and South

America, cassava is mostly used for human consumption.
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The roots of cassava are the major source of dietary starch. The tubers are
eaten fresh and in various forms of processed food. Cassava leaves are also
consumed as a green vegetable, especially in East Africa, to provide an important
source of proteins, minerals, and vitamins. With increased possibility of starch
from cassava as a source of ethanol for biofuels, its cultivation is transforming
from subsistence to a more commercially-oriented farming enterprise (Nassar and
Ortiz, 2010). Cassava is cultivated in about 13 states of India, and its major

production is from the southern states of Kerala and Tamil Nadu.
2.2 CASSAVA MOSAIC DISEASE (CMD)

CMD is mainly caused by Cassava Mosaic Virus (CMV). They are
members of the family Geminiviridae and the Genus Begomovirus. CMD
produces different foliar symptoms like mosaic, mottling, misshapen and twisted
leaflets. CMD-affected cassava plants produce few or no tubers, depending on the

intensity of the disease and the age of the plant at the time of infection.

Nine distinct cassava mosaic viruses have been characterized worldwide
from CMD-affected cassava plants and seven of them are from sub-Saharan
Africa. Two other viruses, Indian cassava mosaic virus (ICMV) and Sri Lankan
cassava mosaic virus (SLCMV), were reported from the Indian sub-continent.
Currently, the International Committee on Taxonomy of Viruses (ICTV) has
placed all of these viruses in the genus Begomovirus, the largest genus in the
family Geminiviridae, and collectively, they are also called the Cassava Mosaic
Begomoviruses (CMBs) or Cassava Mosaic Geminiviruses (CMGs) (Alabi ef al..
2011).

Both ICMV and SLCMV possess bipartite ssDNA genomes and are
transmitted by whiteflies. Cassava is the primary host plant of ICMV and SLCMV
but both viruses can experimentally infect Nicotiana spp. In addition, an
infectious clone of SLCMV was infective in Arabidopsis thaliana inducing
symptoms similar to those described on cassava including stunting, leaf

deformation and developmental abnormalities (Mittal er al.. 2008).
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CMBs (Cassava Mosaic Begomoviruses) induces several morphological
and cytological modifications in cassava and the experimental host Nicotiana
benthamiana (Atiri et al., 2004). Bemisia tabaci, the whitefly vector, is mainly
responsible for the secondary spread of CMBs, although other species of whitefly,

such as B. afer can also transmit cassava mosaic disease (Dubern, 1994).

CMV has two circular DNA molecules, designated DNA-A and DNA-B,
of approximately 2.8 kb, both of which are required for systemic infection of
plants. DNA-A encodes six genes whereas DNA-B encodes two genes. DNA-A
viral strand encodes for the coat protein (CP) (AV1 ORF), and AV2 which
functions as a suppressor of host RNA silencing, thereby modulating symptoms,
or may also be involved in host specificity. The minus strand of DNA-A has four
open reading frames (ORFs) that encode for the Rep associated protein (AC1), a
transcriptional activator (TrAP/AC2), a replication enhancer (Ren/AC3), and the
AC4 protein. The AC4 ORF is completely embedded within the coding region of
the Rep protein, and it is the least conserved of all the geminiviral proteins, both

in sequence and in function (Bisaro, 2006).
2.2.1 Impact of CMD on Cassava

Atiri ef al., 2004 reported that CMBs induce several morphological and
cytological modifications in cassava and the experimental host Nicotiana
benthamiana. The symptoms and accompanying cellular modifications depends
on whether cassava is infected with a single virus, or if there is a concurrent
infection of two or more CMBs resulting in synergistic interactions. The
morphological alterations in cassava often result in loss of tuber and storage root
yield that can occur even in resistant genotypes which shows only mild or no
foliar symptoms. Overall, storage root yield loss across sub-Saharan Africa were
estimated between 15-24% annually, which is equivalent to 12-23 million tons or
an annual loss of US$ 1.2-2.3 billion (Alabi er al., 2011).



2.3 PATHOGENICITY IN CASSAVA

In response to pathogens, plants have developed a sophisticated
mechanism of action, which depends on the ability to recognize pathogen-specific
and foreign molecules for the plant, both in quantitative and qualitative resistance

(Boller and He ef al.. 2009, Vasquez et al., 2018).

At the level of the plasma membrane, the recognition of pathogens
depends on Pattern Recognition Receptors (PRRs) which recognize Microbe
Associated Molecular Patterns (MAMPs). On the other hand, at the intracellular
level, the recognition depends on the proteins encoded by the R (resistance) genes,
which recognize effector proteins injected by the pathogens (Monaghan and
Zipfel, 2012: Jones ef al., 2016). Once the recognition of the pathogen by the
plant occurs, a series of defence responses is triggered. These defences include the
strengthening of the cell wall through the synthesis of callose and lignin (Hauck et
al., 2003), the production of secondary antimicrobial metabolites such as
phytoalexins (Almargo er al., 2008) and the activation of the cascades of
signalling by Mitogen-Activated Protein Kinases (MAPK) (Meng and Zhang,
2013)..

All these responses together with the induction of gene expression code

for proteins related to pathogenicity (PR) (van Loon et al., 2006).
2.4 PLANT-VIRUS (PLANT-PATHOGEN) INTERACTIONS

Plant viruses are obligate intracellular parasites that are infectious, which
mostly consist of positive ssRNA (single-stranded ribonucleic acid) and only in a

few cases by single-stranded or double-stranded deoxyribonucleic acid.

Viruses can enter the plant cell passively only through wounds caused by
physical injuries due to environmental factors or by vectors. Among vectors,
several species of insects, mites, nematodes and some soil inhabitant fungi can
transmit specific viruses. Viruses use energy and proteins from the host cell to

perform its processes.
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Different interactions are generated between the plant and the virus during
each stage of the viral cycle. If the viral particle is not recognized by the host
plant, a compatible interaction between the plant and the virus is established. This
interaction may be favourable for the virus. However, if the plant recognizes the
viral particle, an incompatible interaction that is unfavourable for the virus is
established. It is known that plants can recognize the virus, limiting it to the site of
the infection. A series of complex cascade defence reactions can be induced
thereby limiting virus replication and virus movement within the host plant

(Hammond-Kosack and Jones, 2000).

Flor in 1971 described that plants have developed defence mechanism at
the molecular level based on the gene for gene theory. This model is defined by
the expression of a resistance gene (R) in the plant, which can bind directly or
indirectly to the product of the avirulence gene (avr) of the pathogen (Bent, 1996;
Ellis et al., 2000b).

For over 20 years, Arabidopsis thaliana has been developed as a model
organism for molecular plant genetics. Arabidopsis is widely used as a model for
the study of Plant-Pathogen co-evolution (Pagan et al., 2010). In 2017, Arena et
al. evaluated A. thaliana as an alternative host for Brevipalpus-transmitted viruses
(BTV). They reported that CiLV-C (Citrus leprosis virus) is able to infect
Arabidopsis inducing localized chlorotic symptoms upon infestation with
Brevipalpus viruliferous mites. Interaction between A. thaliana NAC domain
protein ATAF2 (AT5g08790) and Tobacco Mosaic Virus (TMV) replicase protein
is reported by Wang et al. (2009). Sahu er al. (2014) predicted the interactions
between Arabidopsis and Pseudomonas syringae pathovar tomato strain DC3000
(PstDC3000) in genome scale. Psuedomonas syringae, a major bacterial leaf
pathogen is asserted to infect the plant host Arabidopsis thaliana and has been
accepted as a model system for experimental characterization of the molecular
dynamics of plant-pathogen interactions. They predicted 868645 Protein-Protein
Interactions (PPIs) between 14043 Arabidopsis proteins and1337 P. syringae

proteins. PPI prediction between R. solanacearum and Arabidopsis thaliana was
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done by Li ef al. (2011). They predicted 3,074 potential PPIs between 119 R.

solanacearum and 1,442 A. thaliana proteins.
2.5 PROTEIN-PROTEIN INTERACTION

Protein-Protein Interaction (PPI) refers to physical contacts build between
two or more proteins resulting from the biochemical events or electrostatic forces.
Therefore, PPIs and their associated networks are essential for the understanding
of cellular processes, such as enzymatic activity, immunological recognition,
DNA repair, network pathway, signalling cascades and transcription control. A
study of protein interaction networks is important not only from a theoretical way

but also in terms of potential practical applications.

For the identification of protein interactions, many experimental methods
have been developed. Some of the experimental methods allow screening of a
large number of proteins in a cell. Such methods include yeast two-hybrid (Y2H),
Tandem Affinity Purification (TAP), Mass Spectroscopy (MS). Other methods
focus on examining and characterizing specific biochemical and physiochemical
properties of a protein complex. Despite this, a complete interaction network for
many organisms is not available. Due to the low interaction coverage,
experimental biases toward certain protein types and cellular localizations
reported by most experimental techniques, there is a need for the development of

computational methods to predict whether two proteins interact.

Recently, a number of compatible computational approaches have been
developed for the large-scale prediction of protein-protein interactions based on
protein sequence, structure and evolutionary relationships in complete genomes

(Shoemaker and Panchenko A.R., 2007).
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2.6 COMPUTATIONAL APPROACHES FOR PREDICTING PPI
(PROTEIN-PROTEIN INTERACTION)

Computational methods provide equivalent approach for detecting protein-
protein interactions. Indeed, the broad availability of experimental data has
declined the development of numerous computational methods over the past few

years.

In general, all computational approaches to PPI prediction attempt to
leverage knowledge of experimentally determined previously known interactions
in order to predict new PPIs. These methods enable one to discover novel putative
interactions and often provide information required for designing new
experiments for specific protein sets (Pitre et al., 2008). Methods specific for
intra-species interactions are usually used in PPI prediction studies (Nourani et
al., 2015). On the other hand, concentrating on the interactions among different

organisms is a young branch of this field.
2.6.1 Machine learning and data mining based approach

Machine learning techniques (supervised and semi supervised) have been
applied intensively for interspecies PPI predictions. However, these methods
require template PPI data sets associated with appropriate biological and

biochemical properties as features for training and testing purposes.

Baldi and Brunak, (2001) applied machine learning techniques to
bioinformatics and is a well-accepted idea, which includes early efforts for PPI
predictions. These methods utilize accessible PPI data as features for training and
classifying interacting and non-interacting protein pairs. Support Vector Machine
(SVM) based approaches are successfully applied in PHI prediction studies
(Kshirsagar et al., 2013a; Mei, 2013). Cui er al. (2012) presents a SVM based
approach, which uses a fixed length feature vector, indicating relative frequency

of consecutive amino acids in the protein sequence.
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Machine learning based methods which compose PPI prediction as a
classification task use both interacting and non-interacting protein pairs as

positive and negative classes, respectively.
2.6.2 Homology based approaches

The logic behind this type of methods is the assumption of conserved
interactions between a pair of proteins which have interacting homologs in
another species. The conserved interaction is called as “Interolog”. The simple

method of identifying interologs is as follows:

For example, consider a template PPI pair (a, b) in a source species, find
the homolog *a” in the host and the homolog ‘b’ in the pathogen, conclude that (a,
b) interact. Simplicity and clear biological basis are the main advantages of these
methods. However, homology to known interactions is not sufficient for assessing
the biological evidence of the predicted results. Different filtering techniques
should be considered for evaluating the feasibility of the interactions under an in
vivo condition and hence decreasing the false positives. A homology detection
method using template PPI databases, DIP (Salwinski et al., 2004) and iPfam
(Finn er al., 2013), is published in Krishnadev and Srinivasan (2008) for the
prediction of PHI pairs. Searching the sequences of host and pathogen proteins
within two template databases are conducted to find a superset of all interactions
which are physically and structurally compatible. These potential interactions are
refined within two additional filtering steps, for the detection of biologically
feasible interactions including integration of expression and sub-cellular

localization data (Tyagi et al., 2009).

In 2011 Krishnadev and Srinivasan have applied the same procedure for
different pathogens in their subsequent works. Another study was done with the
same approach by using sequence similarity enhanced with domain-domain
interaction detection (Schleker er al., 2012a). They have two compressive reviews

of the computational approaches predicting Salmonella-Host interactions
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(Schleker et al., 2012b, 2015), which include comparing Salmonella-Human and

Salmonella-Plant interaction predictions.

Homolog knowledge can be used indirectly as a remedy for data scarcity
and data unavailability by homolog knowledge transfer. Homolog information
(features) can be used when the information of a protein is unavailable. Mei
(2013) has designed different experiments to show the performance of substituting
homology features. Pessimistic experiment, which uses only homology features
for train and test without incorporating any base proteins (target), has promising
results, indicating that using homolog information is an effective substitute for the

target information to tackle the problem of data unavailability.

Lee et al. (2008) uses high confidence intra-species PPIs to detect
interologs using ortholog information. The hypothesis is that when two
orthologous groups are shared between more than two species, there will be a
possible interolog between those orthologous groups. The possible interactions are
filtered using gene ontology annotations followed by pathogen sequence filtering
based on the presence or absence of translocational signals to clarify the
predictions. The notable point is slight intersection of the predicted interactions
with those of the reported predictions in Dyer et al. (2007) due to applying
different techniques and datasets for same pathogen-host system. Zhou er al.
(2014) introduces the “stringent homology™ which does not rely only on intra-
species template PPIs to discover interologs and make use of two different
organisms as the source of template PPIs to predict PHIs. They also claim that it is
not only for the targeted host proteins which tend to be hub in their own PPI
network and this is also true about targeting pathogen proteins. The most
important obstacle for using homology based methods is scarcity of available

homolog information.
2.6.3 Structure based approaches

A number of studies are based on structural similarities and use template

PPIs to detect similar interacting pairs within host and pathogen proteins. Primary

¢
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ideas presented in Davis er al. (2007) called comparative modelling and was
based on their prior work (Davis ef al., 2006). Their method starts with a set of
host and pathogen proteins and then sequence matching procedures are used to
decide the similarities between the host or pathogen proteins with known structure
or known interaction protein partners. Sequence similarity score is only used
when structure information is unavailable as a statistical potential evaluation, to
predict interacting partners. The main disadvantage of this method is that finding
high similarity between pathogen proteins and proteins with known structure is

not guaranteed for all pathogen proteins.

Therefore, lack of the spatial structural information would restrict the
applicability of this method. Furthermore, they have only the ability to collect
limited number of standard PPIs from literature to evaluate their prediction

performance.
2.6.4 Domain and motif based approach

Wojcik and Schichter, (2001) and Pagel er al. (2004) introduced the idea
of utilizing domains as building blocks of proteins for predicting PPIs is well-
studied for single organisms concerning the fact that domains are the mediators of
interactions. The approach presented in Dyer er al. (2007) is one of the pioneer
published researches for predicting PHIs. However, small list of interaction is

presented and their biological importance is not strongly evaluated.

To predict interactions between host and pathogen proteins, they present
an algorithm that links protein domain profiles with interactions between proteins
from the same organism. For every pair of functional domains (d, e) which is
present in protein pair (g, h) respectively, the probability of interacting (g, h) is
assessed using Bayesian statistics. To apply this idea to a pathogen-host system,
they identify domains in every host and pathogen proteins and determine the
interaction probability for each pair of host and pathogen proteins that contain at
least one domain. A similar knowledge source is chosen in Kim ef al. (2007)

which make use of domain information from InterProScan (Quevillon ef al.,

)
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2005). They predict PPIs using PrelD (Kim et al., 2002) and PreSPI (Han et al.,

2004) algorithms based on domain information.
2.7 COMPUTATIONAL METHOD FOR INTER-SPECIES PPI PREDICTION

Many computational methods have been developed to predict PPls, but
most of them are intended for PPls within a species rather than PPls across
different species such as PPIs between virus and host. Methods for predicting
intra-species PPIs do not distinguish interactions between proteins of the same
species from those of different species, and thus are not appropriate for predicting
inter-species PPls. The knowledge of host pathogen PPIs is crucial for
understanding the pathogenesis of the relevant disease. However, experimental
resources for studying interactions between host and pathogen proteins are scarce.
Several computational methods for predicting interspecies PPIs have been
developed, including methods based on interolog, interacting domain/motif,

structure, and even machine learning (Zhou et al., 2012).

2.7.1 Interolog Based Approach

Interolog based methods composed of the conventional way of predicting
host-pathogen interactions. The methods are based on the hypothesis that pairs of
interacting proteins in one species are expected to be conserved in related species.
The idea behind this approach is that if two proteins interact in one organism,
their interolog in another organism have a higher chance of interacting. This is
based on the hypothesis that sequence and structural similarities between gene
products suggest functional similarities. Sahu et al. (2014) predicted the
interactions between Arabidopsis and Pseudomonas syringae pathovar tomato
strain DC3000 (PstDC3000) using interolog-based method and domain based
method. The interolog-based method predicted ~0.79M PPIs involving around

7700 Arabidopsis and 1068 Pseudomonas proteins in the full genome.
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2.8 PROTEIN-PROTEIN INTERACTION NETWORK

A protein-protein interaction network (PPIN) is a collection of PPIs,
deposited in online databases. PPINs may contribute other datasets, such as
protein structural information, which may lead to understanding the different

subparts that contribute to the function of a whole biological system.

A major issue in using PPINs in practice involves handling with errors in
the form of missing interactions and false signals. In a PPl network, proteins are
represented as nodes. Some nodes interact with many more partners than average;
these proteins are called hubs (Albert, 2005). Barabasi & Oltvai (2004) reported

that loss of hubs may cause the breakdown of the PPIN into isolated clusters.

Protein—Protein Interactions (PPIs) are of interest in biology because they
regulate roughly all cellular processes, including metabolic cycles, DNA
transcription and replication, different signalling cascades and many additional
processes. Proteins carry out their cellular functions through cooperative
interactions with other proteins, so it is important to know the specific nature of
these relationships. Indeed, the importance of understanding these interactions has
prompted the development of various experimental methods used in measuring
them. While the amount of genomic sequence information continues to increase
exponentially, the annotation of protein sequences appears to be somewhat

lagging behind, both in terms of quality and quantity.

Multi-branched, high-throughput functional genomics approaches are
needed to bridge the gap between raw sequence information and the appropriate
biochemical and medical information. Therefore, computational methods are
required for discovering interactions that are not accessible to high throughput
methods. These computational predictions can then be checked by using more
labour-intensive methods. A number of computational approaches for protein
interaction discovery have been developed over recent years. These methods

differ in feature information used for protein interaction prediction. Many studies
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have proved that knowing the tools and being familiar with the databases is

important for new research in protein-protein interaction.
2.9 THE STRUCTURE OF PROTEIN NETWORKS

The structure of protein interaction networks has been examined by recent
studies in several species. These studies have discovered that regardless of
species, the known protein networks are scale-free. It means that some hub
proteins have a huge proportion of the interactions while most proteins (are not
hub and) only contain a small fraction of ones. It is an obvious fact that
understanding the structure of a species” protein interaction network only provides
one dimension of the biochemical machinery controlling a cell’s behaviour. Thus,
several groups have integrated dynamics of gene expression with protein
interaction networks in order to uncover how these networks change in different

biological states.

Network topology is also introduced to characterize a network structure.
There are four higher-level topological indices including average degree (K),
clustering coefficient(C), average path length (L), and diameter (D). It is possible
to calculate four topological distributions such as degree distribution P (k), degree
distribution of cluster coefficients C (k), shortest path distribution SP (i), and
topological coefficient distribution TC (k), which take more attentions and are
comprehensively used in cellular networks, such as PPI networks, MNs
(Metabolic Networks), gene co-expression networks (GCEN), and domain
interaction networks. The topological features of cellular networks are efficiently
explained by these criteria which also provide vast insights into cellular evolution,

molecular function, network stability, and dynamic responses.

2.10 FUTURE DIRECTION AND CONCERNS: EVOLUTION OF PROTEIN-
PROTEIN INTERACTION NETWORKS

Protein-protein interaction network is highly dynamic and studying the
evolution of protein-protein interaction networks is one of the central problems of

systems biology, the results of such researches are crucial for a better
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understanding of the evolution of living systems and could be used for protein

interaction and function prediction.
2.11 PERFORMANCE EVALUATION

The lack of gold standard PHI data and the complexity of PHI mechanisms
lead to a hard assessment phase, in a way that predicted interactions are rarely
supported by a biological basis. Some studies validate their results by measuring
the shared interactions with other published materials (Mukhopadhyay er al.,
2012, 2014; Segura-Cabrera ef al., 2013).

2.12 VALIDATION USING q-PCR

Genes specific for interacting pairs of proteins possessing specific
functions are selected for validation. Validation of identified genes is essential for
further analysis. Different methodologies are available like qPCR, micro-array
analysis for detection and quantitation. Due to high sensitivity and efficiency of

qPCR, it is widely adopted for expression analysis.

Real-time PCR (RT-PCR) is also known as quantitative PCR or gPCR. In
qPCR amplification, cDNA is detected in real time as PCR is in progress by the
use of fluorescent reporter for RNA expression studies. Fluorescent probes mostly
used are sequence-specific TagMan probe and generic non-sequence-specific
double-stranded DNA binding dye such as SYBR green. The principle behind this
technique is that the intensity of fluorescence emitted by the probe at each cycle is

directly proportional to the template quantity.
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3. MATERIALS AND METHODS

The study entitled “Modeling of Cassava-Cassava Mosaic Virus
interactions with computational biology and bioinformatics approach™ was carried
out at the Section of Extension and Social Sciences, ICAR-Central Tuber Crops
Research Institute, Sreekariyam, Thiruvananthapuram during 2018-2019. In this
chapter, details regarding experimental materials and methodology used in the

study are elaborated.

3.1 DATA SOURCES, DATABASES AND VISUALIZATION TOOLS USED
IN PPI PREDICTION STUDY

The protein sequence data were obtained from a partially inbred line-
AMS60-2. The whole genome assembly (approx.221.2 MB arranged on 18
chromosomes) and whole genome annotation (33,033 genes) of AMS60-2
genotype of Manihot esculenta v6.1 (cassava) were downloaded from Phytozome,
the Plant Comparitive Genomics Portal of the Department of Energy’s Joint
Genome Institute. (www.phytozome.jgi.doe.gov) (Bredeson er al., 2016). Cassava
Mosaic Virus (CMV) proteome were downloaded from UniProt database

(www.uniprot.org).
3.1.1 STRING

The STRING database (Search Tool for the Retrieval of Interacting
Genes/Proteins) is specific to functional associations (stable physical associations,
transient binding, substrate chaining, and information relay) between proteins, on
a global scale (Szklarczyk er al., 2014). Singh and Singh (2019) constructed
interologous PPI network of Tea (Camellia sinensis) leaf from RNA-Seq datasets
using STRING database. In this, a total of 11,208 nodes with 1,97.820
interactions were successfully predicted using this interolog based approach. The

Database URL: (http://string-db.org).
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3.1.1.1 STRING viruses

'STRING viruses’ is an expanded form of STRING, to include intra-virus
and virus-host PPIs. The STRING viruses database provides a single unified
interface to virus-virus and host—virus PPIs from text mining and many
experimental sources. Furthermore, the data can also be directly imported into
Cytoscape (Shannon et al., 2003) using the STRING Cytoscape app (Szaklarczyk
et al., 2016).

3.1.2 APID

APID (Agile Protein Interactomes Data Server) is a bioinformatics web
server developed to provide protein interactomes at different quality levels and
allowing their analysis and visualization as networks. APID contains binary
interactions for 807 organisms, including 19 species with at least 500 reported
binary interactions (Alonso-Lopez er al, 2019). Database URL:
http://apid.dep.usal.es.

3.1.3 HPIDB

HPIDB 3.0 generates a comprehensive set of Host Pathogen Interaction
(HPT) by (i) in-house manual curation of published, experimental HPI data and (ii)
bringing in external HPI data provided by previously known molecular interaction
resources (Ammari ef al., 2016). Sahu ef al. (2014) used HPIDB for the prediction
of Arabidopsis-Pseudomonas syringae interactome. In this, each protein in
Arabidopsis and Pseudomonas is BLASTed against all the protein sequences in
HPIDB database to identify the homologs with E-value, sequence identity and

aligned sequence length coverage.
3.1.4 Prediction tool: VirusHostPPI

Amino acid sequence similarity between different types of viruses or hosts
is relatively low, therefore sequence-based prediction of virus-host PPIs for new

viruses or hosts is quite challenging. Zhou et al. (2018) developed a new
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prediction method of virus-host PPls which is applicable to new viruses or hosts.

The prediction tool is based on SVM (Support Vector Machine) method.

3.1.5 Cytoscape

Cytoscape is a free software package, which is one of the most popular
protein-protein interaction visualization and data integration tools. Cytoscape is a
general purpose modelling environment for integrating biomolecular interaction
networks and states. Cytoscape is available at (http://www.cytoscape.org/).
Cytoscape is a Java application verified to run on Windows, Mac OS X and

Linux. Steps for installation:
e Install Java 8

Cytoscape version 3.2 and later requires Java 8. A 64 bit Java Runtime
Environment is necessary (JRE). Using a 64 bit java allows the largest network to

be loaded and enables the fastest network processing.
» Download Cytoscape v.3.7.1 from http://cytoscape.org
e Install Cytoscape

(Automatic installation packages exist for windows, Mac OS X, and Linux
platforms. Cytoscape can be installed from a compressed archive distribution and

also it can be built from the source code).

e Unpack it

* Launch the application:

Cytoscape supports the import of networks from delimited text files and excel
workbooks. It also allows importing of networks from public databases.
Cytoscape can read network/pathway files written in Simple Interaction File (SIF
or .sif format), Nested Network Format (NNF or .nnf format), Graph Markup
Language (GML or .gml format), GMML (extensible graph markup and
modelling language), SBML, BioPAX, PSI-MI Level 1 and 2.5, Cytoscape.js
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JSON, Cytoscape CX, GraphML, Delimited text and Excel Workbook (.xls, .xIsx)

format.

3.1.6 Blast2GO

Blast2GO (Conesa ef al., 2005) is a comprehensive bioinformatics tool for
the functional annotation and analysis of genome scale sequence datasets (Gotz ef
al., 2008). A typical basic use case of Blast2GO consists of 5 steps: BLASTing,

mapping, annotation, statistics analysis and visualization.

3.1.7 QuickGO

QuickGO was developed by the GOA (Gene Ontology Annotation) group
in August 2001 as a fast, web-based browser for GO term information (Huntley et
al., 2009). All GO annotations were assigned to UniProt Knowledgebase
(UniProtKB) accessions. Using QuickGO, it is very easy to start browsing the GO
and its associated annotations. Database URL: http://www.ebi.ac.uk/QuickGO.

3.2 COLLECTION OF DATA FROM LITERATURES FOR CASSAVA
PROTEIN-PROTEIN INTERACTION

Work flow for the prediction of cassava PPIN is depicted in Figure 3. The
procedure is based on the logic underlying interolog based method (shown in
Figure 4), which implies two proteins (A and B) are predicted to interact if their
relative homologs (A’ and B’) interacts. The interolog method is inspired by the
hypothesis that the function of protein is retained and passed through their

orthologs in evolution-related organisms.

S
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DATA COLLECTION
Protein information PPI information
Phytozome, UniProt PAIR. APID, MINT, PRIN, IntAct

l

Inference of known PPIs to cassava
through protein orthology

l

Blastp: id >60%
Cov >80%
-10

e-value < 10

l

Predicted interacting protein pairs in cassava

(CSV/TSV/SIF/GML format)

i

Construction of cassava PPl network using Cytoscape
10.7.1

Figure 3. Work flow for the construction of cassava PPIN
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2 — Homologous PPI - X
Protein A Protein B
Homolog Homolog
Protein A’ Protein B’

Interaction

Figure 4. Homologous PPI derived from interactions between homologs: Protein
A’ and B’ are the proteins which have direct interactions, while Protein A and B
are their homologs, respectively. The interaction between A and B is called

homologous protein-protein interaction (Thanasomboon e¢f al., 2017)

The whole proteome of Indian Cassava Mosaic Virus (ICMV) is
downloaded from UniProt database (http://www.uniprot.org/) which contains 53
protein sequences. Similarly, the entire proteome of Manihot esculenta containing
34,468 protein sequences is extracted from the Phytozome v12 database

(http://www.phytozome.jgidoe.gov).

3.2.1 Collection of template interaction data
The interolog method is generally based on the evidence of PPI
information known to exist in other organisms. In this study, template plant
species, whose PPI information was known, were selected based on one of these
criteria:
(1) Having a close evolution with cassava: Ricinus communis (castor bean),
Populus trichocarpa (poplar) and Glycine max (soybean).
(2) Being recognized as a starch-storing plant: Solanum tuberosum (potato),
Zea mays (maize) and Oryza sativa (rice).

(3) Having abundant PPI information: Arabidopsis thaliana.
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The protein information of these template plants were obtained from
Phytozome v9 and UniProt databases, and the protein interaction information was

collected from five databases: IntAct, MINT, AtPIN, PAIR. and PRIN.

3.2.2 Inference of known PPIs to cassava through protein orthologous
To find protein orthologs in cassava, BLASTp search is performed against
the cassava genome sequence. The cassava orthologous proteins were identified if

the identity percentage > 60, coverage percentage > 80% and e-value < 10717,

3.2.3 Construction of cassava PPI network

Complete cassava PPl network of protein orthologs in cassava is
constructed using Cytoscape v3.7.1. Cytoscape can generate publication quality
images from network views. The network view can be exported in the JPG, PNG,

PS (Post Script), SVG and PDF format.

3.3 DATA MINING OF PLANT-VIRUS INTERACTIONS FOR THE
PREDICTION OF CASSAVA-CMV PPI

Template plant used in the study is Arabidopsis thaliana. A. thaliana is
having abundant PPI information. The main databases containing Arabidopsis

datasets are AtPIN, AtPID, PAIR.

A. thaliana is infected by a vast variety of viruses. Viruses that infect
Arabidopsis are selected on the basis that the infecting virus is closely related to
Cassava Mosaic Virus i.e., with reference to ICTV (International Committee on
Taxonomy of Viruses). The viruses selected for the study are: Cauliflower mosaic
virus (strain Strasbourg), Cucumber mosaic virus (strain FNY), Cabbage leaf Curl
virus, Tobacco mosaic virus and Tomato golden mosaic virus, Bean golden yellow

mosaic virus. The PPI between Arabidopsis and some of the viruses are obtained
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from APID. The interactome data is manually searched for the corresponding PPI
pair (HPI).

In this study, the probability of interaction between cassava and Cassava
Mosaic Virus (CMV) protein is inferred from interolog-based approach. To infer
the prediction from the interolog, three types of datasets are used in the study:
STRINGviruses consortium 2018 dataset, HPIDB and APID dataset. The

prediction framework is shown in Figure 4.

3.3.1 Interaction data of template Plant-Virus PPIN from Viruses.STRING

Viruses.STRING consortium (2018) is a protein—protein interaction
database specifically catering to virus—virus and virus-host interactions. This
database combines evidence from experimental and text-mining channels to
provide combined probabilities for interactions between viral and host proteins.
As of Jan 2019, the database contains 177,425 interactions between 239 viruses
and 319 hosts. The database is publicly available at (viruses.string-db.org). The
Viruses.STRING database interaction data can also be queried from the
Cytoscape STRING app. This requires version 3.6 of Cytoscape or greater and
version 1.4 of the STRING app or greater. which is available for free in the
Cytoscape app store.

The PPIs reported by STRING represent functional associations between
proteins. Experimental data for virus—virus and virus-host PPIs was imported

from BioGrid, MintAct, DIP, HPIDB and VirusMentha.

For the prediction of CMV (virus)-cassava (host) interaction, interaction
between host and virus proteins was manually curated from Viruses.STRING by
searching name of template virus and host. For example, in STRINGviruses
database the name for host name is given as Arabidopsis (template host) and the

name of virus name is selected as Cawliflower Mosaic Virus (CaMV) (template

}
M A
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virus). PPI network for the template host and its corresponding infecting virus is
analysed in Virus.STRING consortium.
The resulting interacting protein pairs are searched in UniProtKB for

retrieving similar protein in cassava and Cassava Mosaic Virus.

For example, Bean Golden Yellow Mosaic Virus (BGYMYV). which belongs
to begomovirus genus interacts with Arabidopsis thaliana. Nuclear Shuttle Protein
(NSP) of Bean Golden Yellow Mosaic Virus (BGYMV) interacts with Mitogen
Activated Protein Kinase4 (MAPK4) of Arabidopsis thaliana. Likewise, name of
template virus and host is given separately. The interacting pairs of proteins
between template virus and host were blasted (Blastp) against cassava proteome
and CMV proteome respectively. Resulting highly identical proteins in cassava
and CMV were searched in UniProtKB for its UniProt ID, UniProt name and gene

name.

3.3.2 Interaction data of template homologous PPI dataset from HPIDB
Host Pathogen Interaction Database (HPIDB) 3.0 is a resource for HPI
data. As of 2019 Jan, HPIDB contains 69,787 unique protein interactions between

66 host and 668 pathogen species.

Each protein in cassava and CMV is BLASTed against all the protein
sequences in the HPIDB database to identify the homologs with E-value,
sequence identity and aligned sequence length coverage of 1.0E-4, 50 and 80%
respectively. Each protein pair between CMV and cassava is predicted to interact
if an experimentally verified interaction exists between their respective
homologous proteins in HPIDB database. Resulting highly identical proteins in
cassava and CMV were searched in UniProtKB for its UniProt ID, UniProt name

and gene name.
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3.3.3 Template Plant-Virus Interactome dataset from APID

APID includes a comprehensive collection of protein interactomes for
more than 400 organisms (25 of which include more than 500 interactions)
produced by integration of only experimentally validated protein-protein physical
interactions. The interactome data for the target organisms can be downloaded
from APID. The APID search allows two categories of interactomes:

1) Organisms with more than 500 interactome (eg: Arabidopsis).

2) Organisms with less than 500 interactions.

As of Jan 2019, APID includes a comprehensive compendium of 90,379
distinct proteins and 678,441 singular interactions. The whole interactome data of
an organism (given in the list of APID) can be downloaded from APID in

delimited text format.

The interacting pairs of proteins between template virus and host were
blasted (Blastp) against cassava proteome and CMV proteome respectively.
Resulting highly identical proteins in cassava and CMV were searched in

UniProtKB for its UniProt ID, UniProt name and gene name.

3.4 PPI PREDICTION TOOL - VirusHostPPI

VirusHostPPI employs a new prediction method for virus-host PPIs which
is applicable to new viruses or hosts. The tool contains virus-host PPIs from four
databases, APID, IntAct, Mentha and UniProt, which use same protein identifiers.
The sequences of the proteins involved in any of the PPIs were obtained from the
UniProt database. As of December 2016, there are a total of 12,157 PPIs between
29 hosts and 332 viruses (Zhou et al., 2018). VirusHostPPI uses Support Vector
Machine (SVM) model to predict the interactions between virus and host. Support
Vector Machine (SVM) has been applied to several biological problems such as

prediction of protein-protein interactions, homology detection, and analysis of
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gene expression data (Cui ef al., 2012). Information on the viruses involved in the

virus-host PPIs is available at: http://bclab.inha.ac kr/VirusHostPPI.

3.5 CONSTRUCTION OF PROTEIN-PROTEIN INTERACTION NETWORK
(PPIN) OF PREDICTED PROTEIN PAIRS INVOLVED IN CASSAVA-
CMV INTERACTION

Work flow for the construction of Cassava-CMYV is depicted in Figure 5.

3.5.1 Predicted PPI dataset formulation

The predicted protein-pairs of cassava-CMV are formulated into delimited
text and excel format such that the dataset can be imported into Cytoscape. The
host (cassava) is assigned with UniProt id A, UniProt name A and Gene name A.
The pathogen (CMV) is assigned with UniProt id B, UniProt name B and Gene

name B.

3.5.2 Cassava-CMV PPI network construction

The predicted PPI network is constructed using cytoscape version 3.7.1.
The created dataset in text format is imported to Cytoscape. Before completely
importing, source and target column should be selected. The source column is the
gene name of predicted cassava protein and target column is the corresponding
gene name of the predicted CMV protein. The imported interacting pairs of
proteins can be clearly visualized. Cytoscape provides option for merging the

networks, such that two networks can be visualised in a single window.

3.6 FUNCTIONAL ANNOTATION OF PREDICTED PROTEIN PAIRS

Functional annotation is an important assessment for elucidating the
functional relevance of the host and pathogen proteins involved in the PPIs. Gene
ontology (GO) is a comprehensive functional system to annotate the gene
products. The two annotation tools used in this study are: QuickGO and

Blast2GO.
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Figure 5. Work flow for the construction of Cassava-CMYV PPI

A



31
3.6.1 Functional annotation using QuickGO

Functional annotation of interacting virus proteins was done using
QuickGO. QuickGO is a web-based tool that allows easy browsing of the Gene
Ontology (GO) and all associated electronic and manual GO annotations provided
by the GO consortium annotation groups. QuickGO users can view and search
information provided for GO terms (identifiers, words/phrases in the title or
definition, cross-references and synonyms), as well as protein data from
UniProtKB (accession numbers, names and gene symbols). Results are ranked so
that terms most closely matching the query are returned first. Individual words
and combinations of words are scored according to the field in which they occur

and their frequency within GO. QuickGO URL: http://www.ebi.ac.ul/QuickGO.

3.6.2 Functional annotation using OmicsBox/Blast2GO

OmicsBox/Blast2GO is a high-quality functional annotation work station
and it is a platform for analysis of genomic datasets. One can design the required
custom annotation style through the many configurable parameters. Statistical
charts are available to guide users in the annotation process. Blast2GO is designed

for experimentalists and is user friendly.

OmicsBox/Blast2GO offers two different features to retrieve the
gene/protein sequences as well as corresponding annotations from a list of
identifiers within Blast2GoPRO. Both features can be found under: File > Load >
Load Annotations. The expected input file is a text file with the identifiers in a
single column without a header. Annotation pipeline: Blast, Interproscan,

Mapping and Annotation. It can be queried online at http://www.biobam.com.
3.7 EXPERIMENTAL VALIDATION

The experimental validation of computationally predicted interacting
protein pairs were conducted by randomly choosing a pair of interacting proteins

(Catalase and Transcription activator protein). RT-PCR was performed as
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described below using total RNA isolation from leaf samples of two different

varieties of cassava available at ICAR-CTCRI.
3.7.1 Selected varieties of cassava

» HI165: Healthy leaf sample

» HI165: leaf sample showing CMV infection symptoms
3.7.2 RNA Isolation

RNA was extracted from fresh tender leaves of healthy cassava plant
(variety: H165) and CMD infected cassava plant (variety: H165) using Qiagen
RNeasy Plant Mini Kit, TRIzol method and CTAB method.

100 mg leaf tissue was pulverised in pre-chilled mortar and pestle using
liquid nitrogen and was transferred to a 2 ml sterile tube. 1 ml of CTAB buffer
(pre-warmed at 65°C for 10 min) was added followed by centrifugation at 15000
rpm for 15 minutes. Supernatant is transferred to a fresh tube and equal volume of
chloroform isoamyl alcohol (24:1) is added and centrifuged at 20000 g for 10
minutes at 4°C. After centrifugation, supernatant is transferred to a fresh tube and
0.25 volume ice cold 10 M Lithium chloride is added and thoroughly mixed. This
was kept for overnight incubation at 20°C. After centrifugation at 30,000 g for 30
minutes at 4°C, the pellet is washed with 75% ethanol by centrifugation at 10,000
g at 4°C. Washing step is repeated and RNA pellet was air dried at 37°C for 30
min and dissolved in 50ul DEPC water. After incubation at 37°C for 1 hour and

tapping intermittently, RNA is stored at -80°C.
3.7.3 Agarose gel electrophoresis

1.2% agarose gel was used to check the quality and integrity of the
extracted RNA. 1.2% agarose solution was prepared by weighing out 1.2 g
agarose in a conical flask and dissolving it using 100 ml 1X TBE buffer. Every
reagent was prepared in DEPC treated water. Agarose was dissolved by heating

and after that the flask was allowed to cool and when the temperature of the flask
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decreases, about 0.9 pl (10 mg/ml) of EtBr was added directly to the gel and

gentle mixing was done.

Casting tray was prepared with combs to which gel was poured and
allowed to solidify. 4 pl of isolated RNA sample mixed with 2 pl of 1X loading
dye was loaded into the wells of prepared gel. Horizontal gel electrophoresis unit

was used to run the gel. The gel was run for about 30 min at 110V. The run was

terminated after the dye front reached 3/410 of the gel. Then it was visualized in

UV light using a gel documentation system.

3.7.4 RNA quantification
The concentration of RNA was determined using a Nano-drop (using 1
0OD260=40ugRNA). A260/280 ratios were also calculated for each sample.

3.7.5 ¢cDNA synthesis
cDNA from the isolated RNA was prepared using Revert Aid First strand
¢-DNA synthesis kit. The preparation was in accordance with manufacture’s

protocol.

3.7.6 Primer designing for Predicted PPI pair - Primer3Plus

A primer is a short strand of RNA or DNA which generally have a size
about 18-22 bases, that serves as a starting point for DNA synthesis. Primer pairs
are designed to amplify the genomic region around each discovered gene.
Sequences are selected for primer designing based on the experimental result of

the predicted PPI pair. Primer pairs are designed using Primer 3 plus tool.

Primer3Plus is a widely used programme for designing PCR primers. PCR
(Polymerase Chain Reaction) is an essential and ubiquitous tool in genetics and
molecular biology. Primer3 can also design hybridization probes and sequencing
primers. Primer3 picks primers for PCR reactions, considering certain important

criteria such as oligonucleotide melting temperature (Tm), size, GC content,
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primer-dimer possibilities, PCR product size, positional constraints within the
source/template sequence, possibilities for ectopic priming (amplifying the wrong
sequence) and many other constraints. Good primer design is essential for
successful reactions. The parameters considered in primer designing are described

below:
3.7.6.1 Primer Length

It is generally accepted that the original length of the PCR primers is
18-22 bp. This is long enough for adequate specificity and short enough for

primers to bind easily to the template at the annealing temperature
3.7.6.2 Primer Melting T, emperature

Primer melting temperature (Tm) is the temperature at which one half of
the DNA duplex will dissociate to become single stranded and indicated the
duplex stability. Primers with melting temperature in the range of 52-28°C

generally produce the best results.
3.7.6.3 GC content

The GC content (the number of G's and C’s in the primer as a percentage

of the total bases) of primer should be 40-60%.
3.7.6.4 GC Clamp

The presence of G or C bases within the last five bases from the 3’end of
primers (GC clamp) helps promote specific binding at the 3* end due to the
stronger bonding of G and C bases. More than 3 G’s or C’s should be avoided in
the last 5 bases at the 3’end of the primer.

3.7.7 RT-qPCR validation

Real Time quantitative Polymerase Chain Reaction (RT-gPCR) is a tool
used for gene expression studies. The qPCR reaction was performed with forward
and reverse primers (specific to the predicted protein catalase in cassava and

transcription activator protein in Cassava mosaic virus). QPCR analysis for the
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samples were done at Rajiv Gandhi Centre for Biotechnology (RGCB) Bio

Innovation Centre, Trivandrum. The reaction profile is depicted in Table 1.

Table 1. RT-qPCR reaction profile

Components Volume (ul)
Diluted cDNA 1.5
Forward primer 1
Reverse primer 1
DyNAmo Flash SYBR Green gqPCR master mix 5
Double distilled water 1.5

3.7.7.1 Thermal Profile

Initial denaturation: 95°C 5min
Denaturation: 95° 10s

Annealing: 55°C

Extension: 72°C 15-30s

Number of cycles: 35-45 cycles, step 2-4

After the completion of the real time reactions, the threshold cycle (Cy)
was recorded and gene expression level was calculated using comparative Cr
method. The gene expression level of two proteins in Cassava leaves are

represented as 2744C,
AC= Gy (target gene) - C; (reference gene)

AAC = AC (sample) - AC; (control).
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4. RESULT

The results of the study “Modeling of Cassava-Cassava Mosaic Virus
interactions with computational biology and bioinformatics approach™ carried out
at the Section of Extension and Social Sciences, I[CAR-Central Tuber Crops
Research Institute, Sreekariyam, Thiruvananthapuram during 2018-2019 are

presented in this chapter.

The study focuses on the prediction of protein-protein interaction between
cassava and CMV. For this, firstly, Protein-Protein Interaction (PPI) in cassava is
predicted. Secondly, PPI between Cassava-CMV is predicted and the predicted
protein pairs are functionally annotated. The predicted protein pairs in Cassava-
CMV interaction is analysed for the presence of virus resistance proteins. In both

the prediction, interolog-based approach is used.

4.1 COLLECTION OF DATA FROM LITERATURES FOR CASSAVA
PROTEIN-PROTEIN INTERACTION PREDICTION

4.1.1 Construction of cassava PPI network using interolog-based method

The proteomic dataset used for the study was generated using the
interolog-based method. Interolog method, relies on existing data, is adopted for
PPI prediction. Upon the homology-based principle of this method, seven plant
species were selected as templates, based on three criteria: Most abundant PPI
information (model plant Arabidopsis); starch-storing crops (potato, rice and
maize); closely related to cassava (castor bean, poplar and soybean). According to

PPI information from various databases:

Arabidopsis thaliana contains: 235,215 interactions of 17,962 proteins.
Oryza sativa (rice) contains: 76,829 interactions of 5,219 proteins
Solanum tuberosum (potato) contains: 42 interactions of 48 proteins

Zea mays (maize) contains: 25 interactions of 29 proteins

Jy
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Glycine max (soybean) contains: 10 interactions of 12 proteins
Ricinus communis (castor bean) contains: 10 interactions of 10 proteins
Populus trichocarpa (poplar) contains: 8 interactions of 10 proteins.

To infer PPI information for cassava from each template plant, BLASTp
search of the cassava genome sequence database was carried out. The cassava
orthologous proteins that showed identity percentage >60, coverage percentage
>80% and e-value < 107" were identified. Interactions were inferred as
orthologous PPIs in cassava if those orthologous proteins matched the proteins of
template plants that had previously been identified to have protein-protein
interaction. Based on the results obtained, majority of the PPIs were from
Arabidopsis thaliana. Protein-Protein Interactions (PPIs) in plant templates and

cassava is shown in Table 2.

Table 2. Protein-Protein Interactions (PPIs) in plant templates and cassava

Genome FPI information cassava interactome
Template Lnformation
Plants No. of |No. of No. of INo. of Inferred |0rthologs
Fenes proteins |PPI proteins |PPIs in in
Cassava  (Cassava
Arabidopsis 27416 35,386 235.215 |17.962 190,069 7,193
Rice 55,986 |154,310 (76,829 5,219 212 84
Potato 35,119 159,699 42 48 19 15
Maize 32,540 [88,383 25 29 5 8
Soybean 54,175 83,795 10 12 7 7
Poplar 41,335 (83,796 8 10 15 7
Castor bean [25,878 [31.576 10 10 2 2

90,173 7,209
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The resulting interolog-based PPI network of cassava consists of 90,173
interactions interconnecting 7.209 proteins, which accounted for about 21% of
proteins in the whole genome. The predicted interacting pairs of proteins are
represented in the form of a network (interactome). The network is generated

using Cytoscape v3.7.1. Protein-Protein Interaction Network (PPIN) of cassava is

shown in Figure 6.
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Figure 6. Cassava PPI network derived by interolog based method. The network is

generated using the Cytoscape tool and STRING app.
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4.2 DATA MINING OF PLANT-VIRUS INTERACTIONS FOR THE
PREDICTION OF CASSAVA-CMV PPI

In this study the template plant used is Arabidopsis thaliana and its
corresponding infecting viruses that are similar in taxonomy with CMV is
selected. For the prediction of interacting protein pairs between cassava and
Cassava Mosaic Virus (CMV) three datasets were used; STRINGviruses
consortium 2018, Host Pathogen Interaction Database (HPIDB) and Agile Protein
Interactome DataServer (APID).

STRING Viruses consortium 2018 is employed for the analysis of
template Plant-Virus Interaction (PVI) network. In this study the PVI network of
model plant (template plant) 4. thaliana is taken.

Input

Template virus and plant species from which the user wants to predict
putative binding partners can be selected from the list of name given in the
dataset. In this study, Arabidopsis thaliana is selected as the model plant and
corresponding plant virus species are selected. 25 virus species and its different
strain were searched against Arabidopsis thaliana. Out of 25 viruses selected, 7
virus species showed interaction with A. thaliana. The list of the virus species
showing interaction with A.thaliana are given in Table 3.

Output

The output is a network containing protein-protein interaction between

virus and host that can be viewed or downloaded. The user can browse the data

associated with the partner proteins, which redirects to UniProt.

Ty

—~ry
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Table 3. Virus species interacting with Arabidopsis thaliana (obtained from
STRING viruses consortium, 2018)

NCBI Taxon Id STRING type STRING name

10840 Core Beet curly top virus (strain California/logan)
12216 Core Potato virus Y

37128 Core Potato mop-top v irus
| 12167 Core Potato virus M

12305 Core Cucumber mosaic virus

10641 Core Cauliflower mosaic virus

220340 Core Bean golden yellow mosaic virus

HPIDB is a database employed for homolog PPI identification. Cassava

and CMV proteins are BLASTed against plant proteins in HPIDB database. From

this, blast hits for A. thaliana were selected. A model of the blast result of cassava

proteins are depicted in Figure 7.
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Downioad the host-pathogen interaction data from the zip folaer

A description of results is here DEADME
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Figure 7. A model of HPIDB blast result
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The dataset can be downloaded in zip file format. Zip folder contents:

1) The blast tab delimited results file.

2) The homologous HPI results tab delimited file. Records contain the query
id, e-value, query coverage, percentage identity, HPIDB homologous
pathogen hit and the HPIDB interacting partners.

3) Unique interacting protein results tab delimited file contains unique

HPIDB host and HPIDB pathogen proteins.

The third database used is Agile Protein Interactome Dataserver (APID).
Interactions were obtained for 4. thaliana with Brome Mosaic Virus (BMV),
Cauliflower Mosaic Virus (CaMV), Rice Dwarf Virus (RDV), Tobacco Mosaic
Virus (TMV), Tomato Yellow Leaf Curl Virus (TYLCV), Tomato Golden Mosaic
Virus (TGMV), and Tomato Mosaic Virus (ToMV). From APID, 19 interactions

were predicted for cassava-CMYV interaction.

Combining interaction data from three databases, 351 proteins in cassava

is predicted to interact with 11 proteins in CMV.
4.3 PPI PREDICTION TOOL — VirusHostPPI

Through the interolog-based method, 351 interacting protein pairs were
obtained for 11 CMV. VirusHostPPI prediction tool enables the confirmation of

the predicted interacting protein pairs between cassava and CMV.

If the host protein sequence and the virus protein sequences are given as
input, the tool detects whether the proteins are interacting or not. The protein pairs
predicted through interolog-based method were filtered through VirusHostPPI
prediction tool and it is found that 114 proteins of cassava are interacting with 10
proteins of CMV. The predicted protein pairs between cassava and Cassava

mosaic virus are shown in Table 4.



43

Table 4. Proteins in cassava predicted to interact with CMV

Sl Cassava UniProt Gene name A CMYV UniProt Gene name
No Name A Name B B
1 | ADA2C9U8S7T MANES _16G041200 H8WRS0 ACI
2 | ADA2COUI1Q2 MANES_18G055300 H8WRS50 ACI
3 ADA2CUYQB MANES 11G066400 H8WRS0 ACI
4 | ADA2CIU4VE MANES 18G137500 H8WRS50 ACI
5 | ADA2CUCD6 MANES 16G128800 H8WRS50 ACI
6 AOA2CH9VKE] MANES 07G055800 H8WRS0 ACI
7 | AOA2C9U3KS MANES_18G 144600 H8WRS50 ACI
8 | ADA2C9U398 MANES 18G108400 H8WRS0 AC]
9 AOA2CHO9UNM2 MANES 13G002600 H8WRS0 ACI
10 | ADA2COVOP3 MANES 11G119700 H8WRS0 ACI
11| ADA2COVOQI MANES 11G119700 H8WRS0 ACl
12 | ADA2C9V4RS5 MANES 10G087600 H8WRS50 ACI
13 | AOA251LKS8 MANES 02G205900 H8WRS50 ACI
14 | AOA251LK92 MANES 02G205900 H8WRS50 ACl
15 | ADA2COWFM4 MANES 02G 199900 H8WRS0 ACI
16 | ADA251LKMS MANES 02G199800 H8WRS50 ACI
17 | ADA2CIVXE6 MANES 05G130700 TRAP_ICMV AC2, AL2
18 | ADA2COVVT7 MANES 05G130700 TRAP_ICMV AC2, AL2
19 | Q9SW99 MANES 18G004500 TRAP_ICMV AC2, AL2
20 | AOA2C9VVU3 MANES 05G130500 TRAP_ICMV AC2, AL2
21 | A9YMES CAT2 TRAP_ICMV AC2, AL2
22 | ADA2CYWMDI MANES _01G 154400 TRAP _ICMV AC2, AL2
23 | ADA2CY9TZH3 MANES 18G004400 TRAP_ICMV AC2, AL2
24 | AOA2COWLH4 MANES 01G165500 H8WR48 AC3
25 | ADA2CHYWDT0 MANES_02G 123000 H8WR48 AC3
26 | AODA2COW3T7 MANES 03G016800 H8WRS51 9GEMI | AC4
27 | ADA2CIVUS4 MANES_05G096100 H8WRS1 9GEMI | AC4
28 | ADA2CIWCI2 MANES 02G041800 H8WRS1 9GEMI | AC4

.
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29 | AOA2C9VPI5 MANES 06G096600 H8WRS1 9GEMI | AC4

30 | ADA2COWNBS MANES 01G187900 H8WRS1 9GEMI | AC4

31 | ADA2C9VUVSE MANES 05G096100 H8WRS51 9GEMI | AC4

32 | ADA2C9W 164 MANES 04G017500 H8WRS51 9GEMI | AC4

33 | ADA2C9UOM9 MANES_18G021400 H8WRS51 9GEMI | AC4

34 | ADA2C9W3IM2 MANES_03G013700 H8WRS51_9GEMI | AC4

35 | ADA2CO9WCA3 MANES_02G089000 CAPSD_ICMV ARI, AVI
36 | ADA2C9UNRI MANES_13G041100 CAPSD_ICMV ARI, AVI
37 | ADA2C9UT46 MANES 17G111400 CAPSD _ICMV ARI, AVI
38 | ADA2CIVIVY MANES_11G163400 CAPSD_ICMV ARI, AVI
39 | ADA2C9VPE6 MANES_06G015000 CAPSD_ICMV ARI, AV1
40 | ADA2C9USZ3 MANES_17G050100 CAPSD_ICMV ARI1, AV
41 | AOA2COVIET MANES_07G042200 CAPSD_ICMV ARI, AV
42 | ADA2C9VE24 MANES 09G052800 CAPSD_ICMV ARI, AV1
43 | ADA2C9VS27 MANES 05G005300 CAPSD_ICMV ARI, AVI
44 | ADA2C9VUS2 MANES _05G005300 CAPSD_ICMV ARI, AV]
45 | ADA2C9VST3 MANES_05G005300 CAPSD_ICMV ARI, AVI
46 | ADA2C9UADS MANES_16G 106800 CAPSD_ICMV ARI1, AV1
47 | ADA251L698 MANES_03G028900 CAPSD_ICMV ARI, AVI
48 | ADA251L6B6 MANES_03G028900 CAPSD_ICMV ARI, AVI
49 | AOA2COVNMS MANES 06G072300 CAPSD_ICMV ARI, AV1
50 | AOA2CYUPI3 MANES_13G051400 CAPSD_ICMV AR1, AVI
51 | AOA2C9VTUS MANES_06G 163000 CAPSD_ICMV ARI, AVI
52 | AOA2CY9VRRO MANES 06G 123900 CAPSD_ICMV AR1, AV1
53 | AOA251KRRO MANES 05G014800 CAPSD _ICMV ARI1, AV1
54 | ADA2COWANO MANES_03G002200 CAPSD_ICMV ARI1, AV1
55 | ADA2COWKT2 MANES 01G143300 CAPSD_ICMV ARI, AV]
56 | AOA2C9WN37 MANES _01G 143400 CAPSD_ICMV ARI, AV]
57 | ADA2COWM25 MANES_01G 143800 CAPSD_ICMV ARI, AV1
58 | AOA2COWHRS MANES_01G043900 CAPSD ICMV ARI1, AV1
59 | ADA2CIWC46 MANES_02G001600 CAPSD_ICMV ARI1, AV1
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60 | ADA2CIWSR6 MANES 03G002200 CAPSD_ICMV AR, AVI
61 | ADA2CIW041 MANES _05G 196000 CAPSD_ICMV ARI, AVI
62 | ADA2CI9VRPS MANES_06G 172900 CAPSD_ICMV AR, AVI
63 | ADA2CIW4Z3 MANES 04G 154400 CAPSD_ICMV ARI1, AV]
64 | ADA2COVIE3 MANES_07G042400 CAPSD_ICMV ARI1, AVI
65 | AOA2C9VE39 MANES_08G065000 CAPSD_ICMV ARI, AVI
66 | ADA2COVUQO MANES _05G091800 CAPSD ICMV ARI, AVI
67 | ADA2CO9UKBS MANES 14G097400 CAPSD_ICMV ARI, AV1
68 | ADAT99UA2S MANES 5084200 CAPSD_ICMV ARI, AV1
69 | ADA2CIVSES MANES_05G017100 CAPSD _ICMV ARI, AVI
70 | AOA2C9UFZ4 MANES 15G151500 CAPSD_ICMV AR1, AVI
71 | ADA2C9U024 MANES 18G002500 CAPSD_ICMV AR, AV1
72 | ADAI99UA2S MANES S084200 CAPSD ICMV ARI, AVI
73 | ADA2COWR64 MANES_01G238100 CAPSD _ICMV ARI1, AV1
74 | ADA2COW4Q2 MANES _03G002200 CAPSD _ICMV ARI, AVI
75 | ADA2COURD4 MANES_13G083400 CAPSD_ICMV ARI1, AVI
76 | ADA2C9UQAS MANES 13G051400 CAPSD_ICMV ARI1, AV
77 | AOA251LEQ3 MANES 02G035400 CAPSD_ICMV ARI, AV
78 | ADA2C9U2C3 MANES 18G079600 CAPSD ICMV ARI, AVI
79 | AOA251LCR3 MANES 03G201400 090282 AV
80 | ADA2COVFAO MANES 08G110100 090282 AVI
81 | ADA2C9VBR2 MANES_09G175000 090282 AV1
B2 | ADA2CYHVTEI MANES_05G001300 090282 AV1
83 | ADA2ZCOVBQ4 MANES_09G178100 090282 AVl
84 | AOA2C9VFC8 MANES 08G113100 090282 AV1
85 | ADA2COVTSES MANES_05G043200 H8WRS53 BCl
86 | ADA2COVWI0 MANES_05G145400 H8WR33 BCl1
87 | ADA2COWOI7 MANES_04G075000 H8WRS3 BC1
88 | ACA2C9V4]0 MANES_10G047400 H8WRS3 BCl
89 | ADA2CIW634 MANES _03G013200 H8WRS53 BCI
90 | ADA2COWOFO MANES _04G075000 H8WRS3 BCI
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91 | ADA2CIWG6S MANES_02G219700 Q635975 ORF2
92 | ADAI99UAYS PCaPl1 Q89703 ORF3
93 | AOA2C9UXZS MANES_11G028400 IBMP_CSVMV ORF4
94 | ADA2C9W286 MANES 04G137900 IBMP_CSVMV ORF4
95 | AOA2C9W3ES MANES_03G006600 IBMP_CSVMV ORF4
96 | AOA2CIUCF2 MANES 16G132500 IBMP _CSVMV ORF4
97 | AOA251K2X1 MANES 09G040700 IBMP CSVMV ORF4
98 | ADA2C9VFH4 MANES 08G039600 IBMP_CSVMV ORF4
99 | ADA251K7S8 MANES_09G 174300 IBMP CSVMV ORF4
100 | AOA2C9VFE3 MANES_08G114400 IBMP CSVMV ORF4
101 | AOA2C9VKPI MANES 07G120100 IBMP_CSVMV ORF4
102 | ADA2COV4QT MANES _10G025200 IBMP_CSVMV ORF4
103 | AOA2C9UABS MANES 16G090500 IBMP_CSVMV ORF4
104 | AOA2COWKS2 MANES _01G119800 IBMP_CSVMV ORF4
105 | AOA2COVMOI MANES 06G016100 IBMP_CSVMV ORF4
106 | AOA2COVMX9 MANES 07G126300 IBMP_CSVMV ORF4
107 | AOA2CHVKVS MANES _07G126300 IBMP _CSVMV ORF4
108 | AOA2C9VMB7 MANES 07G126500 IBMP_CSVMV ORF4
109 | AOA2COUGV6 MANES_15G140500 IBMP_CSVMV ORF4
110 | ADA2COUTAT MANES _17G091600 IBMP_CSVMV ORF4
111 | ADA2CO9WCRI MANES _02G0356600 IBMP_CSVMV ORF4
112 | ADA2C9VVS0 MANES _05G107000 IBMP_CSVMV ORF4
113 | ADA2C9VP44 MANES_06G088600 IBMP_CSVMV ORF4
114 | AOA2CO9VMR2 MANES_06G036000 IBMP_CSVMV ORF4
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4.4 CONSTRUCTION OF PROTEIN-PROTEIN INTERACTION NETWORK
(PPIN) OF PREDICTED PROTEIN PAIRS INVOLVED IN CASSAVA-
CMV INTERACTION

To predict the genome wide interactions, all proteins of cassava and CMV
are paired up, which constitute 351 protein pairs. A total of 351 probable protein
pairs were predicted from interolog based method. After filtering of 351 protein
pairs in VirusHostPPI prediction tool, 114 protein pairs were found to be
interacting which includes 114 cassava proteins and 10 CMV proteins. Cytoscape
is employed for the construction of PPIN. The interaction network of the
predicted PPI is shown in Figure 8, 9, 10& 11. On an average, one CMV protein
has at least one cassava interacting partner. Predicted genes in CMV are shown in

Table 5.

7/
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3 4

Figure 8. Predicted PPIN of Cassava-CMV. White nodes denotes gene name of
cassava and red node denotes gene name of CMV. Red node represents

ACI, AC2, AC3 and AC4 respectively.
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Figure 9. Predicted PPIN of Cassava-CMV. Red node represents ORF2,
ORF3, BC1, AV1 respectively
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Figure 10. Predicted PPIN of Cassava-CMV. Red node represents ORF4 and AR1



Figure 11. Merged Cassava-CMV PPIN
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Table 5. Predicted genes in CMV interacting with cassava

Virus gene name

No. of interaction

No. of host genes

No. of host proteins

AR1, AV1 44 37 44
ORF4 22 21 22
ACI 16 14 16
AC4 9 8 9
AC2, AL2 7 6 7
AVI 6 6 6
BCl 6 5 6
AC3 2 2 2
ORF2 1 1 1
ORF3 1 1 1
Total 114 101 114

Predicted effector hubs:
The effectors of CMV with highest number of edges (hubs) are ARI,
ORF4 and ACI1. These effectors have more than 10 PPIs in the Cassava-CMV

interactome. There are effectors with less than 10 predicted PPls. These are AC4,
AC2, AV1, BCI, AC3, ORF2 and ORF3. These hub proteins play important role

in pathogenesis, hence can be further investigated for deciphering virulence

mechanism.

4.5 FUNCTIONAL ANNOTATION OF PREDICTED PROTEIN PAIRS

The presence of annotated functional categories that are closely related to

host defence and pathogen infection support the validity of the predicted PPIs of

the prediction models. This study used the biological process, molecular process

and cellular components (GO term) to see the relevance of the predicted proteins.
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Functional annotation of predicted proteins in cassava was obtained from

Omicxbox Blast2GO (http://www.biobam.com). Pipeline of Blast2Go is depicted

/@ _®
/@ _.@\

BLASTp mapping annotation

fasta / goslim

merge GOs

in Figure 12.

interpro

Figure 12. Blast2GO pipeline
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GO annotations of 99% of the Manihot esculenta proteins were obtained
from Blast2GO. Out of 114 proteins, 113 proteins sequences showed blast result,
interProScan results, mapping and annotation. Analysis progress of 114 predicted

cassava proteins is shown below (Figure 13).

Analysis Progress [104_ppi raju]
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0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115

Total Sequences

With InterProScan
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Wen Magoing

|
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Figure 13. Analysis progress of predicted cassava proteins
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InterProScan family distribution results were obtained from the second

step in Blast2GO, which showed that majority of the proteins comes under NAC

domain superfamily (IPR036093). The NAC domain is an N-terminal module of

nearly 160 amino acids, which is found in proteins of the NAC family of plant-
specific transcriptional regulators. NAC proteins are involved in developmental
processes, including formation of the shoot apical meristem, floral organs and
lateral shoots, as well as in plant hormonal control and defence. The NAC domain
has been shown to be a DNA-binding domain (DBD) and a dimerization domain.
InterPoScan family distribution and domain distribution are depicted in Figure 14
& 15 respectively. A graph level 5 pie chart showing cellular component of the

predicted proteins in cassava is shown in Figure 16.

Q)



i
d
:

56

InterProScan Families Distribution [104 ppi raju]
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Figure 14. InterProScan families distribution of predicted cassava proteins
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InterProScan Domains Distribution [104 ppi raju]
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Figure 15. InterProScan domains distribution
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Graph Level 5 Pie Chart of #Seqs [Cellular Component]
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Figure 16. Cellular component of the predicted proteins in cassava
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5.1 Subcellular localization of cassava proteins targeted by the CMV proteins

Pathogens suppress host immunity by directing a range of secreted
proteins or effectors, to the cytoplasm of host cells. Once these effector proteins
traversed the host plasma-membrane, are transported to many subcellular
locations where they subvert the host immune system to enable pathogen growth
and reproduction. The knowledge of cellular compartments of the cassava
proteins targeted by the predicted CMV will be helpful in deciphering the
mechanism of host-pathogen interactions. If the targeted cassava proteins are
located in cellular compartments that are very relevant to the pathogen’s infection
or very likely to be involved in interactions with the pathogen, then the prediction

result supports the host-pathogen predictions.

In this study, to have a clear understanding about the location of the
interactions in host, the subcellular localization of the predicted cassava proteins
were extracted using Localizer tool (http:/localizer.sciro.au/). The subcellular
locations of all predicted cassava proteins are listed in Table 6. It is found that
57.9% host proteins are localized in nucleus, 4.4% in chloroplast, and 0.9% in
mitochondrion. It reveals that majority of the interaction occurs in nucleus, and

chloroplast region.
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Table 6. Identified subcellular locations of predicted proteins using Localizer.

(*Y’represents ves and “—represents null)

SI Identifier Chloroplast Mitochondria Nucleus

No

1 AODA2C9UBS7 MANES - = =

2 | ADA2C9UIQ2 MANES - = s

3 | ADA2C9U4V6 MANES - = =
Y

4 | ADA2C9UYQ8 MANES - - (FKVK)
Y
(KKLELWRGILKKKGF

5 | AOA2C9VKE! MANES - - R)

6 ADA2COVXE6 MANES - - -

7 | ADA2C9VVTT MANES - - -

8 | ADA2C9VVU3 MANES - - -

9 | Q9SW99 MANES - - -

10 | AOA2COWMDI_MANES - - -

11 | AOA2C9TZH3 MANES - - -

12 | A9YMES8 MANES - - R

13 | ADA2C9WLH4 MANES - > -

14 | ADA2CYWDT70 MANES - - =
Y
(RRLARALKNGRRKTS,
KKVHVATLERVYRRT
KRP,RRRHQNSAISSSS
SKKKKK,RRHQNSAISS
SSSKKKKKK.KRLKKV

15 | ADA2C9W3T7 MANES Y (0.9961-24) | Y (0.875|1-22) | HVATLERVYRRTK)
Y

16 | AOA2CY9VUS4 MANES - - (PGKKRRL)
Y
(KRCCENLTEENRRLQ

17 | ADA2CO9WC92 MANES - - K)

18 | ADA2CI9VPI5S MANES - - Y

29
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(PEKKRRL)

AOA2C9WNBE MANES

20

AOA2C9VUVE _MANES

Y
(PGKKRRL)

21

AOA2C9W164 MANES

Y
(KRSR)

AOA2COUOMYS MANES

Y
(KKIKLLSMLDEVDRR
YKE)

ADA2C9VEV6 MANES

LS
(KKRKKD.KKQANKLT
KFKRKETR.KRCCQTL
TEENRRLQK)

24

ADA2CO9W3IM2 MANES

Y
(KRKR,RKRK.RLKAK)

25

AODA2COVFAOD_MANES

Y
(RKNKREDSLLKKRRE
G,RRRREDNLVEIRKN
KRE,RKKAYKTGVDA
DEARRRRE.KKAYKTG
VDADEARRRRED)

26

AOA2COVFCS MANES

Y
(RKNRREESLQKKRRE
G,RRRREDNMVEIRKN
RRE,RRNRYKVAVDAE
EGRRRRE)

[ADA2COVBQ4 _MANES

Y
(RKNKREDNLLKKRRE
G,RRRREDNLVEIRKN
KRE,RKKAYKTGVDA
DEARRRRE,KKAYKTG
VDADEARRRRED)

AOA2CH9VBR2_MANES

Y
(RKNRREESLQKKRRE

G,RRRREDNMVEIRKN

RRE,RRNRYKVAVDAE
EGRRRRE)

29

AOA2CO9VTE]_MANES

Y
(RKNKREESLQKKRRE
G,RRRREDNMVEIRKN
KRE,RRNKYKVAVDAE
EGRRRRE)

30

AOA251LCR3_MANES

Y
(RKSKREESLQKKRRE

%)
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G,RRRREDNMVEIRKS
KRE,.RRNRYKVAVDA
DEGRRRRE)

AOA2CIVTES MANES

Y
(FKVK)

32

ADA2COVWI0 MANES

Y
(KRPVGILSVKVLRAM
KLKK)

33

ADA2C9V4J0 MANES

Y
(KKK TKMIRK)

Y
(RKTKHIKK,KKPVGIL
34 | AOA2CIWOI7 MANES SVKVLRALKLKK)
35 | ADA2CO9W634 MANES -
Y
(RKTKHIKK,KKPVGIL
36 | ADA2COWOF0 MANES SVKVLRALKLKK)
37 | AOA2CO9WCA3 MANES -
Y
38 | AOA2CO9UNRI MANES (LGEV)
Y
(RRKRRK,KKIMVLYKS
39 | ADA2C9U746 MANES SKKGTK)
Y
(KKTMVFYKGKAPAG
40 | ADA2C9VIV9 MANES RKTKW)
41 | AOA2C9VPE6 MANES .
42 | ADA2C9USZ3_MANES "
43 | ADA2C9V824 MANES =
44 | ADA2CY9VIET MANES >
Y
(KRKR,KISKNKKKASK
KDEKAEPDSKK TRPNK
45 | ADA2C9VUS2 MANES KSRK)
Y
(KRKR KISKNKKKASK
KDEKAEPDSKKTRPNK
46 | ADA2C9VS27 MANES KSRK)
Y

47

AOA2CO9UADS MANES

(RKRRK,KKILVLYTNF

(__;!P“r
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GKNRKPEK)
Y
(KRKR,KISKNKKKASK
KDEKAEPDSKKTRPNK
48 | ADA2C9VST3 MANES . KSRK)
Y
(KRKR,KISKNKKKASK
KDEKAEPDSKKTRPNK
49 | ADA2C9UQA8 MANES | - KSRK)
Y
(KRKR KISKNKKKASK
KDEKAEPDSKKTRPNK
50 | ADA2C9UP13 MANES . KSRK)
Y
51 | ADA2CO9VNMS MANES | - (RKRRK)
Y
(RKRRK,KKILVLYTNF
52 | AOA251L6B6 MANES - GKNRKPEK)
Y
(RKRRK,KKILVLYTNF
53 | ADA251L698 MANES - GKNRKPEK)
Y
54 | ADA2COVTUS MANES | Y (0.838 | 1-61) (RPRR)
55 | ADA2C9WM25 MANES | - -
56 | AOA2COWN37 MANES | - -
57 | AOA2COWKT2 MANES | - P
58 | ADA2COW4NO MANES | - :
59 | AOA2CO9VRRO MANES | - :
60 | ADA2COW5R6_MANES | - .
61 | ADA2CI9WCA46 MANES | - »
Y
(KPTGKPRKVKGIGTK
62 | ADA25IKRRO MANES - KPIGTKRT)
Y
63 | AOA2COWHRS MANES | - (KKSRK)
Y
(KQSRSEKKSRKAMLK
64 | ADA2COWAZ3 MANES | - LGMK)
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65 | ADA2CO9W041_MANES Y (0.99[1-21) |-
Y

66 | AOA2CO9VRPS MANES . (PKPS)
Y

67 | AOA2CO9VUQO MANES - (KKRK)
Y

68 | AOA2C9VE39 MANES s (PSQKRNR)

69 | ADA2CIVIE3 MANES = X

70 | AOA2C9VSES MANES < =

71 | AOA199UA28 MANES - =
Y

72 | ADA2COUKBS MANES . (RKRRK)

73 | ADA2C9U024 MANES = -
Y
(RKRRK,KKIMVLYKN

74 | ADA2COUFZ4 MANES . TKKGSK)

75 | ADA2COURD4_MANES - -

76 | AOA2CO9W4Q2 MANES - -
Y

77 | AOA2CO9WRG4 MANES - (KRKR,RKRR)

78 | AOA2C9U2C3 MANES - R

79 | AOA251LEQ3 _MANES 2 -

80 | AOA251L5A8 MANES = -
Y

81 | ADA2COWG65 MANES - (RKRR)

82 | ADAI99UAYS MANES - :
Y
(RKREAEKERARRDRL,
KPPPRPKFGPKWRFNQ
HRPQLPQRRDEEVEAR

83 | ADA2CO9UXZS MANES - KREAEKERARR)
Y
(TRKREAEKERARR.RK
REAEKERARRDRL,RR
DEEVATRKREAEKERA

84 | ADA2COW286 MANES . R)
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85

ADA251K2X1 _MANES

i
(KKMSSSNAKALNSMK
QKLK)

86

AODA2C9VFH4 MANES

Y
(KKMSSSNAKALNSMK
QKLK)

87

ADA251K7S8 MANES

Y
(PKPS,REAKRKK KRLL
ARKSIHEKRKEE,KRKKI
FYVRTEEERLRKL,KRP
EDLMLSYVSGEKGKD
R.KKLQKLAKTMDYLE
RAKRE,RLRKLHEEEE
ARKHEEAERRRKEEAE
RKAKLDEIAEKQRQRE
RELEEKEK)

88

AOA2CI9VFE3 _MANES

Y
(PKPS,KRLLARKSIIEK
RKEE,KRPEDLMLSYV
TGEKGKDR,KKLQKLA
KTMDYLERAKRE,RKQ
EREAKRKKIFYVRSEE
ERLRKLHEEEEARKRE
EAERRRKEEAERKAKL
DEIAEKQRQRERELEE
KERLR)

89

ADA2C9W3ES MANES

Y
(KRTTYTGFELFRIKER)

90

AOA2C9UCF2_MANES

Y
(KRLHEEEKLERQKLR,
KRTTYTGFELFRIKER)

91

AOA2CI9VKP1I MANES

b £
(RKLAKARLSKKA)

92

AODA2C9V4QT7 _MANES

Y
(RKLAKARLSKRA)

93

AODA2C9UABS MANES

94

ADA2COWKS2 MANES

Y
(KRRS)

95

ADA2COVMO] MANES

¥
(AEKEANSRKKTGGKK
K)

96

ADA2COVMX9 MANES

Y (0.971 | 1-25)
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97 | ADA2COVKV5 MANES | Y (0.971 | 1-25) R
98 | ADA2CO9VMB7 MANES | Y (0.971 | 1-25) -
99 | AOA2COUGV6 MANES | - -
100 | AOA2CO9UTA7 MANES - -
101 | AOA2COWCRI MANES | - -
102 | AOA2C9VV50_MANES - -
103 | ADA2COVP44_MANES - .
104 | AOA2COVMR2 MANES | - :
Y
(KRSR,KKGVDQAEKE
105 | ADA2C9U3KS MANES = ERRRRRTEK)
Y
(KRSR,RSSKRIR,KRKI
NTWTFNANFNVIKRR,
RKINTWTFNANFNVIK
106 | ADA2C9U398 MANES - RRL)
Y
107 | ADA2COVOP3 MANES < (KRSR)
Y
108 | ADA2C9VOQI MANES - (KRSR)
Y
(KRRR,KVKK,RRDISTE
109 | AOA2C9VARS MANES . EYMKLSKR)
Y
110 | ADA251LK88 MANES - (LGEV)
Y
111 | ADA251LK92 MANES = (LGEV,RDPKRMK)
%
(KKTCLEIDYLERSKRV
112 | AOA2COWFM4 MANES | - )
Y
113 | AOA25ILKM5 MANES | - (PFPKRLK)

114

AOA2CH9UNM2 MANES
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Functional annotation of predicted 144 proteins of cassava is shown in

Appendices. Sequence name, description, SIM mean are listed. (Tags represents:

Interpro [I], Blast [B] Mapping [M] and Annotation [A]).

Among the 114 predicted protein pairs, 10 proteins come under disease

resistance protein family (TIR-NBS-LRR class) in cassava. The resistance

proteins in cassava are listed in Table 7.

Table 7. Disease resistance proteins and its corresponding genes in cassava

SI Seq name Phytozome protein UniProt Gene name | Length
no. id

I | ADA2C9U3KS | cassava4.1 000798m | MANES 18G144600 | 1029
2 | AOA2C9U398 | Unknown MANES 18G108400 | 1187
3 | ADA2C9VOP3 cassava4.l 032695m | MANES 11G119700 | 1135
4 | AOA2C9V4RS | cassava4.l1 023065m | MANES 10G087600 | 1239
5 [ ADA251LKS88 cassava4.1 _023606m | MANES 02G205900 | 1158
6 | ADA251LK92 cassava4.]1 023606m | MANES 02G205900 | 1284
7 | AOA2CO9WFM4 | cassavad4.l 000798m | MANES 02G199900 | 1133
8 | AOA2C9UNM?2 | cassavad.l 033689m | MANES 03G013700 | 1100
9 | ADA2C9VOQ1 | cassava4.l 032695m | MANES 11G119700 | 967
10 | AOA251LKMS | cassavad4.1 028330m | MANES 02G199800 | 771

All the gene products of CMV were annotated. GO annotations of the
CMV genome were obtained from QuickGO (http://www.ebi.ac.ul/QuickGO ).

GO of predicted interacting proteins of Cassava Mosaic Virus is shown below

(Table 8).

a4k
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Table 8. GO of predicted interacting proteins in Cassava Mosaic Virus

UniProt id

Gene name

Function

Reference

Q66284

ORF 4

Part of host cell cytoplasm, Involved in regulation of translation

GO_REF:0000037
GO_REF:0000039

Q08589

AC2, AL2

Enables in structural molecule activity, DNA binding and metal
ion binding. Part of viral capsid, host cell cytoplasm, host cell
nucleus. Involved in viral process.

GO_REF:0000002
GO_REF:0000037
GO REF:0000039

090282

AV1

Enables in structural molecule activity, DNA binding, metal ion
binding. Part of viral capsid, host cell nucleus, virion.

GO_REF:0000002
GO_REF:0000038
GO_REF:0000040

H8WRS53

BCI

Enables in DNA binding. Part of host cell membrane, integral
component of membrane. Involved in transport of virus in host,
cell to cell.

GO_REF:0000002
GO_REF:0000038

HE8WRS50

AC1

Involved in nucleic acid phosphordiester bond hydrolysis and
metabolic process. Enables in structural molecule activity , DNA
replication, endodeoxyribonuclease activity, producing 5'-
phosphomonoesters , hydrolase activity metal ion binding,
nucleotide binding catalytic activity , nucleotidyl transferase
activity helicase activity, DNA binding transferase activity, ATP
binding , nuclease activity and endonuclease activity. Part of host
cell nucleus.

GO_REF:0000108
GO_REF:0000002
GO_REF:0000038
GO_REF:0000040

H8WRSI

ACH

Protein A4. Enables in DNA binding and metal ion binding.
Involved in viral process.

Q89703

ORF 3

Involved in RNA-dependent DNA biosynthetic process, nucleic
acid phosphodiester bond hydrolysis, RNA phosphodiester bond
hydrolysis, endonucleolytic proteolysis, DNA recombination and
metabolic process. Enables in RNA-DNA hybrid ribonuclease
activity, DNA binding, nucleotidyl transferase activity , DNA-
directed DNA polymerase activity, peptidase activity, RNA-
directed DNA polymerase activity, catalytic activity, transferase
activity, metal ion binding , RNA binding, aspartic-type
endopeptidase activity, hydrolase activity, endonuclease activity
and nuclease activity.

GO _REF:0000108
GO_REF:0000002
GO_REF:0000003
GO_REF:0000037

H8WRA4SE

AC3

Involved in viral process.

GO_REF:0000002
GO REF:0000038
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Q65975

ORF2

Enables in ATP binding.

GO_REF:0000002

H8WR46

AV2

Part of host cell cytoplasm and host cell perinuclear region of
cytoplasm. Involved in negative regulation of gene silencing by
RNA and viral process.

GO_REF:0000002
GO_REF:0000038

The interacting proteins of cassava in Cassava-CMV showed further
interaction with predicted cassava protein, i.e., intraspecies (PPI) interaction. The
first step in this study was to predict PPIs in cassava (inter-species interaction)
and the second step was to predict PPIs between Cassava-CMV (Intra-species
interaction). From the results obtained, it is found that the predicted cassava
proteins in cassava-CMV interaction interact with the predicted proteins in

cassava interactome. The results were obtained using STRING.

4.6 EXPERIMENTAL VALIDATION
The in-silico predicted proteins were validated using the designed primers

against healthy and infected varieties of cassava.

4.6.1 Isolation of RNA
RNA isolation of 2 cassava leaf samples were done using CTAB method

and were stored at -20°C.

4.6.2 Analysis of RNA
The RNA samples isolated using the CTAB method were analysed using
1.2% agarose gel electrophoresis (Plate 1). Distinct two bands were observed

which shows no apparent RNA degradation.

4.6.3 Quantification of RNA

Quantification of RNA was done using NanoDrop® ND-100. The
concentration of RNA (ng/ul), A260/230, A260/280, obtained are shown below
(Table 9).

e .
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Table 9. Quantification of RNA

Sample RNA vyield (ng/ ul) A260/280 A260/230
H165 (healthy) 1894 2.1 2.05
H165 (infected) 1925 2.08 1.97

Plate 1: 1.2% EtBr stained agarose gel showing RNA of 2 Cassava leaf
samples after electrophoresis (Sul RNA sample + 1ul 1 X loading dye).
Lane 1 & 2: H165 (healthy)

Lane 3 & 4: H165 (infected)
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The relative gene expression of predicted proteins (catalase and
Transcription Activator Protein) in healthy cassava variety (H165) and CMV
infected cassava variety (H165) were studied using SYBR green PCR assay. Car2
gene that codes for catalase is selected in the study because catalase activity is
high in infected leaf samples as compared to healthy leaf samples (Duraisamy er
al., 2017). AC2 gene is a viral protein that codes for Transcription Activator
Protein (TrAP). It is predicted that the two proteins catalase and TrAP interacts
with each other during a viral infection. Gene expression pattern of comparative
Ci method showed the up-regulation of AC2 gene in CMV infected leaf sample.
Relative gene expression of AC2 and Cat2 in healthy and CMV infected cassava

leaves are shown in Figure 17.

4.6.1 Designed Primer

Primer sets were designed for Cat2 gene and AC2 gene

e Cassava Cat2 gene (catalase) : Product size-95bp
Forward Primer: S"CAGCGTGTTGTCCATGCTAG3’

Reverse Primer: 5"CATGAATAACAGTGGAGAAACGGAC3’
* CMV AC2 gene (TrAP: Transcription Activator Protein): Product size-95bp
Forward Primer: 5’CCCAAAAGCCAACAGAGAGA3’

Reverse Primer: 5"CATCACCGAGTCCAACACAAT3

Reference gene: Actin (Product size-95bp)

Forward Primer: CCCAAAAGCCAACAGAGAGA

Reverse Primer: CATCACCGAGTCCAACACAAT

4.6.2 EXPRESSION STUDY OF PREDICTED PROTEINS IN CASSAVA

The predicted interacting proteins were present in healthy and susceptible
(infected) variety were targeted using designed specific primers and the SYBR
green PCR assay was used for studying gene expression. The relative gene

expression of healthy and susceptible varieties is studied using 2-22¢t method.

an
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Actin (primers ACT F and ACT R) was used as the reference gene for the

expression study.

The standard fluorescent amplification representing exponential growth of
PCR products was observed in each cycle, yielding threshold cycle (Cy) values
that ranged from 15-28 for the target and reference (ACT F and ACT R) primers.
The C; (Cycle threshold) value is given in the logarithmic scale and inversely
proportional to the quantity of cDNA. Thus the highly expressed gene has low
AC, values and low expressed gene have high AC, values. The fold change (-AAC)
can be calculated by comparing the normalized expression (AC;) of the two
conditions. The fold change, viz. the expression ratio, indicated the up regulation

and down regulation of the gene when it was positive and negative respectively.

: — —
5 . R
Q [
| e 4 +— — |
2 _ W H165
5 3
| - 51 - (Healthy)
-5 \
- mH165
1 I . " (Infected)
0 T T T 1 1 |
AC2 CAT2 |
Genes

Figure 17. Relative gene expression of AC2 and CA472 in healthy and CMV

infected cassava leaves (Variety: H165).
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5. DISCUSSION

The study entitled “Modeling of Cassava-Cassava Mosaic Virus
interaction with computational biology and bioinformatics approach™ was
conducted to predict interacting pair of proteins between cassava and Cassava
Mosaic Virus (CMV) based on interolog method using genomic data of template
plant. The study also includes confirmation of the predicted interacting pairs using
prediction tool, PPI network construction and functional annotation of the
predicted protein for better understanding of pathogenesis mechanism of the crop.

The results of this study presented in chapter 4 are discussed here.

Cassava Mosaic Virus (CMV) is a ssDNA virus causing economically
important disease in Manihot esculenta thereby leading to severe agricultural
losses in Asian and African countries. There has been a significant reduction in
yield of cassava in India from 38.581 kg/ha in 2012 to 22,323 kg/ha in 2016
(FAOSTALT, 2017). Similarly, the appearance of Cassava Mosaic Disease (major
pathogen involved is CMV) seems to significantly constrain its productivity.
Viral-host protein-protein interaction plays a vital role in pathogenesis, since it
defines viral infection of the host and regulation of the host proteins. PPIs are
essential process in all living cells and play a crucial role in the infection process,
and initiating a defence response. In this context. understanding the PPI network
(interactome) between plant proteins and pathogen proteins is a critical step for
studying the molecular basis of pathogenesis (Pinzon et al., 2010 and Kim et al..
2008). In particular, computational approaches ameliorate the study of host-

pathogen protein interactions in a genome-wide range.

Many computational methods have been developed to predict PPls. but
most of them are intended for PPIs within same species rather than for PPIs across
different species. Methods for predicting intra-species PPIs do not distinguish
interactions between proteins of the same species from those of different species,

and thus are not appropriate for predicting inter-species PPIs. Motivated by a
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recent increase in data of virus-host PPIs, a few computational methods have been
developed to predict virus-host PPIs using machine learning methods. Zhou ef al.
(2018) developed a prediction tool (VirusHostPPI) of virus-host PPls, which is
applicable to new viruses and hosts. The predicted PPIs using interolog based
method are confirmed by the prediction tool (VirusHostPPI), which identifies
whether a protein pair interacts or not (http://bclab.inha.ac kr/VirusHostPPI). The

prediction tool works on the principle of SVM based approach.

In this study, a systematic attempt has been made to predict cassava-CMV
PPIs by interolog-based method. From the proteomic datasets used for the study,
351 cassava proteins and 11 CMV proteins were predicted to interact by a simple
and effective method: interolog based approach. After filtering of the predicted
protein pairs using VirusHostPPI (prediction tool), 114 cassava proteins were
found to be interacting with 10 CMV proteins. The reported results are coherent
with the previous studies in which it is demonstrated that a few pathogen proteins
involved in interaction with the host interactome (Kim er al., 2008). Li er al.
(2012) predicted protein—protein interactions between Ralstonia solanacearum
and Arabidopsis thaliana. They predicted 3,074 potential PPls between 119 R.
solanacearum and 1,442 A. thaliana proteins. Sahu et al., 2014 used two different
methods for the prediction of PPI (Interolog based method and domain based
method) between Arabidopsi thaliana and Psuedomonas syringae pathovar
tomato strain DC3000 (PstDC3000). They reported that interolog-based method
predicted nearly 0.79 Million PPls involving around 7700 Arabidopsis and 1068
Pseudomonas proteins in the full genome while the domain-based method
predicted 85650 PPIs comprising 11432 Arabidopsis and 887 Pseudomonas

proteins.

The predicted cassava proteins in Cassava-CMV interaction were
combined for functional annotation using Blast2GO. Effective annotation

obtained from Blast2GO could provide several valuable data regarding the
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identified interacting proteins. Among the total (114) proteins identified, 113
proteins showed blast hit (with Arabidopsis thaliana), interProScan results,
mapping and annotation. InterProScan result showed that majority of poteins
comes under NAC containing domain protein superfamily. NAC TFs are one of
one of the largest families of transcription factors (TFs) in plants and they play
vital roles in regulating plant growth and development processes including abiotic
stress responses. Hu er al. (2015) reported 96 NAC genes in cassava. In their
study, 96 predicted NAC proteins ranged from 82 to 656 amino acid residues with
an average of 342 amino acid. They also studied the evolutionary relationships

between cassava NAC proteins and known NACs from Arabidopsis.

Subcellular locations of the predicted proteins were found using localizer.
It is found that 57.9% host proteins are localized in nucleus, 4.4% in chloroplast,
and 0.9% in mitochondrion. It reveals that major of the interactions occur in
nucleus, and chloroplast region. Also the localizations for a large number of
proteins are still unknown which need a special attention for experimental

characterization.

Functional annotation revealed the presence of 10 disease resistance
proteins in the predicted Cassava-CMV interaction proteins. In 2015, Lozano ef
al. identified 228 NBS-LRR type genes and 99 partial NBS genes among the
30,666 annotated protein-coding genes. They reported that these represent almost
1% of the total predicted genes and show high sequence similarity to proteins

from other plant species.

Understanding the Protein-Protein Interaction (PPI) network (i.e.,
interactome) between plant proteins and pathogen proteins is a critical step for
studying the molecular basis of pathogenesis (Pinzon er al., 2010; He et al., 2008;
Kim ef al., 2008). However, it is still a challenging task to identify the plant

proteins targeted by a pathogen protein through existing experimental techniques.
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Currently, only a few pairs of such interactions have been identified,
which is far from being enough to systematically decipher the molecular
mechanism of pathogenicity. Due to internal limitations of the computational
methods, the predicted data may still suffer from two drawbacks. First. the
predicted PPI network is still far from complete. Second, the predicted data may
inevitably contain a lot of false positives. To quantitatively assess the reliability of
the predicted PPIs, experimentally determined PPI data are required. Even so, the
predicted PPI data have allowed us to catch a glimpse of the overall picture of the
PPI network between CMV and cassava (Manihot esculenta). We hope that the
current work can shed light for further research into the molecular pathogenesis of
CMV. For instance, the predicted data may inspire a path to the discovery of new

anti-viral drug targets.

It has been established that a pathogen mutates its genes extensively to
infect a host, whereas a plant defends the attacks by expanding its gene families
(Stahl and Bishop, 2000). Therefore, to some extent, the ratio of proteins involved
in the predicted PPI network may reflect the plant—pathogen arms race at the

molecular level.
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6. SUMMARY

The study entitled “Modeling of Cassava-Cassava Mosaic Virus
interaction with computational biology and bioinformatics approach™ was carried
out at the Section of Extension and Social Sciences, ICAR-Central Tuber Crops
Research Institute, Sreekariyam, Thiruvananthapuram during 2018-2019. The
objectives of the study were to predict interacting pairs of proteins between
Cassava and CMV, construction of Protein-Protein Interaction Network (PPIN)

and validation of predicted protein pairs.

The study had mainly three objectives, PPI prediction between cassava
and Cassava Mosaic Virus, predicted PPI network construction and validation of
the predicted pairs. PPI prediction was done using interolog-based method and the
template plant used is Arabidopsis thaliana. The preliminary datasets of PPls for
the prediction of cassava-CMV interaction were obtained mainly from three
databases (STRING Viruses, APID, HPIDB). A total of 351 PPIs between 351
proteins in cassava and 11 proteins in CMV were predicted. These proteins were
filtered using VirusHostPPI prediction tool. After filtering 114 PPIs between 114
cassava proteins and 10 CMV proteins were obtained. Using Functional
annotation tools, the predicted proteins were functionally annotated. Predicted
cassava proteins were annotated using Blast2Go and CMV proteins were
annotated using QuickGO. The results showed the presence of 10 disease
resistance proteins in predicted cassava proteins. These disease resistance proteins
were predicted to interact with AC/ gene of CMV which codes for replication
associated proteins in CMV. Moreover, InterProScan results showed that majority
of the proteins comes under NAC containing domain superfamily. NAC TFs are
one of the largest families of transcription factors (TFs) in plants and they play
vital roles in regulating plant growth and development processes including abiotic

stress responses.
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From the predicted PP1 pair, one pair (Car2 gene of cassava and AC2 gene
of CMV) of interacting proteins of cassava and CMV interaction is validated
using q-PCR. Primers were designed for both the proteins. These primers were

validated using a healthy and CMV infected varieties.

6.1 SCOPE OF FUTURE WORK

As the resources were limited, only one predicted PPI pair was validated
for differentiating expression of genes in healthy and infected cassava varieties.
Further study can be done for the identification of interaction between predicted

Cassava-CMV proteins and intraspecies PPI in cassava.
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8. APPENDIX I

Appendix I. Functional annotation result of the predicted PPIs in cassava

(Tags represents: Interpro [I], Blast [B] Mapping [M] and Annotation [A]).

Sl no. Seq name Tags Description Length | Sim
mean
trlAOA251IK7S8| |y gy A
AOA251K7S8 M | 77 7 Eukaryotic translation initiation
1 ANES factor 3A 1013 85.79
tr/AOA2C9VFE3| | LB,M.A
AOA2C9VFE3 Eukaryotic translation initiation
2 MANES factor 3A 1003 92.12
tr/AOA2CO9WHRS | LB,M,A | Nascent polypeptide-associated
|AOA2COWHRS complex (NAC), alpha subunit
3 MANES family protein 221 89.63
trlAOA2COW4Z3| | LB.M,A | Nascent polypeptide-associated
AOA2C9W4Z3 complex (NAC), alpha subunit
4 MANES family protein 206 87.29
trAOA2CO9W041| | LB,M.A | Nascent polypeptide-associated
AOA2C9W041 complex (NAC), alpha subunit
5 MANES family protein 268 89.93
tr/AOATI99UAYS| | LB.M,A
AOA199UAYS Plasma-membrane associated
6 MANES cation-binding protein 1 205 86.49
tr/AOA2CO9W3ES| | LB,M,A
AOA2COW3ES
7 MANES Translation initiation factor 3B1 720 68.1
tr/AOA2C9UCF2| | LB.M,A
AOA2C9UCF2
8 MANES Translation initiation factor 3B1 720 68.41
trlAOA2C9VKP1| | LB.M,A
AOA2C9VKPI RNA-binding (RRM/RBD/RNP
9 MANES motifs) family protein 294 60.12
LLBM.A | RNA-binding (RRM/RBD/RNP
10 | tADA2CIVAQT] motifs) family protein 295 |59.63

A0A2C9V4Q7
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MANES
trAOA2COWG6S| | LB.M,A
AOA2CIWGES

11 MANES Argonaute family protein 1070 64.07
tr/AOA2C9W3T7| | LB.M.A
AOA2COW3T7 Overexpressor of cationic

12 | MANES peroxidase 3 353 80.46
trAOA2COW3IM2
[AOA2C9W3M2 | I, No-

13 | MANES Blast ---NA--- 951
tr/AOA2COWC92| | LB.M.A
AOA2COW(CI92 Homeobox-leucine zipper protein

14 | MANES family 288 68.04
trlAOA2C9V8V6| | LB.M,A
AOA2C9VEV6 Homeobox-leucine zipper protein

15 | MANES family 472 63.03
trfAOA2C9VUS4| | LB,M.A
AOA2C9VUSY

16 | MANES Homeobox protein 5 303 80.98
tr/AOA2COVPIS| | LB.M,A
AOA2C9VPI5S M

17 | ANES Homeobox protein 5 319 71.42
trAOA2CO9WNBS | .LB,M.A
|[AOA2COWNBS Homeobox-leucine zipper protein

18 | MANES family 291 67.66
tr/AOA2COVUVSE| | L B.M.A
AO0A2C9VUVS

19 | MANES Homeobox protein 5 296 79.59
trlAOA2CO9WLH4 | LB.M.A
|AOA2COWLH4 Proliferating cell nuclear antigen

20 | MANES 2 266 97.35
tr]A0A2CO9WD70| | LB.M.A
AODA2COWD70 Proliferating cell nuclear antigen

21 | MANES 2 264 97.35
tr/AOA2COW164| | LB.M,A
AOA2COW164

22 | MANES BEL1-like homeodomain ] 806 58.28
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trAOA2COUOMY| | .LB.M,A
AOA2COUOMY

23 | MANES BEL1-like homeodomain 1 665 62.89
trAOA2CO9WCA3 | LB.M,A | NAC (No Apical Meristem)
|AOA2COWCA3 domain transcriptional regulator

24 | MANES superfamily protein 288 61.35
tr]AOA2C9UNRI1| | LB.M.A
AOA2C9UNRI

25 MANES NAC transcription factor-like 9 623 67.59
trAOA2C9U746| | LB,M,A | NAC (No Apical Meristem)
AO0A2C9U746 M domain transcriptional regulator

26 | ANES superfamily protein 450 50.63
tr AOA2COVIVY| | LB.M.A
ADA2C9VIVI NAC domain containing protein

27 | MANES 35 244 62.9
tr/AOA2C9VPESG| | LBM,A | NAC (No Apical Meristem)
AOA2C9VPE6 domain transcriptional regulator

28 | MANES superfamily protein 400 72.55
trlAOA2C9USZ3| | LB.M.A | NAC (No Apical Meristem)
ADA2C9US5Z3 M domain transcriptional regulator

29 | ANES superfamily protein 319 71.09
tr[AOA2C9V824| |1.B.M.A
AODA2C9VE24 M NAC domain containing protein

30 | ANES 35 286 61.06
trAOA2CIVIE7| | LBM,A | NAC (No Apical Meristem)
AO0A2C9VIE7T M domain transcriptional regulator

31 ANES superfamily protein 440 58.99
trAOA2C9VUS2| | LB.M,A
AQ0A2COVUS2 NAC domain containing protein

32 | MANES 82 494 57.02
trAOA2C9VS27| | LB.M.A
ADA2C9VS27 M NAC domain containing protein

33 | ANES 82 486 56.7
tr]AOA2C9UADS| | LBIMLA | NAC (No Apical Meristem)
AO0A2C9UADS domain transcriptional regulator

34 | MANES superfamily protein 455 54.38

35 | IAOA2CIVS73| | LB.M.A 484 57.06

AO0A2C9VS73 M

NAC domain containing protein
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ANES 82
trlAOA2COUQAS| | LB.M.A
AOA2C9UQAS NAC domain containing protein

36 | MANES 50 349 55.88
trlAOA2C9UP13| | LB.M,A
AOA2C9UPI3 M NAC domain containing protein

37 | ANES 50 341 55.95
trAOA2C9VNMS | LB.M,A [ NAC (No Apical Meristem)
[ADOA2CIOVNMS domain transcriptional regulator

38 | MANES superfamily protein 456 52.62
tr/AOA251L6B6| | LB.M,A | NAC (No Apical Meristem)
AOA251L6B6 M domain transcriptional regulator

39 | ANES superfamily protein 464 54.18
tr/AOA251L698|A | LBIM,A | NAC (No Apical Meristem)
0A251L698 MA domain transcriptional regulator

40 | NES superfamily protein 463 54.19
trAOA2COVTUS| | LB.M.A | NAC (No Apical Meristem)
AOA2C9VTUS domain transcriptional regulator

41 MANES superfamily protein 421 63.42
trlAOA2COWM25 | LBM,A | NAC (No Apical Meristem)
[AOA2COWM2S5 domain transcriptional regulator

42 | MANES superfamily protein 354 48.56
tr/AOA2COWN37| | I,LB.M,A
AOA2C9WN37 NAC domain containing protein

43 | MANES 52 348 44.32
tr/AOA2COWKT2 | LBIMLA | NAC (No Apical Meristem)
|AOA2COWKT2 domain transcriptional regulator

44 | MANES superfamily protein 354 48.09
tr/AOA2C9WA4ANO| | LBIM,A | NAC (No Apical Meristem)
AOA2COW4NO domain transcriptional regulator

45 | MANES superfamily protein 337 72.21
tr/AOA2COVRRO| | LB,M,A | NAC (No Apical Meristem)
AOA2C9VRRO domain transcriptional regulator

46 | MANES superfamily protein 247 66.1
trlAOA2COWSR6| | LBM.A | NAC (No Apical Meristem)
AOA2COWSR6 domain transcriptional regulator

47 | MANES superfamily protein 336 72.44
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tr/AOA2COWC46| | LB,M,A | NAC (No Apical Meristem)
AODA2COWC46 domain transcriptional regulator

48 | MANES superfamily protein 401 72.86
tr/AOA251KRRO| | ILB,M,A
AOA251KRRO NAC domain containing protein

49 | MANES 82 373 60.01
tr|AOA2C9VRPS| | LBM,A | NAC (No Apical Meristem)
AOA2C9VRPS domain transcriptional regulator

50 | MANES superfamily protein 298 64.92
tr|AOA2COVUQO| | I,LB.MLA
ADA2COVUQO NAC domain containing protein

51 MANES 50 319 49.03
tr/ AOA2C9VE39| | LB.M.A
AOA2CI9VE39 M

52 | ANES NAC with transmembrane motifl | 231 52.63
tr/AOA2C9VIE3| | LBM,A | NAC (No Apical Meristem)
AOA2C9VIE3 M domain transcriptional regulator

53 ANES superfamily protein 173 65.87
trlAOA2C9VSES| | LB,M,A | NAC (No Apical Meristem)
AOA2C9VSES domain transcriptional regulator

54 | MANES superfamily protein 393 69.26
tr/AOAT199UA28| | LBM,A | NAC (No Apical Meristem)
AODAT99UA28 M domain transcriptional regulator

55 | ANES superfamily protein 383 57.81
tr{AOA2C9UKBS| | LB.M,A | NAC (No Apical Meristem)
AOA2C9UKBS domain transcriptional regulator

56 | MANES superfamily protein 429 52.36
trAOA2C9U024| | LBIM,A | NAC (No Apical Meristem)
ADA2C9U024 M domain transcriptional regulator

57 | ANES superfamily protein 329 80.71
trlAOA2C9UFZ4| | LBM,A | NAC (No Apical Meristem)
ADA2C9UFZ4 domain transcriptional regulator

58 | MANES superfamily protein 411 51.26
trlAOA2C9URD4| | I.LBM,A
AODA2C9URD4 NAC domain containing protein

59 | MANES 82 315 74.26

60 tr/AOA2COW4Q2| | I,LB,M,A | NAC (No Apical Meristem) 323 7225

ADA2C9W4Q2

domain transcriptional regulator
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MANES superfamily protein
tr/AOA2COWR64| | LB.M.A
AOA2COWR64 NAC domain containing protein

61 | MANES 41 68 68.57
trlAOA2C9U2C3| | LB.M,A | NAC (No Apical Meristem)
A0A2C9U2C3 domain transcriptional regulator

62 | MANES superfamily protein 288 71.66
tr/AOA251LEQ3| | LB.M.A | NAC (No apical meristem)
AOA251LEQ3 M domain transcriptional regulator

63 | ANES superfamily protein 357 70.04
trjAOA251L5A8| | LB.M,A | NAC (No Apical Meristem)
AOA251LSA8 M domain transcriptional regulator

64 | ANES superfamily protein 322 71.95
rlA0A251K2X1| | LBM,A
AOA251K2X1 M Eukaryotic translation initiation

65 | ANES factor 3C 929 83.45
trf/AOA2C9VFH4| | LBM,A
AOA2C9VFH4 Eukaryotic translation initiation

66 | MANES factor 3C 930 79.53
trlAOA2C9VV5S0| | ILBM,A
AOA2C9VV50 Eukaryotic translation initiation

67 | MANES factor SA-1 (elF-5A 1) protein 159 92.58
trfAOA2C9VP44| | LBM.A
ADA2C9VP44 M Eukaryotic translation initiation

68 | ANES factor 5A-1 (elF-5A 1) protein 159 92.26
trAOA2C9VMR2 | LBM.A
[AOA2COVMR2 Eukaryotic translation initiation

69 | MANES factor 5A-1 (elF-5A 1) protein 160 92.31
trAOA2COUXZ5| | LB.M,A
AOA2C9UXZS Eukaryotic translation initiation

70 | MANES factor 3 subunit 7 (elF-3) 572 86.09
trfAOA2COW286| | ILB.M.A
AODA2COW286 Eukaryotic translation initiation

71 MANES factor 3 subunit 7 (elF-3) 557 81.91
tr/AOA2CO9VMOI| | I,B.M,A
AOA2COVMOI1 Translation initiation factor elF3

72 | MANES subunit 223 73.17
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trAOA2COWCRI | LBM.A
[AOA2C9WCRI _ Proteasome component (PCI)

73 | MANES domain protein 412 79.1
trlAOA2C9UABS| | LBIM.A
AOA2C9UABS Eukaryotic translation initiation

74 | MANES factor 3K 239 90.41
trfAOA2COWKS2| | LB.M,A
ADA2C9WKS2 Translation initiation factor 3

75 | MANES subunit H1 340 57.45
trAOA2COUGVS| | LBM,A
A0A2C9UGV6_ Transducin/WDA40 repeat-like

76 | MANES superfamily protein 326 50.89
trAOA2C9U7A7| | LB.M,A
ADA2COUTAT_ Transducin/WD40 repeat-like

77 | MANES superfamily protein 326 51.23
trlA0A2CO9VMX9 | L BM.A
|AOA2C9VMX9 Eukaryotic translation initiation

78 | MANES factor 2 287 55.23
tr/AOA2C9VKVS5| | I.LB.M,A
AOA2C9VKVS Eukaryotic translation initiation

79 | MANES factor 2 289 54.91
trAOA2C9VMB7 | LBM.A
|AOA2COVMBT7 Eukaryotic translation initiation

80 | MANES factor 2 315 53.8
tr/AOA2C9VX86| | I.B.M,A
AOA2C9VXS86

81 MANES catalase 3 492 90.84
trAOA2CO9VVT7| | LB.M,A
AOA2COVVTT

82 | MANES catalase 3 461 91.34
trfAOA2COVVU3| | LB.M,A
AO0A2C9VVU3

83 | MANES catalase 3 492 88.4
trfQ9SW99|Q9S | LB.M.A

84 | W99 MANES catalase 3 492 89.22

gs |WACAZCOWMD | LBMA | a0 3 344 | 9135

1| AOA2COWMD
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1_MANES

86

trAOA2C9TZH3|
AOA2C9TZH3
MANES

LB.M,A

catalase 3

358

89.27

87

trAOYMES|A9Y
MES MANES

LLB.M,A

catalase 3

261

87.02

88

trAOA2C9USST|
AOA2C9USS7 M
ANES

LLB,M.A

CBL-interacting protein kinase 9

499

74.2

89

trAOA2C9U1Q2)
ADA2C9U1Q2
MANES

[LB.MA

CBL-interacting protein kinase 3

415

73.78

90

tr]ADA2COU4VG|
A0A2C9U4V6
MANES

LBM.A

CBL-interacting protein kinase 9

459

73.82

91

tr]AOA2COUY QS|
AOA2COUYQS
MANES

LLBIM,A

CBL-interacting protein kinase 9

457

70.73

92

trAOA2COVFAO|
AOA2COVFAD
MANES

ILB.M.A

ARM repeat superfamily protein

533

63.14

93

tr/AOA2CIVECS]
AOA2CIVECS
MANES

LB.IM,A

ARM repeat superfamily protein

530

64.04

94

trlAOA2COVBQ4|
AODA2C9VBQ4
MANES

ILB.M.A

Importin alpha isoform 4

534

69.72

95

tr AOA2COVBR2)|
AOA2C9VBR2
MANES

LLB.MA

ARM repeat superfamily protein

530

64.23

96

trAOA2COVTE]|
AOA2C9VTE]
MANES

LB.M,A

ARM repeat superfamily protein

533

63.67

97

trAOA251LCR3|
AOA251LCR3 M
ANES

L.LB.M.A

ARM repeat superfamily protein

529

64.54

98

tr AOA2COU3KS|

[.LB.M.A

Disease resistance protein (TIR-

1029

51.22
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AOA2C9U3KS NBS-LRR class) family
MANES
trfAOA2C9U398| | LB.M.A
ADA2C9U398 M Disease resistance protein (TIR-

99 | ANES NBS-LRR class) family 1187 56.13
trlAOA2C9VOP3| | LB.M.A
ADA2C9VOP3 M Disease resistance protein (TIR-

100 | ANES NBS-LRR class) family 1135 54.78
trlAOA2C9V4RS5| | I,LBM,A
AOA2C9V4RS Disease resistance protein (TIR-

101 | MANES NBS-LRR class) family 1239 56.35
tr]AOA251LK88| | LB.M.A
ADA251LK88 M Disease resistance protein (TIR-

102 | ANES NBS-LRR class) family 1158 55.79
trAOA251LK92| | LBIMA
A0A251LK92 M Disease resistance protein (TIR-

103 | ANES NBS-LRR class) family 1284 53.94
trAOA2CO9WFM4 | [.BM,A
[AOA2COWFM4 Disease resistance protein (TIR-

104 | MANES NBS-LRR class) family 1133 55.35
trAOA2COUNM2 | LB.M.A
|[AOA2CIUNM2 Disease resistance protein (TIR-

105 | MANES NBS-LRR class) family 1100 53.58
tr/AOA2COVWI0| | LB M.A
AOA2COVWI0 Calcium-dependent lipid-binding

106 | MANES (CaL.B domain) family protein 538 60.86
trAOA2C9V4J0| | ILBM.A
AOA2C9V4]0 M Calcium-dependent lipid-binding

107 | ANES (CaLB domain) family protein 539 58.48
trAOA2C9WO017| | .LBM,A
A0A2C9W017 M Calcium-dependent lipid-binding

108 | ANES (CaLB domain) family protein 540 60.42
trlAOA2COW634| | LB.M,A
ADA2C9W634 Calcium-dependent lipid-binding

109 | MANES (CaLB domain) family protein 534 53.66

ILB.M,A | Calcium-dependent lipid-binding

trAOA2COWOFO| . : . 9

110 AOA2COWOFO (CalLB domain) family protein 42 62.24
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MANES
trlAOA2COV0Q1| | LBIM.A
A0A2C9V0Q1 Disease resistance protein (TIR-
111 | MANES NBS-LRR class) family 967 53.27
trAOA251LKMS5| | LBIMLA
AOA251LKMS Disease resistance protein (TIR-
112 | MANES NBS-LRR class) family 771 54.93
trAOA2C9VKEL1| | LBM.,A
AOA2C9VKE1 _
113 | MANES Target of rapamycin 991 89.67
tr/AOA2C9VT85| | LB.M.A
AOA2COVT85S M Calcium-dependent lipid-binding
114 | ANES (Cal.LB domain) family protein 511 54.03
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9. ABSTRACT

Every year pathogenic organisms cause billions of dollars’ worth damage
to crops and livestock. In agriculture, study of plant-microbe interactions is
demanding a special attention to develop management strategies for the
destructive pathogen induced diseases that cause huge crop losses every year
worldwide. Cassava Mosaic Virus (CMV) is a major viral leaf pathogen that
causes disease in cassava. Protein-Protein Interactions (PPIs) play a critical role in
initiating pathogenesis and maintaining infection. Understanding the PPI network
between a host and pathogen is a critical step for studying the molecular basis of
pathogenesis. The experimental study of PPIs at a large scale is very scarce and
also the high throughput experimental results show high false positive rate.
Hence, there is a need for developing efficient computational models to predict
the interaction between host and pathogen in a genome scale, and find novel

candidate effectors and/or their targets.

In this study, interacting proteins in cassava-CMV interaction is predicted
using interolog-based method. The interolog method relies on protein sequence
similarity to conduct the PPI prediction. Using this method, 114 PPIs have been
predicted between 114 proteins of cassava and 10 proteins of CMV. Functional
annotation of the predicted proteins showed the presence of 10 disease resistance
protein in cassava that interacts with CMV. The subcellular location of the
predicted proteins was found and it showed that major interactions occur in
nucleus and chloroplast region. This can be a useful resource to the plant
community to characterize the host-pathogen interaction in cassava and CMV.
Further, these prediction models can be applied to the agriculturally relevant

crops.
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